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In this paper, we delve into the intricate connections between the numerical ranges of specifc operators and their transformations
using a convex function. Furthermore, we derive inequalities related to the numerical radius. Tese relationships and inequalities
are built upon well-established principles of convexity, which are applicable to non-negative real numbers and operator in-
equalities. To be more precise, our investigation yields the following outcome: consider the operators A and B, both of which are
positive and have spectra within the interval [m, M], denoted as σ(A) and σ(B). In addition, let us introduce two monotone
continuous functions, namely, g and h, defned on the interval [m, M]. Let f be a positive, increasing, convex function possessing
a supermultiplicative property, which means that for all real numbers t and s, we have f(ts)≤f(t)f(s). Under these specifed
conditions, we establish the following inequality: for all 0≤ ]≤ 1, this outcome highlights the intricate relationship between the
numerical range of the expression g](A)Xh1−] when transformed by the convex function f and the norm of X. Importantly, this
inequality holds true for a broad range of values of ]. Furthermore, we provide supportive examples to validate these results.

1. Introduction

In what follows, we utilize the notation H to represent
a complex Hilbert space equipped with the inner product
denoted as 〈·, ·〉 and the corresponding norm defned as
‖x‖ �

������
〈x, x〉

√
. Furthermore, we refer to B(H) as the al-

gebra comprising all bounded linear operators acting onH,
which includes the identity operator I. An operator A be-
longing to B(H) is termed “positive” if it satisfes the
condition 〈Ax, x〉≥ 0 for all x ∈H, and this condition is
denoted as A≥ 0. Moreover, we use the notation A> 0 to
indicate that is a positive and invertible operator. When we
compare two operators A and B withinB(H), we state that
“B is greater than or equal to A,” represented as B≥A, when
the operator B − A is positive, i.e., (B − A)≥ 0. A mappingΦ
defned on B(H) is described as “positive” if it satisfes the

condition Φ(A)≥ 0 for every positive operator A≥ 0. For
a bounded linear operator A in B(H), we employ the
operator norm ‖A‖, and we refer to the “numerical range” of
A as follows:

‖A‖ ≔ sup ‖Ax‖: x ∈H, ‖x‖ � 1{ },

W(A) ≔ 〈Ax, x〉: x ∈H, ‖x‖ � 1{ }.
(1)

Remember that the numerical range is a convex set
within the complex numbers (C), and its closure encom-
passes the spectrum of the operator A. We maintain the
same notation in the specifc scenario where H � Cn and A

is an n × n matrix. For more details, the authors refer to
[1, 2]. Te numerical radius of A, represented as w(A), is
defned as follows:

Hindawi
Journal of Mathematics
Volume 2024, Article ID 4087305, 15 pages
https://doi.org/10.1155/2024/4087305

https://orcid.org/0000-0002-3816-5287
mailto:malik_okasha@yahoo.com
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


w(A) ≔ sup |λ|: λ ∈W(A){ }. (2)

It is a widely recognized fact that w(A) establishes
a norm on that is equivalent to the conventional operator
norm ‖A‖. In fact, for any operator A inB(H), we have the
following equivalence:

1
2

‖A‖≤w(A)≤ ‖A‖. (3)

Also, if A ∈B(H) is self-adjoint, then w(A) � ‖A‖.
A signifcant inequality involving w(A) is the power

inequality, which can be expressed as follows:

w A
n

( ≤w
n
(A) for n � 1, 2, · · · . (4)

Recent advancements in numerical radius inequalities
have improved upon the inequalities mentioned in (3), as
detailed in [3–5]. For instance, Kittaneh’s work [6] dem-
onstrated that for any A ∈B(H), the following inequality
holds:

w(A)≤
1
2

‖ A‖ + ‖A
2

‖
1/2

 . (5)

Clearly, if A2 � 0, then this inequality simplifes to

w(A) �
1
2

‖A‖. (6)

Te continuous functional calculus relies on the Gelfand
mapping, denoted as f↣f(A).Tis mapping establishes a -
isometric isomorphism between two C-algebras as follows:
one, denoted as C(σ(A)), consists of complex-valued
continuous functions defned over the spectrum σ(A) of
a self-adjoint operator A and the other is generated by the
identity operator I and the operator A. A notable outcome of
the continuous functional calculus is its order-preserving
property. Specifcally, if f and g are elements of C(σ(A)),
and for all t in σ(A), we have f(t)≥g(t), then this implies
that f(A)≥g(A).

Defnition 1. A real-valued function f defned on an interval
J is considered a convex operator when it satisfes the fol-
lowing inequality for all self-adjoint operators A and B on
a Hilbert spaceHwith spectra contained within J and for all
values of α ∈ [0, 1]:

f(αA +(1 − α)B)≤ αf(A) +(1 − α)f(B). (7)

Similarly, a real-valued function f defned on an interval
J is termed a concave operator when it adheres to the fol-
lowing inequality for all self-adjoint operators A and B on
a Hilbert spaceHwith spectra contained within J and for all
values of α ∈ [0, 1]:

f(αA +(1 − α)B)≥ αf(A) +(1 − α)f(B). (8)

Notice that a function f is concave if −f is convex.

Defnition 2. A real-valued continuous function f on an
interval J is said to be monotone operator if it is monotone
with respect to the operator order, i.e.,

A≥B with σ(A), σ(B) ⊂ J imply f(A)≥f(B).

(9)

2. Preliminaries

In order to establish our extended numerical radius in-
equalities, we rely on a set of well-established lemmas. Tese
lemmas primarily pertain to the properties of convex
functions.

Lemma 3. Let a, b≥ 0, 0≤ α≤ 1, and p, q> 1 such that
1/p + 1/q � 1. Ten, for all non-negative nondecreasing
convex function h on [0,∞), we have

(i) h(aαb1−α)≤ αh(a) + (1 − α)h(b).
(ii) h(ab)≤ 1/ph(ap) + 1/qh(bq).

If we take h(u) � ur(r≥ 1), we have the following.

Lemma 4. Let a, b≥ 0, 0≤ α≤ 1, and p, q> 1 such that
1/p + 1/q � 1. Ten,

(i) aαb1−α ≤ αa + (1 − α)b≤ (αar + (1 − α)br)1/r;
(ii) ab≤ ap/p + bq/p≤ (apr/p + bqr/p)1/r; for every r≥ 1.

Te subsequent outcome, ofering an operator-level
counterpart to Jensen’s inequality, is attributed to Mond
and Pečari’c [7]:

Theorem  . Let A ∈B(H) be self-adjoint and assume that
σ(A)⊆ [m, M], for some scalars m, M with m<M. If h is
a convex function on [m, M],

h(〈Ax, x〉)≤ 〈h(A)x, x〉, (10)

for any unit vector x ∈H.

It is worth noting that if the function h is concave, the
inequality (10) is reversed.

Furthermore, Te Hölder–McCarthy inequality, as
presented in [8], can be regarded as a specifc instance of
Teorem 5.

Lemma 6 (Hölder–McCarty inequality). Let A ∈B(H),
A≥ 0, and let x ∈H be any unit vector. Ten, we have

(i) 〈Ax, x〉r ≤ 〈Arx, x〉 for r≥ 1.
(ii) 〈Arx, x〉≤ 〈Ax, x〉r for 0< r≤ 1.
(iii) If A is invertible, then 〈Ax, x〉r ≤ 〈Arx, x〉 for all

r< 0.

Lemma 7 (see [9]). Let A, U ∈B(H) such that A is normal
and U is unitary, then for every real-valued function f on
σ(A), we have

f U
∗AU(  � U

∗
f(A)U. (11)

Lemma 8 (see [10]). Let Aj ∈B(H) be a self-adjoint op-
erators with σ(Aj)⊆ [m, M], j � 1, . . . , n, for some scalars
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m<M and xj ∈H, j � 1, . . . , n with 
n
j�1‖xj‖ � 1. If f is

convex function on [m, M], then

f 
n

j�1
Axj, xj ⎛⎝ ⎞⎠≤ 

n

j�1
f Aj xj, xj . (12)

Lemma 9 (see [11]). For any continuous function f defned
on an interval J, the following assertions are equivalent:

(a) f is convex operator.
(b) For each positive integer n, we have the inequality

f 
n

j�1
A
∗
j XjAj

⎛⎝ ⎞⎠≤ 
n

j�1
A
∗
j f Xj Aj, (13)

for every n-tuple (X1, . . . , Xn) of bounded self-adjoint
operators on an arbitrary Hilbert space H with
spectra contained in J and n-tuple (A1, . . . , An) of
operators on H with 

n
j�1A
∗
j Aj � I.

(c) f(V∗XV)≤V∗f(X)V for each isometry V on an
infnite-dimensional Hilbert space H and every self-
adjoint operator X with spectrum in J.

Lemma 10 (see [12]). Let A ∈B(H) be positive, α≥ 1, and
f be a non-negative function on [0,∞) with f(0) � 0, we
have

(a) if f is convex, then f(αA) ≥ αf(A).
(b) if f is concave, then f(αA) ≤ αf(A).

Lemma 11. If A ∈B(H), then

|〈Ax, y〉|≤ 〈|A|x, x〉
1/2

A
∗
y, y 

1/2
, (14)

for all x, y ∈H.

Theorem 12 (see [7]). Consider two continuous real func-
tions, g and h, defned on the interval [m, M], and

a continuous convex function f defned on [α, β] × [c, δ] such
that g([m, M])⊆ [α, β] and h([m, M])⊆ [c, δ]. If we take an
element x in a Hilbert spaceH with a norm of 1, then for any
self-adjoint operator A with a spectrum contained within
[m, M], we can state the following inequality:

f(〈g(A)x, x〉, 〈h(A)x, x〉)≤ 〈f(g(A), h(A))x, x〉.

(15)

Te widely recognized Hölder inequality can be derived
using Teorem 5 as well. In fact, let us examine the
unnormalized weighted variant of Lemma 2.3, which is
expressed as follows:

f
〈Q(A)K(A)x, x〉

〈Q(A)x, x〉
 ≤

〈Q(A)f(K(A))x, x〉

〈Qx, x〉
. (16)

In the context where a positive continuous function Q is
involved, we can make substitutions as follows: let f(t) � tp,
K(t) � g(t)h(t)−q/p, and Q(t) � h(t)q, where 1/p + 1/q � 1.
Tis allows us to establish Hölder’s inequality, denoted as
(17), in the case where p> 1 as follows:

〈g(A)h(A)x, x〉≤ g
p
(A)x, x 

1/p
h

q
(A)x, x 

1/q
. (17)

Conversely, if p< 1 and p≠ 0, we obtain the reversed
inequality in (17). It is well-known that Minkowski’s in-
equality can be derived as a consequence of Hölder’s in-
equality. In our context, we can also use (17) to derive the
following inequality, denoted as (18), for p> 1:

(g(A) + h(A))
p
x, x 

1/p ≤ g
p
(A)x, x 

1/p
+ h

p
(A)x, x 

1/p
.

