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In this paper, a numerical method is applied to approximate the solution of variable-order fractional-functional optimal control
problems. Te variable-order fractional derivative is described in the type III Caputo sense. Te technique of approximating the
optimal solution of the problem using Lagrange interpolating polynomials is employed by utilizing the shifted Legen-
dre–Gauss–Lobatto collocation points. To obtain the coefcients of these interpolating polynomials, the problem is transformed
into a nonlinear programming problem. Te proposed method ofers a signifcant advantage in that it does not require the
approximation of singular integral. In addition, the matrix diferentiation is calculated accurately and efciently, overcoming the
difculties posed by variable-order fractional derivatives. Te convergence of the proposed method is investigated, and to validate
the efectiveness of our proposed method, some examples are presented. We achieved an excellent agreement between numerical
and exact solutions for diferent variable orders, indicating our method’s good performance.

1. Introduction

Nowadays, fractional calculus, a branch of mathematics that
studies the properties of derivatives and integrals of non-
integer order, is essential due to its increasing applications in
the sciences and engineering. Particularly, mathematical
modeling of phenomena based on fractional calculus has
proven to exhibit more realistic behavior [1–4].

A mild solution for a control problem governed by
fractional stochastic evolution inclusion using the Caputo
derivative with nonlocal conditions was proved by Abuasbeh
et al. [5] via the fxed-point theorem of convex multiple-
valued maps.

In [6], Khan et al. address the issue of resilient base
containment control for fractional-order multiagent systems
(FOMASs) that have mixed time delays. Niazi and his
colleagues [7] prove the existence of a solution for an initial
value problem involving a hybrid fractional diferential
equation with delay.

In recent years, solving optimal control problems gov-
erned by a fractional dynamical system has become one of
the most popular topics in control theory, and it has en-
couraged many researchers to come up with an efcient
numerical approach to solving them. A new method for
fnding the approximate solution of fractional optimal
control problems with the Caputo–Fabrizio (CF) fractional
integro-diferential equation is presented in [8].Tis method
is based on the Gegenbauer polynomials defnition and
utilizes the modifed operational matrix of the CF-fractional
derivative. In [9], Heidari and Razzaghi attempted to solve
two classes of fractional optimal control problems (OCPs)
with delay. Teir approach involves using the Legen-
dre–Gauss collocation method and extended Chebyshev
cardinal wavelets to solve the Hamilton–Jacobi–Bellman
equation numerically. Ghanbari and Razzaghi [10] have
proposed a new numerical method to solve fractional op-
timal control problems (FOCPs). Teir method is based on
generalized fractional-order Chebyshev wavelets (GFOCW)
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and the incomplete beta function. A Fibonacci wavelet
operational matrix and the Galerkin method were used by
Sabermahani and Ordokhani [11] to solve fractional optimal
control problems with equal and unequal constraints. In
[12], authors use modifed hat functions as basic functions to
approximate control and state variables. Te properties of
these basis functions, the Caputo derivative and the Rie-
mann–Liouville integral simplify the FOCP to nonlinear
algebraic equations. For more study, see also the related
works [13–15].

Recently, the variable-order fractional optimal control
problems have attracted the attention of many researchers.
Tis is because variable-order fractional calculus ofers
greater fexibility in selecting the most appropriate order for
accurately describing real-world problems. Heydari et al.
[16] used a method based on the Chebyshev cardinal
functions and Lagrange multipliers to reduce the problem to
a system of algebraic equations. An efcient method was
presented by Heydari and Avazzadeh [17] through the
Legendre wavelets and their operational matrix of variable-
order fractional integration in the Riemann–Liouville sense.
Hassani et al. [18] examined two-dimensional variable-order
fractional optimal control problems. Using the transcen-
dental Bernstein series and extending problem variables
based on these series, they transformed the optimal control
problem into a simple optimization problem. Bhrawy and
Zaky in [19] proposed a method using shifted Chebyshev
polynomials and an operational matrix to approximate the
solution of a variable-order fractional functional Dirichlet
boundary value problem.

