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We consider a regularized periodic three-dimensional Boussinesq system. For a mean free initial temperature, we use the coupling
between the velocity and temperature to close the energy estimates independently of time.Tis allows proving the existence of a global in
time unique weak solution. Also, we establish that this solution depends continuously on the initial data. Moreover, we prove that this
solution converges to a Leray-Hopf weak solution of the three-dimensional Boussinesq system as the regularizing parameter vanishes.

1. Introduction

Motivated by ([1]) and references therein, we consider the
regularization to the periodic three-dimensional Boussinesq
system (Bqα) given by

ztv − ]Δv +(u · ∇)u � − ∇p + θe3, (t, x) ∈ R+ × T
3
, (1)

ztθ − κΔθ +(u · ∇)θ � 0, (t, x) ∈ R+ × T
3
, (2)

v � u − α2Δu, (t, x) ∈ R+ × T
3
, (3)

div u � div v � 0, (t, x) ∈ R+ × T
3
, (4)

(u, θ)|t�0 � u
0
, θ0􏼐 􏼑, x ∈ T3

, (5)

where the unknown velocity, the unknown pressure, and the
unknown temperature are, respectively, the three-
dimensional vector u, the scalars p, and the scalar θ. Te
parameters ], κ, α> 0 denote, respectively, the viscosity, the
thermal conductivity of the fuid, and the regularizing

parameter, T3 � (R/2πZ)3 is the three-dimensional torus,
u0 is a given divergence-free initial velocity, and θ0 is a given
mean free initial temperature. Te vector e3 � (0, 0, 1)T.

Te periodic three-dimensional Boussinesq system
models geophysical fuids such as oceanographic turbulence
and atmospheric fronts as well as the Rayleigh–Benard
convection [2]. More physical application for the Boussinesq
system can be found in [3] and related references. It is
known that available mathematical methods do not allow
proving the global well-posedness of the three-dimensional
fuid equations such as the Boussinesq system, especially in
Sobolev spaces which are energy spaces frequently used in
real word applications. To make practical advances in this
feld, researchers took the way of regularisation. In this
framework, the idea in [4] was to suggest a particular closure
model for the Navier-Stokes equations by approximating the
Reynolds stress tensor. Tis model was simplifed in [5] and
a mathematical study was performed therein. Existence and
uniqueness results in [5] were improved in [6].

Te closest reference to our manuscript is [1], where the
author proved that a weak solution exists to (Bqα), α> 0.
Tis solution depends continuously on initial data and it
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converges to a weak solution of (Bqα�0), as the regularizing
parameter α⟶ 0. However, it is clear that in Teorem 1 of
[1], the right-hand side of the energy estimate depends on
time. Tus, the solution belongs to L∞loc(R+, H1(T3)) as it
will blow up when T⟶∞. Tis local aspect is due to the
classical arguments based on a brutal application of Cau-
chy–Schwarz inequality while taking the scalar product of
the Buoyancy force θe3 with the velocity feld u. Tus, this
was not a global in-time solution but it should be called
a large time solution. Tis insufciency appeared widely in
the literature and is still appearing both in the three-
dimensional case and the two-dimensional case which is
supposed to be well understood, see among a wide literature
[1, 7–12] and references therein. Here, we overcome this
insufciency for the range of mean free initial temperature
and we make two improvements that are interesting from an
applicable point of view.

Te frst is to obtain a global in-time weak solution,
under minimal regularity requirements. Tis is the main
contribution of this paper. For physicists and engineers,
global in-time solutions are closely related to durable in time
operating of machines, systems, and networks. Tus,
physicists and engineers usually try to start with suitable
initial data to avoid blowup in fnite time. For mathema-
tician, global in-time solutions open the way to study the
long time behavior [13, 14], the existence of the attractors
[15], the asymptotic stability [16], and in general, all topics
requiring t⟶∞. In numerical analysis of nonlinear
system, although the numerical discretization is generally
local in time, the existence of a global in-time solution gives
the possibility to extend such numerical discretization, by
translation in time. Also, based on [1] and using continuity
in time, we deduce that our global solution is continuously
dependent on the initial data and in particular, it is unique.
First, we recall that the uniqueness of weak solution in
energy spaces is still an open problem for three-dimensional
fuid equations. In the literature, such uniqueness is the main
target behind any regularisation. Second, we note that from
an applied mathematical point of view, we seek for a nearby
solution to arise from nearby initial data. Otherwise, we will
never believe in any computer calculations, for example. For
physicists and engineers, it is interesting that when starting
with an initial state, the system described by a given partial
diferential equation should evolve towards an only one
future state.