(18)

For p< 1 and p≠ 0, we obtain the reverse inequality in
(18). Now, let us consider the situation where 0< s1, s2 < 1,
p> 1, and 1/p + 1/q � 1. Starting from Hölder’s inequality
(17), we can derive the following inequality, denoted as (19),
for 0< s< 1:

F
s1(A)G

1−s1(A)x, x 
1/p

F
s1(A)G

1−s1(A)x, x 
1/p

F
1−s2(A)G

s2(A)x, x 
1/q

≤ 〈F(A)x, x〉
s1/p+ 1−s2( )/q〈G(A)x, x〉

1−s1( )/p+s2/q, 0< s< 1.

(19)

Now, let u and v be real numbers with either 0≤ u< v or
v< u≤ 0, implying 0< u/v< 1. By introducing the
substitutions
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F � g
r−v

h
(q−1)v+r

,

G � g
(p−1)v+r

h
r−v

,

s1 � q
−1 1 − uv

−1
 ,

s2 � p
−1 1 − uv

−1
 .

(20)

Te last inequality (19) can be transformed into

θ(u)≤ θ(v),where

θ(u) � g
(p−1)u+r

(A)h
r−u

(A)x, x 
1/p

g
r−u

(A)h
(q−1)u+r

(A)x, x 
1/q

.
(21)

Taking r � 1, p � q � 2, and subsequently
u � 0, v � α − 1; u � α − 1, v � β − 1; u � β − 1, v � 1, we
obtain the Cauchy–Schwarz inequality for operators as
follows:

〈g(A)h(A)x, x〉
2 ≤ g

α
(A)h

2−α
x, x  g

2−α
(A)h

α
x, x 

≤ g
β
(A)h

2−β
x, x  g

2−β
(A)h

β
x, x 

≤ g
2
(A)x, x  h

2
(A)x, x .

(22)

Tis holds true when either 1≤ α≤ β≤ 2 or 0< β≤ α≤ 1.

3. Main Results

We establish the numerical range of a convex function
operator as follows:

W(f(A)) ≔ 〈f(A)x, x〉: x ∈H, ‖x‖ � 1 , (23)

where A is a self-adjoint operator in B(H). It is important
to note that W(f(A)) possesses all the properties of the
traditional numerical range, and in addition, it is a convex
set, as documented in [13].

Theorem 13. Let Aj be self-adjoint operators with
σ(Aj)⊆ [m, M], j � 1, . . . , n for some scalars m<M. If
xj ≥ 0, j � 1, 2, . . . , n with 

n
j�1‖xj‖ � 1 and f is a continuous

convex function on [m, M], then

W 
n

j�1
f Aj ⎛⎝ ⎞⎠⊆

1
M − m

f(M) 
n

j�1
W f Aj  − mI  + f(m) 

n

j�1
W MI − f Aj  ⎡⎢⎢⎣ ⎤⎥⎥⎦. (24)

Proof. From the defning inequality for convex functions,
i.e., from

f(v)≤
w − v

w − u
f(u) +

v − u

w − u
f(w), (u≤ v≤w, u<w), (25)

setting u � m, v � λ, and w � M, we obtain

f(λ)≤
M − λ
M − m

f(m) +
λ − m

M − m
f(M), (λ ∈ [m, M]).

(26)

So, by the Lemma of [7], the operator.

f Aj ≤
MI − Aj

M − m
f(m) +

Aj − mI
M − m

f(M), j � 1, . . . , n.

(27)

So for j � 1, . . . , n, we have

Ajxj, xj ≤
1

M − m
f(M) MI − Aj xj, xj  + f(m) f Aj  − mI xj, xj  . (28)
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Summing over j � 1, . . . , n, we have



n

j�1
f Aj xj, xj ≤

1
M − m

f(M) 
n

j�1
f Aj  − mI xj, xj ⎡⎢⎢⎣

+f(m) 
n

j�1
MI − f Aj xj, xj  ⎤⎥⎥⎦

W 
n

j�1
f Aj ⎛⎝ ⎞⎠ � 

n

j�1
f Aj xj, xj : xj ∈H, 

n

j�1
‖xj‖ � 1

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

⊆
1

M − m
f(M) 

n

j�1
f Aj  − mI xj, xj ⎡⎢⎢⎣ +f(m) 

n

j�1
MI − f Aj  xj, xj ⎤⎥⎥⎦: xj ∈H, 

n

j�1
‖xj‖ � 1

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

⊆
1

M − m
f(M) 

n

j�1
f Aj  − mI xj, xj : xj ∈H, 

n

j�1
‖xj‖ � 1

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
⎡⎢⎢⎢⎢⎢⎣ ,

(29)

and so


n

j�1
f Aj xj, xj  + f(m) 

n

j�1
MI − f Aj xj, xj  : xj ∈H, 

n

j�1
‖xj‖ � 1

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
⎤⎥⎥⎥⎥⎥⎦

�
1

M − m
f(M) 

n

j�1
W f Aj  − mI  + f(m) 

n

j�1
W MI − f Aj  ⎡⎢⎢⎣ ⎤⎥⎥⎦.

(30)

Here, we give an example to illustrate Teorem 13. □

Example 1. Let us consider a situation where we have two
self-adjoint operators, A1 and A2, with their spectra con-
tained within the interval [2, 6], i.e., σ(A1)⊆ [2, 6] and
σ(A2)⊆ [2, 6]. Furthermore, we have two non-negative
scalars, x1 ≥ 0 and x2 ≥ 0, such that |x1| + |x2| � 1 (this
ensures that they form a valid probability distribution), and
we are interested in applying a continuous convex function,
say, f(t) � t2, to these operators. According to the theorem,

we can analyze the numerical range of the operator


2
j�1f(Aj) using the given inequality as follows:

W 
2

j�1
f Aj ⎛⎝ ⎞⎠ �

1
6 − 2

f(6) 
2

j�1
W f Aj  − 2I ⎡⎢⎢⎣

+f(2) 
2

j�1
W 6I − f Aj  ⎤⎥⎥⎦.

(31)

Now, let us compute each part as follows:
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(i) Calculate f(A1) and f(A2): for A1, A1 and for A2,
f(A2) � A2

2.
(ii) Calculate the numerical ranges of f(A1) and f(A2),

taking into account the self-adjoint property and the
spectral containment:

for A1⟹W f A1( ( ⊆ [4, 36],

for A2⟹W f A2( ( ⊆ [4, 36].
(32)

(iii) Now, we can use these numerical ranges in the
inequality as follows:

W 
2

j�1
f Aj ⎛⎝ ⎞⎠ �

1
6 − 2

f(6) 
2

j�1
W f Aj  − 2I ⎡⎢⎢⎣

+f(2) 
2

j�1
W 6I − f Aj  ⎤⎥⎥⎦

⟹W f A1 + A2( ( ⊆
1
4

[36.[4, 36] + 4.[4, 36]].

(33)

Hence,

W 
2

j�1
f Aj ⎛⎝ ⎞⎠⊆ [4, 36]. (34)

So, in this example, the theorem tells us that the nu-
merical range of the operator 

2
j�1f(Aj) is contained within

the interval [4, 36]. Tis illustrates the application of the
given theorem to a specifc scenario with two self-adjoint
operators, a convex function, and a specifed spectral range.

Theorem 14. Suppose we have a collection of self-adjoint
operators Aj, each with eigenvalues contained in the interval
[m, M], where m<M. In addition, assume that there are
non-negative coefcients xj for j � 1, 2, . . . , n, with


n
j�1|xj| � 1, and we have a continuous convex function

defned on the interval [m, M]. In this context, the numerical

radius of the sum of these operators, 
n
j�1f(Aj), obeys the

following inequality:

w 
n

j�1
f Aj ⎛⎝ ⎞⎠≤

1
M − m

f(M) 
n

j�1
w f Aj  − mI ⎡⎢⎢⎣

+f(m) 
n

j�1
w MI − f Aj  ⎤⎥⎥⎦.

(35)

Tis inequality provides bounds on the numerical radius
of the sum of these operators based on the numerical radii of
individual operators and the properties of the continuous
convex function f.

Proof. It follows from (29) that

w 
n

j�1
f Aj ⎛⎝ ⎞⎠

� sup 
n

j�1
f Aj xj, xj 




: xj ∈H, 

n

j�1
‖xj‖ � 1

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

≤
1

M − m
supf(M) 

n

j�1
f Aj  − mI xj, xj 




+f(m) 

n

j�1
MI − f Aj xj, xj  





⎤⎥⎥⎦: xj ∈H, 
n

j�1
‖xj‖ � 1

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
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≤
1

M − m
f(M)sup 

n

j�1
f Aj  − mI xj, xj 




: xj ∈H, 

n

j�1
‖xj‖ � 1

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
⎡⎢⎢⎢⎢⎢⎣

+f(m)sup 
n

j�1
MI − f Aj xj, xj  




: xj ∈H, 

n

j�1
‖xj‖ � 1

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
⎤⎥⎥⎥⎥⎥⎦

≤
1

M − m
f(M) 

n

j�1
sup f Aj  − mI xj, xj 



: xj ∈H, 
n

j�1
‖xj‖ � 1

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
⎡⎢⎢⎢⎢⎢⎣

+f(m) 
n

j�1
sup MI − f Aj  xj, xj 



: xj ∈H, 
n

j�1
‖xj‖ � 1

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
⎤⎥⎥⎥⎥⎥⎦

�
1

M − m
f(M) 

n

j�1
w f Aj  − mI  + f(m) 

n

j�1
w MI − f Aj  ⎡⎢⎢⎣ ⎤⎥⎥⎦.

(36)

Let us illustrate the above theorem with an example. □

Example 2. Let us illustrate the theorem with a simple
example involving two self-adjoint operators, A1 and A2,
and the continuous convex function f(t) � t2. We will
choose m � 1 and M � 3 for the eigenvalue intervals. Defne
the operators

A1 �
2 1

1 3
  and A2 �

3 1

1 2
 . (37)

Choose non-negative coefcients x1 � 0.6 and x2 � 0.4 such
that 

2
j�1|xj| � 1. Now, let us calculate the numerical radii

and apply the theorem.
Calculate f(A1) and f(A2).
For A1, f(A1) � A2

1 �
5 5
5 10 . For A2,

f(A2) � A2
2 �

10 4
4 5 . Calculate the numerical ranges of

f(A1) and f(A2).
For A1, w(f(A1))⊆ [7, 10]. For A2, w(f(A2))⊆ [5, 10].

Calculate f(M) and f(m): f(M) � f(3) � 32 � 9.
f(m) � f(1) � 12 � 1. Apply the theorem as follows:

w 
2

j�1
f Aj ⎛⎝ ⎞⎠≤

1
3 − 1

9
2

j�1
w f Aj  − 1I  + 1

2

j�1
w 3I − f Aj  ⎡⎢⎢⎣ ⎤⎥⎥⎦

w f A1(  + f A2( ( ≤
1
2

9 w f A1(  − 1I(  + w f A2(  − 1I( (  + w 3I − f A1( (  + w 3I − f A2( ( (  .

(38)

Now, calculate the numerical range of f(A1) + f(A2):

f(A1) + f(A2) �
7 + 10 5 + 4
5 + 4 10 + 5  �

17 9
9 15 . Calculate

the eigenvalues of f(A1) + f(A2): Te eigenvalues are ap-
proximately λ1 ≈ 26.56 and λ2 ≈ 5.44. Calculate the nu-
merical range of f(A1) − 1I and f(A2) − 1I. For

f(A1) − 1I, w(f(A1) − 1I)⊆ [6, 9]. For f(A2) − 1I,
w(f(A2) − 1I)⊆ [4, 9]. Calculate the numerical range of
3I − f(A1) and 3I − f(A2).

For 3I − f(A1), w(3I − f(A1))⊆ [6, 9]. For 3I − f(A2),
w(3I − f(A2))⊆ [6, 9]. Now, substitute these values into the
inequality as follows:

w f A1(  + f A2( ( ≤
1
2

9 w f A1(  − 1I(  + w f A2(  − 1I( (  + w 3I − f A1( (  + w 3I − f A2( ( (  

≤
1
2

[9(9 + 9) +(9 + 9)]

≤
1
2

[162]

� 81.

(39)
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So, according to the theorem,

w f A1(  + f A2( ( ≤ 81. (40)

In this example, the theorem holds true, and the nu-
merical radius of the sum of these operators is indeed less
than or equal to 81.

Theorem 1 . Let I be an interval and f: I⟶ R be
a convex and diferentiable function on I° (the interior of I )
whose derivative f′ is continuous on I°. If A is a self-adjoint
operators on the Hilbert space H with σ(A)⊆ [m, M] ⊂ I°

and 〈Ax, x〉≠ 0 for any x ∈H with ‖x‖ � 1, then

w(f(A)) ≤ ‖f′
−1

(A)‖ w Af ′(A)( . (41)

Proof. For arbitrary t, s ∈ [m, M], we have

f(t) − f(s)≤f′(t)(t − s). (42)

Terefore, we have

Af ′(A) − sf ′(A)≥f(A) − f(s)I. (43)

Hence,

Af ′(A)x, x  − s f′(A)x, x ≥ 〈f(A)x, x〉 − f(s), (44)

for every x ∈H with ‖x‖ � 1. It follows from Teorem 5 of
[7] that

s �
Af ′(A)x, x 

f′(A)x, x 
∈ [m, M], (45)

and so

〈f(A)x, x〉≤f
Af ′(A)x, x 

f′(A)x, x 
 . (46)

Hence.

sup |〈f(A)x, x〉|: x ∈H, ‖x‖ � 1 ≤ sup f
Af ′(A)x, x 

f′(A)x, x 
 




: x ∈H, ‖x‖ � 1 . (47)

So.

w(f(A)) ≤ sup
x∈H,‖x‖�1

Af ′(A)x, x  f′(A)x, x 
−1



≤ ‖ f′
−1

(A) ‖ sup
x∈H,‖x‖�1

Af ′(A)x, x 




≤ ‖ f′
−1

(A) ‖ sup
x∈H,‖x‖�1

Af ′(A)x, x 




� ‖ f′
−1

(A) ‖ w Af ′(A)( .

(48)

□

Theorem 16. Let f: [m, M]⟶ R be a continuous convex
function, A be a self-adjoint operator on H with

σ(A)⊆ [m, M] and let p and q be nonnegative numbers, with
p + q> 0, for which

〈Ax, x〉 �
pm + qM

p + q
, for every x ∈H, ‖x‖ � 1. (49)

Ten,

f
pm + qM

p + q
 ≤w(f(A)) ≤max p, q 

pf(m) + qf(M)

p + q
 .

(50)

Proof. It follows from Teorem 6 of [7] that

f
pm + qM

p + q
 ≤ 〈f(A)x, x〉≤max p, q 

pf(m) + qf(M)

p + q
 , (51)

for every x ∈H with ‖x‖ � 1. Hence,

f
pm + qM

p + q
 ≤ sup

x∈H,‖x‖�1
|〈f(A)x, x〉|≤max p, q 

pf(m) + qf(M)

p + q
 , (52)

and so the result.
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Let us illustrate the provided theorem with a specifc
example. □

Example 3. Let us illustrate the given theorem with an
example involving a continuous convex function, a self-
adjoint operator, and the associated inequality. Consider the
following:

(1) Continuous convex function: Let us take the con-
tinuous convex function to be (x) � x2, defned on
the interval [m, M]. Tis is a simple quadratic
function that is convex.

(2) Self-adjoint operator: consider a self-adjoint opera-
tor A on a Hilbert spaceH such that σ(A)⊆ [m, M].
In this example, let us defne the operator as the
multiplication operator A acting on functions in
L2([0, 1]). So, A is defned as Af(x) � xf(x).

(3) Parameters p and q: choose nonnegative numbers p

and p such that p + q> 0. For this example, let us
take p � 1 and q � 2. Now, let us verify the condi-
tions of the theorem.

(i) For every x ∈H with ‖x‖ � 1, we have

〈Ax, x〉 �
1.m + 2.M

1 + 2
�

m + 2M

3
. (53)

(ii) Now, we can use the theorem to fnd the bounds
on f(m + 2M/3) and w(f(A)).

(a) Lower bound:

f
m + 2M

3
  �

m + 2M

3
 

2
�

m
2

+ 2mM + 4M
2

9
.

(54)

(b) Upper bound:

max p, q 
pf(m) + qf(M)

p + q
  � 2 ×

m
2

+ 2M
2

3
 .

(55)

So, according to the theorem,

f
pm + qM

p + q
 ≤w(f(A)) ≤max p, q 

pf(m) + qf(M)

p + q
 .

(56)

Tis example illustrates the theorem’s inequality for the
chosen function f(x) � x2, the self-adjoint operator A as
the multiplication operator, and the specifc values of p and
q. Te theorem’s lower and upper bounds are verifed in this
context.

Theorem 17. Let f: I⟶ R be a continuous increasing
convex function and A, B ∈B(H). Ten,

f w B
∗
A( ( ≤

1
4

‖f AA∗(  + f BB∗( ‖ +
1
2

f w AB∗( ( .