Te novelty of our work lies in the fact that there is no
study on the numerical solution of variable-order fractional-
functional optimal control (VOFFOC) problems, and we
look at this issue for the frst time. Te purpose of this paper
is to present a numerical scheme that will be able to ap-
proximate the VOFFOC problem efciently. Our scheme is
based on the Legendre spectral collocation methods and
reduces the problem into a nonlinear programming (NLP)
problem.

Te structure of the paper is as follows. In Section 2,
some necessary preliminaries are given. In Section 3, a new
direct method is described to solve the VOFFOC problems.
Section 4 discusses the convergence of the proposedmethod.
In Section 5, some numerical examples are given to show the
method’s efciency. Finally, the conclusions and suggestions
are presented in Section 6.

2. Some Preliminaries

In this section, we present some basic defnitions and
mathematical preliminaries related to the fxed-order and
variable-order fractional integrals and derivatives [20].

Defnition 1. Consider the function χ(.) defned on the fnite
interval [0, T]. For fxed-order ε> 0, the left and right RL
fractional integrals are 0I

ϵ
tχ(t) and tI

ε
Tχ(t) and are defned

by

0I
ε
tχ(t) �

1
Γ(ε)

􏽚
t

0
(t − τ)

ε− 1χ(τ)dτ, 0< t≤T,

tI
ε
Tχ(t) �

1
Γ(ε)

􏽚
T

t
(τ − t)

ε− 1χ(τ)dτ, 0≤ t<T.

(1)

Defnition 2. Let χ(.) be a function on the interval [0, T].Te
left and right RL fractional derivatives of fxed-order 0< ε< 1
are denoted by 0D

ε
tχ(t) and tD

ε
Tχ(t), respectively, and de-

fned by

0D
ε
tχ(t) �

1
Γ(1 − ε)

d

dt
􏽚

t

0
(t − τ)

− εχ(τ)dτ, t> 0,

tD
ε
Tχ(t) �

(−1)

Γ(1 − ε)
d

dt
􏽚

T

t
(τ − t)

− εχ(τ)dτ, t<T.

(2)

Defnition 3. Suppose that function χ(.) is defned on [0, T].
Te left and right Caputo fractional derivatives of χ(.) of
fxed-order 0< ε< 1 are denoted by C

0 Dε
tχ(t) and C

t Dε
Tχ(t),

respectively, and defned by

C
0 D

ε
tχ(t) �

1
Γ(1 − ε)

􏽚
t

0
(t − τ)

− εχ′(τ) dτ, 0≤ t<T,

C
t D

ε
Tχ(t) �

(−1)

Γ(1 − ε)
􏽚

T

t
(τ − t)

− εχ′(τ) dτ, 0< t≤T.

(3)

We now present the basic concepts of variable-order
fractional calculus and consider the fractional order in the
derivative and integral to be a continuous function on (0, T).
First, we introduce the generalization of a fxed-order
fractional integral called the variable-order Rie-
mann–Liouville integral.

Defnition 4. Assuming that the continuously diferentiable
function χ is defned on (0, T). Te left and right Rie-
mann–Liouville fractional integrals of order ε(.) are defned
as follows:

RL
0 I

ε(t)
t χ(t) � 􏽚

t

0

1
Γ(ε(t))

(t − τ)
ε(t)− 1χ(τ)dτ, t> 0,

RL
t I

ε(t)
T χ(t) � 􏽚

T

t

1
Γ(ε(t))

(τ − t)
ε(t)− 1χ(τ)dτ, t<T.

(4)

Defnition 5. Assume that χ: [0, T]⟶ R is a continuously
diferentiable function and ε: [0, T]⟶ [0,1] is a given
function.

(1) Te type I left and right Caputo variable-order
fractional derivatives (VOFDs) of χ(t) of order
ε(.), respectively, are defned by
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C
0 D

ε(t)
t χ(t) �

1
Γ(1 − ε(t))

d

dt
􏽚

t

0
(t − τ)

− ε(t)
[χ(τ) − χ(0)]dτ,

C
TD

ε(t)
t χ(t) �

−1
Γ(1 − ε(t))

d

dt
􏽚

T

t
(t − τ)

− ε(t)
[χ(τ) − χ(T)]dτ.