Te second is that our solution converges to a global
in-time Leray-Hopf type weak solution of the three-
dimensional Boussinesq system, as the regularizing pa-
rameter α⟶ 0. Convergence result is one of the main
features of the α-regularisation. First, in practical situations,
it allows to consider systems with α> 0 as small as required
and fully proft from uniqueness and continuous de-
pendence, while keeping nearby a weak solution of the three-
dimensional Boussinesq system. Second, from a theoretical
point of view, it is indeed a diferent mathematical method to
prove the existence of a weak solution to the three-
dimensional Bousssinesq system. Tis solution is the
existing limit. Similar results were proved, as the Rossby
number vanishes, in [17, 18] for example.

Let us mention that starting with a mean free initial
temperature, such as sinusoidal initial heating sources, is
frequent in natural phenomenons and compulsory in many
real word applications; see [19] and the multitude references
therein in the case of industrial applications or [20] for
applications in medicine and health sciences. In [21, 22],
authors used the mean free condition to investigate the long
time behavior of the solution and to prove an exponential
stability result for the periodic 3D Navier-Stokes equations,
in critical Sobolev spaces.

Given a Banach space (X, ‖.‖X), the Bochner space
Lp([0, T], X) is the space of all functions such that

‖u‖Lp([0,T],X) � 􏽚
T

0
‖u(t)‖

p
Xdt􏼠 􏼡

1/p

<∞, for 1≤p<∞,

‖u‖L∞([0,T],X) � ess sup
t∈[0,T]

‖u(t)‖X <∞.

(6)

If we denote by s a real number, by 􏽢u the Fourier
transform of u and by S′(T3) the Schwartz space, then the
homogeneous Sobolev spaces are given by

_H
s
T
3

􏼐 􏼑 � 􏽢u∈ S′ T3
􏼐 􏼑, 􏽘

k∈Z3

|k|
2s

|􏽢u(k)|
2 <∞

⎧⎨

⎩

⎫⎬

⎭, (7)

and endowed with the natural norm ‖u‖ _H
s
(T3) �

(􏽐k∈Z3 |k|2s|􏽢u(k)|2)1/2.
Te paper is organized as follows. In the following

section, we will prove that a continuous global in time weak
solution exists and depends continuously on the initial data
and in particular, it is unique. In the last section, we will
establish that this solution converges to a global in time
Leray-Hopf type solution, as the regularizing parameter
α⟶ 0.

2. Existence Results

In the following, we give formal estimates for a Galerkin
approximating scheme to system (Bqα). We omit the ap-
proximating system and the index of the approximating
sequence. Interested readers can see [1] for full details.
Taking the inner product in L2(T3) of (1) with u and (2) with
θ, we obtain

1
2

d

dt
‖u‖

2
L2 + α2‖∇u‖

2
L2􏼐 􏼑 + ] ‖∇u‖

2
L2 + α2‖Δu‖

2
L2􏼐 􏼑 �〈θe3, u〉L2,

(8)

and

1
2

d

dt
‖θ‖

2
L2 T3( ) + κ‖∇θ‖

2
L2 T3( ) � 0. (9)

Integrating (2) with respect to x, we infer that the frst
Fourier coefcient of θ is conserved during time, that is,
C0(θ(t)) � C0(θ

0), ∀t> 0. Since the initial temperature θ0 is
mean free, it follows that C0(θ

0) � 0. So, C0(θ(t)) � 0,
∀ t> 0. Tus,
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〈θe3, u〉L2 � 􏽘
k≠(0,0,0)

􏽢θn(k)􏽢u
3
n(k). (10)

Applying the Cauchy–Schwarz inequality and Young
inequality to (10), it holds

1
2

d

dt
‖u‖

2
L2 + α2‖∇u‖

2
L2􏼐 􏼑 + ] ‖∇u‖

2
L2 + α2‖Δu‖

2
L2􏼐 􏼑

≤
1
2]

‖θ‖
2
L2 +

]
2
‖∇u‖

2
L2 .

(11)

Integrating (9) and (11) with respect to time and sum-
ming, it follows that

‖θ(t)‖
2
L2 +‖u(t)‖

2
L2 + α2‖∇u‖

2
L2 + 2κ􏽚

t

0

‖∇θ(τ)‖
2
L2 + ]􏽚

t

0

‖∇u(τ)‖
2
L2dτ + 2]α2 􏽚

t

0

‖Δu‖
2
L2dτ

≤ θ0
����

����
2
L2 + u

0����
����
2
L2 + α2 ∇u0����

����
2
L2 +

1
]

􏽚

t

0

‖θ‖
2
L2dτ.