(57)

Proof. First of all, we note that

w(T) � sup
θ∈R

‖Re e
iθ

T ‖ , (58)

where Re(X) means the real part of an operator X, i.e.,
Re(X) � X + X∗/2. In fact, it follows from

|〈Tx, x〉| � sup
θ∈R

Re e
iθ

〈Tx, x〉  (59)

that

sup
θ∈R

‖Re e
iθ

T ‖ � sup
θ∈R

w Re e
iθ

T   � w(T). (60)

Now, for any unit vector x ∈H, we have

Re e
iθ

B
∗Ax, x  � Re e

iθAx,Bx 

�
1
4

‖ e
iθ

A + B x‖
2

−
1
4

‖ e
iθ

A − B x‖
2

(by polarization identity)

≤
1
4

‖ e
iθ

A + B x‖
2

≤
1
4

‖e
iθ

A + B‖
2

�
1
4

‖e
−iθ

A
∗

+ B
∗
‖
2 by ‖X‖ � ‖ X

∗
‖( 
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�
1
4

‖ e
−iθ

A
∗

+ B
∗

  e
−iθ

A
∗

+ B
∗

 ‖ by ‖X‖
2

� ‖X
∗
X‖ 

�
1
4

‖AA∗ + BB∗ + e
iθAB∗ + e

−iθ
BA
∗
‖

≤
1
4

‖AA∗ + BB∗‖ +
1
2

‖Re e
iθ

AB
∗

 ‖

≤
1
4

‖AA∗ + BB∗‖ +
1
2

w AB∗( .

(61)

Now, taking the supremum over x ∈H with ‖x‖ � 1 in
the above inequality produces

w B
∗
A( ≤

1
2

‖
AA∗ + BB∗

2
‖ +

1
2

w AB∗( . (62)

Now, applying the convex function f to the inequality
(62), we get

f w B
∗
A( ( ≤

1
2

‖
f AA∗(  + f BB∗( 

2
‖ +

1
2

f w AB∗( ( .

(63)
□

Theorem 18. Let f: I⟶ R be a continuous increasing
convex function and A ∈B(H). Ten,

f w
2
(A) ≤

1
2

f w A
2

   + f ‖A‖
2

  . (64)

Proof. From the proof of Teorem 2.4 of [14], we have

|〈a, e〉〈e, b〉|≤
1
2

(‖a‖‖b‖ +|〈a, b〉|). (65)

where a, b, e are vectors in H and ‖e‖ � 1.
Putting e � x with ‖x‖ � 1, a � Ax and b � A∗x in the

above inequality, we have

|〈Ax, x〉|
2 ≤

1
2

‖Ax‖ ‖A
∗
x‖ + A

2
x, x 



 . (66)

By the convexity of f, we have

f |〈Ax, x〉|
2

 ≤
1
2

f ‖Ax‖ ‖A
∗
x‖(  + f A

2
x, x 



  .

(67)

Taking the supremum over x ∈H with ‖x‖ � 1 in in-
equality (67), we obtained the desired inequality. □

Remark 19. Note that our theorem, referred to as Teorem
18, extends the scope of what was previously established in
Teorem 1 of [4]. Tis extension becomes evident when we
consider the specifc case where we set f(x) � x.

Certainly, let us illustrate the given theorem with an
example.

Example 4. Consider a continuous convex function,
denoted as f(x) � ex, which is defned on the real interval
[I � 0,∞). Now, let us introduce a Hermitian operator A

(which is also self-adjoint) in a Hilbert space. Our goal is to
apply the following theorem:

f w
2
(A) ≤

1
2

f w A
2

   + f ‖A‖
2

  . (68)

For this illustrative example, we will take a simple 2 × 2
Hermitian matrix as our operator A, given by

A �
2 1

1 3
 . (69)

Now, we will proceed with calculating the numerical
radius, numerical range, and the norms needed to apply the
theorem.

(1) Calculate the numerical range of A (the eigenvalues):
begin by fnding the eigenvalues of A. To do this,
solve the characteristic equation det(A − λI) � 0,
where I is the identity matrix and λ represents the
eigenvalue. For matrix A,

det(A − λI) �
2 − λ 1

1 3 − λ




� (2 − λ)(3 − λ) − 1 � λ2 − 5λ + 5 � 0. (70)

(i) Solving this quadratic equation yields the fol-
lowing two eigenvalues: λ1 � 5 +

�
5

√
/2 and

λ2 � 5 −
�
5

√
/2.

(ii) Te numerical radius w(A) is the maximum
modulus of these eigenvalues.

w(A) � max λ1


, λ2


  �
5 +

�
5

√

2
. (71)

(2) Calculate the numerical range of A2 (the eigen-
values): frst, calculate A2.
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A
2

�
2 1

1 3
  ·

2 1

1 3
  �

5 5

5 10
 . (72)

(i) Now, fnd the eigenvalues of A2 by solving the
characteristic equation det(A2 − λI) � 0, where I

is the identity matrix and λ represents the
eigenvalue.

det A
2

− λI  �
5 − λ 5

5 10 − λ




� (5 − λ)(10 − λ) − 25 � λ2 − 15λ + 25 � 0. (73)

(ii) Solving this quadratic equation yields the fol-
lowing two eigenvalues: λ1 � 15 + 5

�
5

√
/2 and

λ2 � 15 + 5
�
5

√
/2. Te squared norm ‖A‖2 (the

maximum modulus of eigenvalues of A2 ) is
‖A‖2 � max(|λ1|, |λ2|) � 15 + 5

�
5

√
/2.

(3) Applying the theorem,

f w
2
(A) ≤

1
2

f w A
2

   + f ‖A‖
2

  . (74)

Now, let’s evaluate this inequality:

f
5 +

�
5

√

2
 ≤

1
2

f
15 + 5

�
5

√

2
  + f

15 + 5
�
5

√

2
  

⟹ e
((5+

�
5

√
)/2) ≤ e

((15+5
�
5

√
)/2)

.

(75)

Tis inequality holds true because e5+
�
5

√
/2 is indeed less

than or equal to e15+5+
�
5

√
/2. So, in this example, we have

successfully illustrated the given theorem for the chosen
continuous increasing convex function f(x) � ex and the
Hermitian operator A.

Theorem 20. Let g, h: [m, M]⟶ R be two real continuous
monotone functions and let A, B, X ∈B(H) such that A, B

are positive with σ(A), σ(B)⊆ [m, M]. Ten

w
r

g
α
(A)Xhα(B)( ≤ ‖ X ‖

r
‖
1
p

h
pr

(B) +
1
q
g
qr

(A) ‖
α
,

(76)

for all 0≤ α≤ 1, p, q> 1 with 1/p + 1/q � 1 and pr, qr≥ 2.

Proof. For any unit vector x ∈H and by the Cauchy-
Schwarz inequality we have

g
α
(A)Xhα(B)x, x 



r

� Xhα(B)x, g
α
(A) 



r

≤ ‖X‖
r

‖h
α
(B)x‖

r
‖g

α
(A)‖

r

≤ ‖X‖
r

h
2α

(B)x, x 
r/2

g
2α

(A)x, x 
r/2

≤ ‖X‖
r 1

p
h
2pα

(B)x, x 
pr/2

+
1
q

g
2qα

(A)x, x 
qr/2

 

≤ ‖X‖
r 1

p
h
pr

(B)x, x 
α

+
1
q

g
qr

(A)x, x α 

≤ ‖X‖
r 1

p
h
pr

(B)x, x  +
1
q

g
qr

(A)x, x  

α

≤ ‖X‖
r 1

p
h
pr

(B) +
1
q
g
qr

(A) x, x 

α

.

(77)
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Taking the supremum over all unit vector x ∈H, we get
the desired result. and so the result. □

Theorem 21. Suppose that A, B, X ∈B(H) such that A, B

are positive with σ(A), σ(B)⊆ [m, M] and

g, h: [m, M]⟶ R are monotone continuous functions and
Let f: R⟶ (0,∞) be a positive, increasing, convex and
supermultiplicative i.e., f(ts)≤f(t)f(s) for all t, s ∈ R.
Ten

f w g
]
(A)Xh1−]

(B)  ≤f(‖X‖)‖]f(g(A)) +(1 − ])f(g(B))‖, (78)

for every 0≤ ]≤ 1. Proof. Let x ∈H with ‖x‖ � 1. Ten

g
]
Xh

1−]
(B)x, x 



 � Xh
1−]

(B)x, g
]
(A)x 





≤ ‖X‖ ‖g
]
(A)x‖ ‖h

1−]
(B)x‖

� ‖X‖ g
2]

(A)x, x 
1/2

h
2(1−])

(B)x, x 
1/2

≤ ‖X‖〈g(A)x, x〉
]
〈h(B)x, x〉

1−]

≤ ‖X‖〈(]g(A) +(1 − ])h(B))x, x〉

f g
]
Xh

1−]
x, x 



 ≤f(‖X‖)[〈]f(g(A))x, x〉 +〈(1 − ])f(h(B))x, x〉].

(79)

Taking the supremum over x ∈H with ‖x‖ � 1 in the
above inequality we deduce the desired inequality. □

Theorem 22. Suppose that A, B, X ∈B(H) such that A, B

are positive with σ(A), σ(B)⊆ [m, M] and
g, h: [m, M]⟶ R are monotone continuous functions and
f: [m, M]⟶ R is a continuous convex function. Ten

w f g
]
(A)Xh1−]

(B)  ≤f w
g
]
(A)Xh1−]

(B) + g
1−]

(A)Xh](B)

2
  

≤f(‖X‖)w
f(g(A)) + f(h(B))

2
 

≤
f(‖X‖)

2
(‖]f(g(A)) +(1 − ])f(h(B))‖ +‖(1 − ])f(g(A)) + ]f(h(B))‖),

(80)

for all 0≤ ]≤ 1.

To prove Teorem 22, we need the following lemma.

Lemma 23. Let A, B ∈B(H) be invertible self-adjoint with
σ(A), σ(B)⊆ [m, M] and X ∈B(H) and let
g, h: [m, M]⟶ R be monotone continuous functions and
f: [m, M]⟶ R be a continuous convex function. Ten

w(f(X)) ≤w
f(g(A))f(X)f h B

−1
   + f g A

−1
  f(X)f(h(B))

2
⎛⎝ ⎞⎠. (81)

Proof. First of all, we show that the case A � B, g � h and X

is self-adjoint, let
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λ ∈ σ(X)⟹f(λ) ∈ f(σ(X)) � σ(f(X))

� σ f(g(A))f(X)f g A
−1

   ⊆W f(g(A))f(X)f g A
−1

   .
(82)

Since λ ∈ R, we have.

λ � R(λ) ∈ RW f(g(A))f(X)f g A
−1

    � W R f(g(A))f(X)f g A
−1

    . (83)

So we obtain.

w(f(X)) � r(f(X))≤w R f(g(A))f(X)f g A
−1

    

� w
f(g(A))f(X)f g A

−1
   + f g A

−1
  f(X)f(g(A))

2
⎛⎝ ⎞⎠.

(84)

Next we shall show this lemma for arbitrary X ∈B(H)

and invertible self-adjoint operators A and B. Let

Y �
0 f(X)

f(X
∗
) 0  and S �

g(A) 0
0 h(B)

 . Ten Y and

Y are self-adjoint. Hence we have.

w(Y)≤w
SYS−1

+ S
−1YS

2
 . (85)

Here w(Y) � w(f(X)) and.

w
SYS−1

+ S
−1YS

2
  �

1
2

w

0 Q

Q
∗ 0

⎛⎝ ⎞⎠ �
1
2

w(Q), (86)

where Q � f(g(A))f(X)f(h(B−1)) + f(g(A−1))f(X)f

(h(B)). Terefore we obtain the desired inequality. □

Proof of Teorem 22. We may assume that A and B are
invertible. By Lemma 23, we have

f w g
1/2

(A)Xh1/2(B)  

≤f w
g
]−1/2

(A)g
1/2

(A)Xh1/2(B)h
1/2−]

(B) + g
1/2−]

(A)g
1/2

(A)Xh1/2(B)h
]−1/2

(B)

2
  

� f w
g
]
(A)Xh1−]

(B) + g
1−]

(A)Xh](B)

2
  .

(87)

On the other hand.

f g
]
(A)Xh1−]

(B)x, x 


 ≤f(‖X‖)〈(]f(g(A)) +(1 − ])f(h(B)))x, x〉. (88)

Hence we have.
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f
g
]
(A)Xh1−]

(B) + g
1−]

(A)Xh](B)




2
x, x  

≤f
g
]
(A)Xh1−]

(B)x, x 


 + g
1−]

(A)Xh](B)x, x 




2
⎛⎝ ⎞⎠

≤
f g

]
(A)Xh1−]

(B)x, x 


  + f g
1−]

(A)Xh](B)x, x 


 

2
(by the convexity of f)

≤
f(‖X‖)

2
[〈(]f(g(A)) +(1 − ])f(h(B)))x, x〉

+ 〈((1 − ])f(g(A)) + ]f(h(B)))x, x〉]

� f(‖X‖)
f(g(A)) + f(h(B))

2
x, x .

(89)

Terefore, we have.

f w
g
]
(A)Xh1−]

(B) + g
1−]

(A)Xh](B)

2
  

≤f(‖X‖)w
f(g(A)) + f(h(B))

2
 

≤
f(‖X‖)

2
w(]f(g(A)) +(1 − ])f(h(B)))

+ w((1 − ])f(g(A)) + ]f(h(B)))]

≤
f(‖X‖)

2
[‖]f(g(A)) +(1 − ])f(h(B))‖ +‖(1 − ])f(g(A)) + ]f(h(B))‖].

(90)

□
4. Conclusion and Future Work

In essence, this research explores the complex connections
that exist between the numerical ranges of certain operators
and their alterations using convex functions, ultimately
resulting in the formulation of inequalities for the numerical
radius of these operators.Tese discoveries are frmly rooted
in established principles of convexity, particularly within the
realm of non-negative real numbers and operator in-
equalities. Looking ahead, several avenues for further ex-
ploration emerge from the fndings and concepts expounded
in this paper. Tese avenues include the potential extension
of derived inequalities to more comprehensive classes of
operators or functions, transcending the scope of positive
operators and convex functions. Moreover, the practical
implications of these inequalities in felds like functional
analysis, operator theory, and mathematical physics should
be explored, along with the development of numerical
techniques based on the derived inequalities, catering to

computational applications. Additionally, the relevance of
these results in the context of quantum mechanics or
quantum information theory demands investigation, espe-
cially regarding their potential use in quantum state esti-
mation or quantum information processing. Considering
real-world complexities, the extension of the analysis to
operators and functions in higher-dimensional spaces be-
comes pertinent. Furthermore, verifying the derived in-
equalities through experimental or computational validation
in real-world scenarios, possibly within the realm of physical
systems or engineering applications, could enhance the
practical utility of the study. Lastly, delving into the con-
nections between the fndings and other mathematical
concepts, such as functional analysis, optimization theory, or
non-commutative geometry, promises a deeper un-
derstanding of the broader mathematical landscape.In
summary, this paper has opened up avenues for further
research by establishing important inequalities that connect
the numerical ranges of operators and their transformations
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through convex functions. Future work can build upon these
fndings to advance our understanding of operator theory
and its applications in various felds. [15].
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dpencariéc method in operator inequalities, inequalities for
bounded selfadjoint operators on a Hilbert space,” 2005,
https://ele-math.com/static/pdf/books/571-MIA01.pdf.

[11] F. Hansen and G. K. Pedersen, “Jensen’s inequality for op-
erators and Lawner’s theorem,” Mathematische Annalen,
vol. 258, no. 3, pp. 229–241, 1982.

[12] F. Alrimawi, O. Hirzallah, and F. Kittaneh, “Norm inequalities
involving convex and concave functions of operators,” Linear
and Multilinear Algebra, vol. 67, no. 9, pp. 1757–1772, 2018.

[13] K. Zaiz and A. Mansour, “On numerical range and numerical
radius of convex function operators,” Korean J. Math., vol. 27,
no. 4, pp. 879–898, 2019.

[14] M. Sattari, M. S. Moslehian, and T. Yamazaki, “Some gen-
eralized numerical radius inequalities for Hilbert space op-
erators,” Linear Algebra and Its Applications, vol. 470, no. 1,
pp. 216–227, 2015.

[15] S. S. Dragomir, “Inequalities for functions of selfadjoint op-
erators on Hilbert spaces,” 2012, https://arxiv.org/abs/1203.
1667.

Journal of Mathematics 15

https://arxiv.org/abs/1203.1667
https://arxiv.org/abs/1203.1667