(5)

(2) Te type II left and right Caputo VOFDs of χ(t) of
order ε(.), respectively, are given by

C
TD

ε(t)
t χ(t) �

d

dt

1
Γ(1 − ε(t))

􏽚
t

0
(t − τ)

− ε(t)
[χ(τ) − χ(0)]dt􏼠 􏼡,

C
TD

ε(t)
t χ(t) �

d

dt

−1
Γ(1 − ε(t))

􏽚
T

t
(t − τ)

− ε(t)
[χ(τ) − χ(T)]dτ􏼠 􏼡.

(6)

(3) Te type III left and right Caputo derivatives of χ(t)

of order ε(t), respectively, are defned by

C
0D

ε(t)
t χ(t) �

1
Γ(1 − ε(t))

􏽚
t

0
(t − τ)

− ε(t)χ′(τ)dτ,

C
t D

ε(t)
T χ(t) �

−1
Γ(1 − ε(t))

􏽚
T

t
(t − τ)

− ε(t)χ′(τ)dτ.

(7)

Lemma 6 (see [20]). Let χ(t) � (t − a)β for t ∈ [a, b] where
β> 0. Ten,

aI
ε(t)
t χ(t) �

Γ(β + 1)

Γ(β + ε(t) + 1)
(t − a)

β+ε(t)
,

C
aD

ε(t)
t χ(t) �

Γ(β + 1)

Γ(β − ε(t) + 1)
(t − a)

β−ε(t)
, β≥ 1,

0, β< 1.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(8)

In this paper, we will focus on the type III Caputo
VOFDs.

3. Implementation of the Method for
VOFFOC Problem

In this paper, we consider the following VOFFOC problem

Minimize L(Y(.), V(.)) � 􏽚
T

0
P(t, Y(t),V(t))dt, (9)

subject to
C
0D

ε(t)
t Y(t) � G(t, Y(t), Y(ϕ(t)), V(t)), 0< t≤T,

Y(0) � Y0,

⎧⎨

⎩ (10)

where Y0 ∈ R is given, P: R × Rn × Rm⟶ R and G: R ×

Rn × Rm⟶ R and ϕ: [0, T]⟶ [0, T] are continuously
diferentiable functions, Y(t) and V(t) are the state and
control variables, respectively, ε: [0, T]⟶ [0, 1] is

a continuous function, and C
0D

ε(t)
t is the type III Caputo

VOFD operator. We assume that there exists a smooth
optimal solution (Y∗(.), V∗(.)) for the above VOFFOC
problem. We are going to propose a convergent and efcient
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method to approximate the optimal solution. In imple-
menting the method, we use the following Lagrange in-
terpolating polynomials

hj(t) � 􏽙
N

i�0
i≠j

t − ti

tj − ti

, j � 0, 1, . . . , N, (11)

where ti for i � 0, 1 . . . , N are the shifted Legen-
dre–Gauss–Lobatto (SLGL) points. Tese points can be
given by ti � T/2(τi + 1), where τi are the roots of
polynomials

qN+1(τ) � 1 − τ2􏼐 􏼑JN
′(τ), τ ∈ [−1, 1], (12)

where JN(t) is the Legendre polynomial of degree N defned
by the following recurrence formula on interval [−1, 1]

Jj+1(τ) �
2j + 1
j + 1

(τ)Jj(τ) −
j

j + 1
Jj−1(τ), j � 1, 2, . . .

J0(t) � 1, J1(τ) � τ.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(13)

Te Lagrange polynomials have the useful delta Kro-
necker property, i.e.,

hj tk( 􏼁 � δjk �
1, j � k,

0, j≠ k.
􏼨 (14)

Now, we approximate the variables of the problem (9)
and (10) in terms of the Lagrange interpolating polynomials
as follows:

Y(t) ≈ Y
N

(t) � 􏽘
N

j�0
�yjhj(t), V(t) ≈ V

N
(t) � 􏽘

N

j�0
�]jhj(t),

(15)

where �y � (�y0, �y1, . . . , �yN) and �v � (�v0, �v1, . . . , �vN) are
unknown coefcients. With the interpolation property of the
Lagrange interpolating polynomials, we obtain

Y tk( 􏼁 ≈ �yk, V tk( 􏼁 ≈ �]k, k � 0, 1, . . . , N. (16)

Also, to approximate the VOFD of state variable Y(.), we
gain

C
0D

ε(t)
t Y(t) ≈ C

0D
ε(t)
t YN(t) � 􏽘

N

j�0
�yk

C
0D

ε(t)
hj(t). (17)

So, at the collocation points, we have

C
0D

ε(t)
t Y(t)|t�tk

≈ 􏽘
N

j�0
�ykF

ε
k,j+1, k � 1, 2, .., N, (18)

where for k � 1, 2, . . . , N and j � 0, 1, . . . , N

F
ε
k,j+1 �

C
0 D

ε(t)
t hj(t)|t�tk

�
1

Γ 1 − ε tk( 􏼁( 􏼁
􏽚

tk

0
tk − z( 􏼁

−ε tk( )hj
′(z)dz. (19)

Here, we defne the type III Caputo VOF diferentiation
matrix as Fε � (Fε

k,j+1)N×(N+1). Note that the elements of
matrix diferentiation Fε can not be directly and exactly
calculated by relation (11). Some Jacobi–Gauss quadrature
formulas can be used for approximating the singular integral
in (19) and for obtaining the matrix diferentiation. But,
here, we are going to present an exact and efcient method to
gain this matrix. In the presented method, we use Lemma 6
and the properties of interpolating polynomials, and we do
not need to approximately calculate a singular integral.

First, we consider the following expansion for the
Lagrange polynomials

hj(t) � 􏽘
N

p�0
ηpjt

p
, 0≤ t≤T, j � 0, 1, . . . , N, (20)

where ηpj are coefcients that we can calculate as follows. By
evaluating (14) and (20), we obtain

􏽘

N

p�0
ηpjt

p

k � δjk, j � 0, 1, . . . , N, k � 0, 1, . . . , N. (21)

Relation (21) can be represented as the following matrix
form

Ληj � δj, j � 0, 1, . . . , N, (22)

where

Λ �

1 0 0 . . . 0

1 t1 t
2
1 . . . t

N
1

⋮ ⋮ ⋮ ⋱ ⋮

1 tN t
2
N . . . t

N
N

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, ηj �

η0j

η1j

⋮

ηNj

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, δj �

δ0j

δ1j

⋮

δNj

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (23)

Since Λ is an invertible matrix, we gain ηj � (Λ− 1)(j+1)

for j � 0, 1, . . . , N where (Λ− 1)j+1 is the (j + 1)-th column
of matrix Λ− 1. So,

ηpj � Λ− 1
􏼐 􏼑

(p+1)(j+1)
, j, p � 0, 1, . . . , N. (24)

Hence, by evaluating (20) and (24), we obtain

hj(t) � 􏽘
N

p�0
Λ−1

􏼐 􏼑
(p+1)(j+1)

t
p
, j � 0, 1, . . . , N. (25)
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Now, using Lemma 6 and relation (25), the components
of type III Caputo VOF diferentiation matrix
Fε � (F

ε(t)
kj )N×(N+1) can be shown as

F
ε
k,j+1 �

C
0 D

ε(t)
t hj(t) |t�tk

� 􏽘
N

p�1
Λ−1

􏼐 􏼑
(p+1)(j+1)

Γ(p + 1)

Γ p + 1 − ε tk( 􏼁( 􏼁
t
p−ε tk( )
k , (26)

for k � 1, 2, . . . , N and j � 0, 1, . . . , N.
We will use the following theorem to approximate the

objective functional (9).

Lemma 7. Consider a polynomial p(.) of degree at most
(2N − 1), on the interval [0, T]. We have

􏽚
T

0
p(t)dt � 􏽘

N

k�0
ωk p tk( 􏼁, (27)

where tk􏼈 􏼉
N

k�0 are the SLGL points on [0, T] and
ωk � T/N(N + 1)(JN(tk))2 for k � 0, 1, . . . , N.

Proof. It can be gained by employing the transformation x �

2t/T − 1 in Teorem 3.29 of [21].
As a result of Lemma 7, for any continuous function q(.)

on [0,T], we obtain

􏽚
T

0
q(t)dt � lim

N⟶∞
􏽘

N

k�0
ωk q tk( 􏼁. (28)

Here, (tk,ωk)N
k�0 is the sequence of SLGL nodes and

weights.
Now, by relations (16), (18), and (28), we discretize the

problem (9) and (10), as follows:

Minimize LN(�y, �]) � 􏽘
N

k�0
P tk, �yk, �]k􏼐 􏼑ωk, (29)

subject to
􏽘

N

j�0
�ykF

ε
k,j+1 − G tk, �yk, 􏽘

N

j�0
�yjhj ϕ tk( 􏼁( 􏼁, �]k

⎛⎝ ⎞⎠ � 0, k � 1, 2, . . . , N,

�y0 − Y0 � 0.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(30)

By obtaining the decision variables �y � (�y0, �y1, . . . , �yN)

and �v � (�v0, �v1, . . . , �vN) of solving the above NLP problem,
we can fnd an approximate solution for the main
system. □

4. Convergence Analysis of the Method

In this section, we analyze the convergence of the method.
We frst rewrite the problem (29) and (30) as the following
equivalent form:

Minimize LN(�y, �]) � 􏽘
N

k�0
P tk, �yk, �]k􏼐 􏼑ωk, (31)

subject to
C
0D

ε tk( )
tk

YN tk( 􏼁 − G tk, YN tk( 􏼁, YN ϕ tk( 􏼁( 􏼁, VN tk( 􏼁( 􏼁 � 0, k � 1, . . . , N,

YN(0) � Y0,

⎧⎨

⎩ (32)

where YN(t.) and VN(t.) satisfy (15). We assume the
problem (31) and (32) (or equivalently (29) and (30)) is
feasible.

Assumption 8. We assume that the optimal solution of
VOFFOC problem (1) and (2) has a Lagrange interpolating
polynomial (based on the SLGL points), which uniformly
converges to it.

Theorem  . Assume that (�y
∗
j , �]∗j )

N

j�0 is the optimal solution
of (22) and (23) and defne �YN(t) � 􏽐

N
j�0�y
∗
j hj(t) and

�VN(t) � 􏽐
N
j�0�]
∗
j hj(t) on [0, T]. Also, assume (�YN(.),

�VN(.))∞N�N0
uniformly converges to (�Y(.), �V(.)) such that

�Y(.) and �V(.) are continuously diferentiable and C
0D
ϵ(t)
t

�Y(.)

is in C(0, T). Ten, (�Y(.), �V(.)) is an optimal solution for the
main VOFFOC problem (1) and (2).
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Proof. We frst show that (�Y(.), �V(.)) is a feasible solution
for the VOFOC problem (1) and (2). Suppose that t ∈ [0, T]

is given. Since SLGR points tk􏼈 􏼉
N
k�0 with N⟶∞ is dense on

[0, T], there exists a subsequence tkj
􏼚 􏼛
∞

j�0
such that

limj⟶∞kj �∞ and limj⟶∞tkj
� t. By continuity of

functions G(., ., ., .) and C
0D
ϵ(t)
t

�Y(.), and (23), we obtain

C
0D
ϵ(t)
t

�Y(t) − G(t, �Y(t), �Y(ϕ(t)), �V(t)) � lim
N⟶∞

lim
j⟶∞

C
0D
ϵ tkj
􏼐 􏼑

t
�YN tkj

􏼒 􏼓 − G tkj
, �YN tkj

􏼒 􏼓, �YN ϕ tkj
􏼒 􏼓􏼒 􏼓, �VN tkj

􏼒 􏼓􏼒 􏼓⎛⎝ ⎞⎠ � 0.

(33)

Also, for the initial condition

�Y(0) − Y0 � lim
N⟶∞

�YN(0) − Y0􏼐 􏼑 � 0. (34)

Now, we want to show that (�Y(.), �V(.)) is an optimal
solution for the VOFOC problem (9) and (10). By objective
function (31), we obtain

LN �y
∗
, �]∗􏼐 􏼑 � 􏽘

N

k�0
P tk, �y

∗
k , �]∗k􏼐 􏼑ωk. (35)

Also, by objective functional (1) and replacing contin-
uous function q(.) in relation (28) with P(., �Y(.), �V(.)), we
gain

J(�Y(.), �V(.)) � 􏽚
T

0
P(t, �Y(t), �V(t))dt � lim

N⟶∞
􏽘

N

k�0
P tk, �Y tk( 􏼁, �V tk( 􏼁􏼐 􏼑ωk. (36)

Moreover, since 􏽐
N
k�0ωk � T and (�YN(.), �VN(.)) is

uniformly convergent to (�Y(.), �V(.)), we obtain

lim
N⟶∞

􏽘

N

k�0
ωk P tk, �Y tk( 􏼁, �V tk( 􏼁􏼐 􏼑 − P tk, 􏽘

N

j�0
�y
∗
j hj tk( 􏼁, 􏽘

N

j�0
�]∗j hj tk( 􏼁⎛⎝ ⎞⎠⎛⎝ ⎞⎠

����������

����������∞

≤L1 lim
N⟶∞

􏽘

N

k�0
ωk

�Y tk( 􏼁 − 􏽘
N

j�0
�y
∗
j hj tk( 􏼁

����������

����������∞

+ �V tk( 􏼁 − 􏽘
N

j�0
�]∗j hj tk( 􏼁

����������

����������∞

⎛⎝ ⎞⎠

� L1 lim
N⟶∞

􏽘

N

k�0
ωk

�Y tk( 􏼁 − �YN tk( 􏼁
����

����∞ + �V tk( 􏼁 − �VN tk( 􏼁
����

����∞􏼐 􏼑

≤L1T lim
N⟶∞

�Y(.) − �YN(.)
����

����∞ + �V(.) − �VN(.)
����

����∞􏼐 􏼑 � 0,

(37)

where L1 > 0 is the Lipschitz constant of continuously dif-
ferentiable function P(., ., .). Tus, by (26)–(28), we gain
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L(�Y(.), �V(t)) � 􏽚
T

0
P(t, �Y(t), �V(t))dt

� lim
N⟶∞

􏽘

N

k�0
ωkP tk, 􏽘

N

j�0
�y
∗
j hj tk( 􏼁, 􏽘

N

j�0
�]∗j hj tk( 􏼁⎛⎝ ⎞⎠⎛⎝

+ 􏽘
N

k�0
ωk P tk, �Y tk( 􏼁, �V tk( 􏼁􏼐 􏼑 − P tk, 􏽘

N

j�0
�y
∗
j hj tk( 􏼁, 􏽘

N

j�0
�]∗j hj tk( 􏼁⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦⎞⎠

� lim
N⟶∞

􏽘

N

k�0
ωkP tk, 􏽘

N

j�0
�y
∗
j hj tk( 􏼁, 􏽘

N

j�0
�]∗j hj tk( 􏼁⎛⎝ ⎞⎠ � lim

N⟶∞
LN �y
∗
, �]∗􏼐 􏼑.

(38)

Hence,

L(�Y(.), �V(.)) � lim
N⟶∞

LN �y
∗
, �]∗􏼐 􏼑. (39)

On the other hand, by Assumption I, for any optimal
solution (Y∗(.), V∗(.)) of the problem (9) and (10), there
exists a corresponding sequence (y∗j , ]∗j )∞

i�0 such that

lim
N⟶∞

Y
∗
(.) − 􏽘

N

j�0
y
∗
j hj(.)‖∞ � lim

N⟶∞

����������

����������
V
∗
(.) − 􏽘

N

j�0
]∗j hj(.)‖∞ � 0. (40)

