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Tis work establishes a unique set of generators for a cyclic code over a fnite chain ring. Towards this, we frst determine the
minimal spanning set and rank of the code. Furthermore, sufcient as well as necessary conditions for a cyclic code to be an MDS
code and for a cyclic code to be anMHDR code are obtained. Finally, to support our results, some examples of optimal cyclic codes
are presented.

1. Introduction

Coding theory aims to provide optimal codes for detecting
and correcting a maximum number of errors during data
transmission through noisy channels. Cyclic codes have
been in focus due to their rich algebraic structure which
enables easy encoding and decoding of data through the
process of channel coding. Cyclic codes over rings have
gained a lot of importance after the remarkable break-
through given by Hammons et al. in reference [1]. A vast
literature is available on the structure of cyclic codes over
felds, integer residue rings, Galois rings, fnite chain rings,
and some fnite nonchain rings [2–29]. