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Te main purpose of this article is using the elementary methods and the properties of the Fubini polynomials to study the
congruence properties of a signless Stirling number of the frst kind and solve a conjecture proposed by J. H. Zhao and Z. Y. Chen.
Without a doubt, the novel approach employed in this work provides a useful reference for researching the congruence properties
of other nonlinear binary recursive sequences.

1. Introduction

For any integer n≥ 0, the n-th Fubini number Fn represents
the number of ways to partition a set of n elements into
weakly ordered subsets (see [1]) or the number of distinct
arrangements of sums and integrals in Fubini’s theorem (see
[2]).Te exponential generating function of Fubini numbers
is given by (see [3])
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One of the defning recurrence relations for Fubini
numbers is given by (see [4])
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where F0 � 1, F1 � 1. An appropriate deformation of the
above defnition yields the formula
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In addition, the Fubini polynomials Fn(x)􏼈 􏼉 are de-
termined by the coefcients of the power series expansion of
F(t) with respect to t (see [5, 6]). Tat is,
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Fubini polynomials and numbers are closely connected
with the Stirling numbers. Kim et al. [7] proved the identity

Fn(x) � 􏽘
n

k�0
S2(n, k)k!x

k
, n≥ 0, (5)

where S2(n, k) are the Stirling numbers of the second kind. In
this way, we can get easily through S2(n, k) the initial fve terms
of Fn(x), respectively, F0(x) � 1, F1(x) � x, F2(x) �

2x2 + x,F3(x) � 6x3 + 6x2 + x,F4(x) � 24x4 + 36x3 + 14x2

+ x. It is clear that Fn � Fn(1) for all integers n≥ 0.
In recent years, some people had studied the various

properties of the Fubini numbers and polynomials in dif-
ferent methods. For instance, Dil et al. [8] proved some
properties of geometric and exponential polynomials and
numbers by using the Euler–Seidel matrix method. Kim
et al. [9, 10] investigated the properties of degenerated
Fubini polynomials and higher-order degenerated Fubini
polynomials in depth, using generating functions and spe-
cifc diferential operators.

Besides, Diagana et al. [11] proved the following con-
clusion. Let q and n be positive integers. Ten Fubini
numbers satisfy the congruence
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Furthermore, Zhao et al. [12] introduced a new sequence
a(i, j), and they proved the identity
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where the summation is over all i-tuples with nonnegative
integer coordinates (a1, a2, a3, . . . , ai) such that
a1 + a2 + a3 + · · · + ai � n, and the defnition of sequence
a(i, j)􏼈 􏼉 is as follows. For any integers i, j≥ 0, the sequence

a(i, j) is defned as a(i, j) � 0 with j> i, a(i, i) � 1, and
a(i, 1) � (i − 1)!. For i � 1, 2, . . . , n, the sequence a(i, j)

satisfes the following recursion:

a(i + 1, j) � i · a(i, j) + a(i, j − 1). (8)

Table 1 provides the values of a(i, j)􏼈 􏼉
i
j�0 for 0≤ i≤ 7.

From these data in the table one can fnd that 3|a(3, 2);
5|a(5, j), j � 2, 3, 4; 7|a(7, j), j � 2, 3, 4, 5, 6. So Zhao et al.
[12] also proposed the following conjecture. For any odd
prime p, one has the congruence

a(p, j) ≡ 0 mod p( 􏼁, 2≤ j≤p − 1. (9)

We were pleasantly surprised to discover that sequence
a(i, j)􏼈 􏼉 was exactly signless Stirling number of the frst kind
(see [13]) when we delved into this conjecture, and the
conjecture has been proved using the methods of combi-
natorial mathematics (see [14]).

Tis paper as note of [13, 14], where some scholars
utilized generating functions and other advanced concepts
in their previous proofs, potentially making them chal-
lenging for readers to understand. By contrast, we give a very
simple and elementary proof for this conjecture; even it does
not involve any symbols and concepts of combination. Tis
work gives the congruence of signless Stirling number of the
frst kind by using the properties of Fubini polynomials and
derivatives, which is unprecedented. Tat is, we have the
following result.