Since (Y∗(.),V∗(.)) satisfes constraint (10) sequence
(y∗j , ]∗j )N

j�0 with N⟶∞ satisfes constraint (32) (or
equivalently (30)). Similar to the relation (39) and the
process of achieving it, we have

L Y
∗
(.), V
∗
(.)( 􏼁 � lim

N⟶∞
LN y

∗
, ]∗( 􏼁, (41)

where y∗ � (y∗0 , y∗1 , . . . , y∗N) and ]∗ � (]∗0 , ]∗1 , . . . , ]∗N). By
relations (39) and (41), and optimality of pairs (�y, �]) and
(Y∗(.),V∗(.)), we achieve

L Y
∗
(.), V
∗
(.)( 􏼁≤L(�Y(.), �V(t)) � lim

N⟶∞
LN(�y, �])≤ lim

N⟶∞
LN y

∗
, ]∗( 􏼁 � L Y

∗
(.), V
∗
(.)( 􏼁, (42)

which tends to L(Y∗(.), V∗(.)) � L(�Y(.), �V(.)). Tus,
(�Y(.), �V(.)) is an optimal solution for the VOFOC problem
(9) and (10). □

5. Numerical Examples

To show the feasibility and validity of the presented scheme,
we implement the numerical method mentioned above in
three examples and utilize the FMINCON command in
MATLAB software and SQP algorithm to solve the

corresponding NLP problem (29) and (30). Also, we defne
the absolute error based on the following relations:

E
N
Y (t) � Y(t) − YN(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, E

N
V (t) � V(t) − VN(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, 0≤ t≤T,

(43)

where (Y, V) and (YN, VN) are the exact and approximate
solutions, respectively.

Example 1. Consider the following VOFFOC problem

Minimize L � 􏽚
1

0
Y(t) − t

2
􏼐 􏼑

2
+ V(t) + t

4
􏼐 􏼑

2
􏼒 􏼓 dt,

subject to

C
0D

ε(t)
t Y(t) � Y t

2
􏼐 􏼑 + V(t) +

Γ(3)

Γ(3 − ε(t))
t
2− ε(t)

,

Y(0) � 0,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(44)
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where ϵ: [0, 1]⟶ [0, 1] is an arbitrary continuous func-
tion. Te functions t2 and −t4 are the optimal state and

optimal control, respectively. Te corresponding problem
(29) and (30) can be given as

Minimize LN(�y, �]) � 􏽘
N

k�0
�yk − t

2
k􏼐 􏼑

2
+ �]k + t

4
k􏼐 􏼑

2
􏼒 􏼓ωk,

subject to
􏽘

N

j�0
�ykF

ε
k,j+1 − 􏽘

N

j�0
�yjhj tk

2
􏼐 􏼑 − �]k −

Γ(3)

Γ 3 − ε tk( 􏼁( 􏼁
t
2−ε tk( )
k � 0, k � 1, 2, . . . , N,

�y0 − Y0 � 0.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(45)

Figure 1 displays the exact solution and the approximate
solutions of our proposed method for various values of
N. According to this fgure, we can see that the numerical
solutions for diferent values of N correspond to the exact
solution. Also, the logarithms of absolute errors for state and
control variables for diferent values of ϵ(.) at N � 8 are

shown in Figure 2. Results represent that our method has
a relatively good performance.

Example 2. As a second example, we consider the following
VOFFOC problem

MinimizeL � 􏽚
1

0
Y(t) − t

1.5
􏼐 􏼑

2
+(V(t) − sin(πϵ(t)))

2
􏼒 􏼓 dt,

subject to

C
0 D
ϵ(t)
t Y(t) � Y

t

2
􏼒 􏼓 + V(t) −

1
2

�
2

√ t
1.5

− sin(πϵ(t)) +
Γ(2.5)

Γ(2.5 − ϵ(t))
t
1.5− ϵ(t)

,

Y(0) � 0,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(46)

where ϵ: [0, 1]⟶ [0, 1] is an arbitrary continuous func-
tion. Te exact optimal solution of this problem is
(Y∗, V∗) � (t1.5, sin(πϵ(t))). We employ our approach to
approximate the solutions.Te obtained results are shown in
Figure 3 for ϵ(t) � 1 − 0.5(t − t2) and N � 4, 6, 8. In Fig-
ure 4, the gained approximate control is given for diferent

fractional orders ϵ(.) and N � 8. Moreover, the logarithm of
absolute errors is provided in Figures 5 and 6. Te results
confrm the accuracy and efciency of the presented
approach.