(12)

By Poincaré inequality, one has

􏽚

t

0

‖θ‖
2
L2dτ ≤ 􏽚

t

0

‖∇θ‖
2
L2dτ. (13)

Above, we have a unitary Poincaré constant. In fact,

‖θ‖
2
L2 T3( ) � 􏽘

k∈Z3 ,k≠(0,0,0)

|􏽢θ(k)|
2

≤ 􏽘

k∈Z3 ,k≠(0,0,0)

|k|
2
|􏽢θ(k)|

2
� ‖∇θ‖

2
L2 T3( ),

(14)

where we used successively that θ is mean free and that
|k|≥ 1.

Te integral with respect to time of (9) gives

􏽚

t

0

‖θ‖
2
L2dτ ≤ θ0

����
����
2
L2 . (15)

Finally, we are able to close the estimates independently
on time as follows:

‖θ(t)‖
2
L2 +‖u(t)‖

2
L2 + α2‖∇u‖

2
L2 + 2κ􏽚

t

0

‖∇θ(τ)‖
2
L2 T3( )

+ ]􏽚

t

0

‖∇u(τ)‖
2
L2dτ + 2]α2 􏽚

t

0

‖Δu‖
2
L2dτ ≤C α, ], κ, u

0
, θ0􏼐 􏼑,

(16)

where C(α, ], κ, u0, θ0) � ‖u0‖
2
L2+ α2‖∇u0‖

2
L2 + (1 + (1/2]κ))

‖θ0‖2L2 . A standard compactness argument fnishes the proof
of the existence part inTeorem 1. To do so, we take the limit
using Aubin compactness lemma [23]. Continuity in time of
the existing weak solution to (Bqα) can be proved in

a classical manner as in the case of the weak solutions to
three-dimensional Navier-Stokes equations [24]. Also, de-
tails were provided in [7] for the case of the strong solution
to (Bqα).

In [1], the author established the continuous dependence
of the weak large time solution with respect to the initial data
on [0; T], T> 0. In particular, he deduced that this large time
solution was unique. In our case, as the global solution of
(Bqα) is continuous in time, continuous dependence on
initial data and uniqueness follow overR+. In conclusion, we
have the following theorem.

Theorem 1. Let θ0 ∈ L2(T3) be a mean free scalar function
and let u0 ∈ _H

1
(T3) be a divergence-free vector feld. Ten,

there exists a global in-time weak solution (uα, θα) of system
(Bqα) such that uα belongs to C(R+, _H

1
(T3))∩L2(R+,

_H
2
(T3)) and θα belongs to C(R+, L2(T3))∩L2(R+, _H

1
(T3)).

Moreover, this solution satisfes the energy estimate (16) and
depends continuously on the initial data. In particular, it is
unique.

3. Convergence Results

In this section, we will prove the following theorem.

Theorem  . Let θ0 ∈ L2(T3) be a mean free scalar function,
u0 ∈ _H

1
(T3) be a divergence-free vector feld and (uα, θα) the

solutions of system (Bqα), and vα � uα − α2Δuα. Ten, there
are subsequences uαk

, vαk
, and θαk

, a scaler function �θ, and
a divergence-free vector feld �u belonging both of them to
L∞(R+, L2(T3))∩L2(R+, _H

1
(T3)) such that as αk⟶ 0+,

the following holds.

(1) Te sequence uαk
converges to �u and θαk

converges to
�θ weakly in L2(R+, _H

1
(T3)) and vαk

converges to �u

weakly in L2(R+, L2(T3)).
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(2) Te sequence uαk
converges to �u and θαk

converges to
�θ strongly in L2(R+, L2(T3)) and vαk

converges to �u

strongly in L2(R+, _H
− 1

(T3)).
(3) Te sequence (uαk

, θαk
) converges to (�u, �θ) weakly in

(L2(T3))2 and uniformly over R+. Furthermore,

(�u, �θ) is a Leary-Hopf-type weak solution of the
Boussinesq system (Bq0) and satisfes for all t ∈ R+

the energy inequality

‖�u(t)‖
2
L2 T3( ) +‖�θ(t)‖

2
L2 T3( ) + 2􏽚

t

0

]‖∇�u(t)‖
2
L2 T3( ) + κ‖∇�θ(τ)‖

2
L2 T3( )􏼒 􏼓dτ ≤ u

0����
����
2
L2 T3( ) + 1 +

1
2]κ

θ0
����

����
2
L2 T3( )􏼒 􏼓. (17)