Theorem 1. Let p be an odd prime. Ten for any integer j

with 2≤ j≤p − 1, we have the congruence

a(p, j) ≡ 0(modp). (10)

From this theorem and the recursive formula
a(i + 1, j) � i · a(i, j) + a(i, j − 1) we may immediately de-
duce the following result.

Corollary 2. Let p be an odd prime. Ten for any integer j

with 3≤ j≤p, we have

a(p + 1, j) ≡ 0(modp). (11)

2. Two Simple Lemmas

To complete the proof of our main conclusion, we need two
elementary lemmas. Of course, the proofs of these lemmas
need some knowledge of elementary number theory or
combinatorial analysis; all these kinds of simple knowledge
can be found in references [15, 16]. Firstly, we have the
following lemma.

Lemma  . For any positive integer j, we have the identities
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Proof. For the convenience of writing, we defne the binary
function F(t, x) as
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From the defnition of the partial derivatives we have
identity
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Generally, for any integer j≥ 1, we also have
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Taking x � 0 in formula (15) we have
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Using the power series expansion
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then comparing the coefcients of tj and tj+1 on both sides of
formula (16) yields
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Tis proved Lemma 3. □

Lemma 4. For any positive integer n, we have the identity
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Proof. Tis can be easily proved by the defnition of Fn(x).
In fact from the defnition of Fn(x) and the power series
expansion of the functions, we have
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For n≥ 1, comparing the coefcients of tn in formula (20)
we have
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Tis proves Lemma 4.

3. Proof of the Theorem

In this section, we use formula (7) to complete the proof of
our theorem. Firstly, taking n � 1 and i � p in formula (7)
and observing that F0(x) � 1, F1(x) � x, a(i, 1) � (i − 1)!,
and a(i, i) � 1, we have the identity
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Now combining formula (23) and (24), we obtain

􏽘

p− 1

j�2
a(p, j) · Fj(x)

� x · (x + 1)
p− 1

· p! − x · (p − 1)! − x · 􏽘

p− 1

j�0

p

j
􏼠 􏼡 · Fj(x).

(25)

From Lemma 4 we know that Fn(x) is a n-degree
polynomial of x; then F

(k)
j (x) � 0, if k> j. Let polynomial

g(x) � x · (x + 1)p− 1. Ten fnding the (p − 1)-order de-
rivative of x on both sides of formula (25) and taking x � 0,
from Lemma 3, we have the identity
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Since ((p − 1)!, p) � 1, from formula (26) we have the
congruence

a(p, p − 1) ≡ 0(modp). (27)

Now fnding the (p − 2)-order derivative of x on both
sides of (25) and then taking x � 0, from formula (27) and
Lemma 3, we have the congruence

Table 1: Values of a(i, j).

a(i, j) j � 0 j � 1 j � 2 j � 3 j � 4 j � 5 j � 6 j � 7
i � 0 1
i � 1 1
i � 2 1 1
i � 3 2 3 1
i � 4 6 11 6 1
i � 5 24 50 35 10 1
i � 6 120 274 225 85 15 1
i � 7 720 1764 1624 735 175 21 1
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may immediately deduce the congruence

a(p, p − 2) ≡ 0(modp). (29)

If congruence holds for all integers j with 2≤ j≤p − 1,
that is,

a(p, j) ≡ 0(modp), (30)

then from formula (25) and the methods of proving for-
mulas (27) and (29), we can easily deduce the congruence

a(p, j − 1) ≡ 0(modp). (31)

In fact fnding the j-order derivative of x on both sides of
formula (25) and then taking x � 0, from Lemma 3, we have
the congruence
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and thus

a(p, j) ≡ 0(modp). (33)

Tis completes the proof of theorem by mathematical
induction.

4. Conclusion

Tis paper’s principal contribution is to solve a conjecture
proposed by Zhao and Chen in [10] with a completely new
method. Specifcally, let p be an odd prime.Ten we have the
congruence

a(p, j) ≡ 0(modp), for all integers 2≤ j≤p − 1. (34)

Tis work gives the congruence of signless Stirling
number of the frst kind by using the properties of Fubini
polynomials and derivatives, which is unprecedented.
Te method of theorem proving is innovative and skillful.
Tis method has some reference value for researching
combinatorial theory and properties of other binary
sequences.
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