Example 3. Consider the following VOFFOC problem

Minimize L � 􏽚
1

0
Y(t) − t

2
− 1􏼐 􏼑

2
+(V(t) − t)

2
,

subject  to

C
0D
ϵ(t)
ι Y(t) �

Γ(3)

Γ(3 − ε(t))
t
2− ε(t)

+ Y e
t−1

􏼐 􏼑 + V(t) − e
2t− 2

− t − 1, 0< t≤ 1,

Y(0) � 1.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(47)

Te exact solution for this system is
(Y∗, V∗) � (t2 + 1, t). To solve this problem, we use the
proposed method with N � 5, 7, 9 for ϵ(t) � 1 − 0.8 tanh(t)

in Figure 7. In Figure 8, the absolute error functions of the

state (control) variable with N� 8 and diferent functions of
ϵ(t) are plotted. Based on these fgures, we can see that our
numerical solutions are excellently in agreement with the
exact solution.
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Figure 1: Te approximate solutions for Example 1 with ϵ(t) � 1 − 0.5 tanh(t).
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Figure 2: Te logarithm of absolute errors for Example 1 with N � 8.
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Figure 3: Te approximate solutions for Example 2 with ϵ(t) � 1 − 0.5(t − t2).
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Example 4. Consider the following VOFFOC problem

Minimize L � 􏽚
1

0
Y(t) − t

2.5
􏼐 􏼑

2
+ V(t) + t

6
−

15
��
π

√
t2.5− ϵ(t)

8Γ(3.5 − ϵ(t))
􏼠 􏼡

2

dt,

subject to
C
0 D
ϵ(t)
t Y(t) � Y t

(12/5)
􏼐 􏼑 + u(t),

Y(0) � 0.

⎧⎪⎨

⎪⎩

(48)
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Figure 9: Te approximate solutions for Example 4 with ϵ(t) � 1 − 0.8 tanh(t).
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Te exact solution for this system is (Y∗, V∗) �

(t2.5, −t6 + 15
��
π

√
t2.5− ϵ(t)/8Γ(3.5 − ϵ(t))) and L∗ � 0. Fig-

ure 9 illustrates the approximate solutions of our proposed
method for ϵ(t) � 1 − 0.8 tanh(t) with N � 4, 6, 8. In Fig-
ure 10, the absolute error functions of the state (control)
variable with N� 8 and diferent functions of ϵ(t) are
plotted. We can understand from Figure 11 that by in-
creasing the number of collocation points, the error of
approximate variables decreases, which indicates the ef-
ciency of the presented method. Based on these fgures, we
observed an excellent agreement between our numerical
solutions and the exact solution.

6. Conclusions and Suggestions

In this paper, we considered a class of optimal control
problems under variable-order fractional functional dif-
ferential equations. We obtained an approximate solution
based on the shifted Legendre pseudospectral collection
method. Tis is the frst time that the shifted Legendre
pseudospectral collection method has been applied to
variable-order fractional-functional problems. Te pro-
posed method accurately and efciently calculates matrix
diferentiation, avoiding singular integral approximation
and overcoming challenges of variable-order functional
fractional derivatives. By implementing this method, the
original optimal control problem was transformed into an
optimization problem which is easier to solve. Several
numerical examples have been examined. We obtained
a high level of agreement between the numerical and exact
solutions, indicating that our method has good perfor-
mance. In future studies, the applicability of the men-
tioned method on other OC problems, such as OC
problems under variable-order fractional-functional
diferential equations with delay and variable-order
fractional integro-diferential equations, will be
investigated.
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