3.1. Proof of Statement (1). Since the regularizing parameter
α⟶ 0+, there exists some fxed α0 such that 0< α≤ α0.
Taking α � α0 in the right-hand side of (16), we obtain for all
t ∈ R+,

θα(t)
����

����
2
L2 + uα(t)

����
����
2
L2 + α2 ∇uα(t)

����
����
2
L2 + 2κ􏽚

t

0

∇θα(τ)
����

����
2
L2dτ

+ ]􏽚

t

0

∇uα(τ)
����

����
2
L2dτ + 2]α2 􏽚

t

0

Δuα(τ)
����

����
2
L2dτ

≤ u
0����
����
2
L2 + α20 ∇u

0����
����
2
L2 + 1 +

1
2]κ

􏼒 􏼓 θ0
����

����
2
L2 .

(18)

Above, we added the index α to make precision that the
temperature and the velocity depend implicitly on α. By (18),
both of θα and uα are uniformly bounded in L2(R+, _H

1
(T3)).

Hence, the Banach–Alaoglu theorem [25] applied in the
framework of Hilbert spaces allows to extract subsequences
(θαk

)k, (uαk
)k, and (vαk

)k such that

θαk
, uαk

, vαk
􏼐 􏼑⇀(θ, u, v) weakly  in  L

2
􏼐 R+, _H

1
􏼒 􏼓

2

× L
2

􏼐 R+, L
2

􏼐 􏼑, as αk⟶ 0+
.

(19)

3.2. Proof of Statement (2). To deal with the strong con-
vergence, we will apply the Aubin–Lions lemma [23]. Tis
necessitates uniform estimates of the time derivatives of θαk

,
of uαk

, and of vαk
in the appropriate spaces.

In the following, K is a real positive constant that may
change from line to line. For all positive time, θαk

is

bounded independently of α, in L2([0, T], _H
1
(T3)), T> 0.

As the Sobolev spaces form a decreasing chain and by
defnition of the homogeneous Sobolev norm, Δθαk

is
uniformly bounded with respect to α in
L2([0, T], _H

− 1
(T3)). Using Sobolev norm properties and

Sobolev product laws, it holds that

􏽚
T

0
div θαk

uαk

�����

�����
2
_H

− 3/2 ≤ 􏽚
T

0
θαk

�����

�����
2

L2 uαk

�����

�����
2
_H
1

≤ ‖θ‖
2
L∞

T
L2( )‖u‖

2
L2

T
_H
1( 􏼁

≤ ‖θ‖
2
L∞
R+

L2( )‖u‖
2
L2
R+

_H
1( 􏼁

.

(20)

Te above estimates of the difusion and the advection
terms lead to

d

dt
θαk

�������

�������L2
T

_H
− 3/2( 􏼁
≤K, (21)

where _H
− 3/2 is the dual space of the homogeneous Sobolev

space _H
3/2

(T3) and L2
T( _H

− 3/2
) is the Bochner space as

defned in the introduction. Applying the operator
(I − α2Δ)− 1 to the velocity equation (1), we obtain ∀(x, t) in
R+ × T3,

d

dt
uαk

� ]Δuαk
− I − α2Δ􏼐 􏼑

− 1
uαk

· ∇􏼐 􏼑uαk

− I − α2Δ􏼐 􏼑
− 1
∇pαk

+ I − α2Δ􏼐 􏼑
− 1
θαk

e3.

(22)

In the following, we will be conformed to the statement
of the Aubin lemma [23] and consider a time T> 0. As uαk

is

bounded independently of α in L2([0, T], _H
1
(T3)), the

dissipation Δuαk
will be so in the space L2([0, T], _H

− 1
(T3)).

For the other terms, we mention that the operator
(I − α2Δ)− 1 is bounded from H− 2(T3) into L2(T3) and that
by frequency calculations, we have |‖(I − α2Δ)− 1‖|≤ 1,
where we denote by |‖.‖|, the norm of the operator. Also, as
θαk

is bounded independently of α in L2([0, T], _H
1
(T3)),

then ‖(I − α2Δ)− 1θe3‖L2( _H
3
)
≤K. As for the convection term,

Sobolev norm properties, Sobolev product laws, and classical
computations lead to

􏽚
T

0
I − α2Δ􏼐 􏼑

− 1
div uαk
⊗ uαk

􏼐 􏼑
�����

�����
2

L2 ≤ 􏽚
T

0
div uαk
⊗ uαk

􏼐 􏼑
�����

�����
2

H− 2

≤ ‖u‖
2
L∞
R+

L2( )‖u‖
2
L2
R+

_H
1( 􏼁

.

(23)
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It is standard to rewrite the pressure in terms of the
velocity and the temperature. Also, one applies the di-
vergence operator and the Riesz transform to obtain

p � − Δ− 1
􏽘

3

i,j�1
zizj u

i
u

j
􏼐 􏼑 − z3θ⎛⎝ ⎞⎠. (24)

Using the precedent bounds of the temperature and the
velocity, it holds that

I − α2Δ􏼐 􏼑
− 1
∇p

�����

�����L2 _H
− 1( 􏼁
≤K. (25)

So, equation (22) implies that

d

dt
uαk

�������

�������L2
T

_H
− 1( 􏼁
≤K. (26)

Remark 3. It is clear that in (21) and (26) as in [1], the
constant K � K(α0, ], κ, u0, θ0). Tus, it is uniform with
respect to α. However, the most interesting feature in the
present paper is the fact that K is independent of the time T.
Tis makes these estimates valid for all time T. Especially, as
time goes to infnity. Tis was not the case of convergence
result in [1], where estimates for convergence results blow
up, as t⟶ +∞.

By Aubin–Lions lemma, we extract subsequences rela-
beled uk and θk that converge strongly in L2([0, T], L2(T3))

and in L2([0, T], _H
− 1

(T3)), respectively. Since

vk − uk

����
����
2
L2 [0,T], _H

− 1( 􏼁 � α4 􏽚
T

0
􏽘

k∈Z3

|k|
− 2 􏽣Δuk

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2⎛⎝ ⎞⎠

� α4 uk

����
����
2
L2 [0,T], _H

1( 􏼁,

(27)

we deduce that vk converges strongly to u in L2([0, T], _H
− 1

)

because uk belongs to L2([0, T], _H
1
).

3.3. Proof of Statement (3). For the frst result, since (uk, θk)

converges strongly to (u, θ) in (L2(R+), L2)2, then by the
Cauchy–Schwarz inequality, it converges weakly for almost
every t ∈ R+. In particular, this holds for the supremum.
Tat is, (uk(t), θk(t)) converges to (u(t), θ(t)) weakly in
L2(T3) and uniformly over R+. To prove the second result,
we recall that the time derivatives are uniformly bounded
with respect to α, as proved above. We apply the
Banach–Alaoglu theorem, in Hilbert spaces, to deduce that

d

dt
θk,

d

dt
uk􏼠 􏼡⇀

d

dt
θ,

d

dt
u􏼠 􏼡weakly  in L2

[0, T], _H
− 1

T
3

􏼐 􏼑􏼒 􏼓, as k⟶ +∞

d

dt
vk⇀

d

dt
u weakly  in L2

[0, T], _H
− 2

T
3

􏼐 􏼑􏼒 􏼓, as k⟶ +∞.

(28)

Let Λ ∈ _H
2 be a divergence-free vector feld and Ξ ∈ _H

1

a scalar mean free test function. We take the inner product
and we integrate with respect to time to obtain

〈θk(t),Ξ〉H− 1 − 〈θk(0),Ξ〉H− 1 − 􏽚

t

0

θk,ΔΞ( 􏼁L2dτ + 􏽚

t

0

B uk, θk( 􏼁,Ξ( 􏼁L2dτ � 0

〈vk(t),Λ〉H− 2 − 〈vk(0),Λ〉H− 2 − 􏽚

t

0

vk,ΔΛ( 􏼁L2dτ + 􏽚

t

0

〈􏽥B uk, vk( 􏼁,Λ〉H− 2dτ − 􏽚

t

0

θke3,Λ( 􏼁L2dτ � 0.

(29)

To deal with the nonlinear terms, we use a standard
compactness argument to obtain 􏽥B(uk, vk)⟶ B(u, u) and
B(uk, θk)⟶ B(u, θ). Taking the limit, it follows that

〈θ(t),Ξ〉H− 1 − 〈θ(0),Ξ〉H− 1 − 􏽚
t

0
(θ,ΔΞ)L2dτ + 􏽚

t

0
(B(u, θ),Ξ)L2dτ � 0,

〈u(t),Λ〉H− 2 − 〈u(0),Λ〉H− 2 − 􏽚

t

0

(u,ΔΛ)L2dτ + 􏽚

t

0

〈B(u, u),Λ〉H− 2dτ − 􏽚

t

0

θe3,Λ( 􏼁L2dτ � 0.

(30)
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Te solution (u(t), θ(t)) satisfes the energy inequality
(17), as we can take the lower limit when αk⟶ 0.
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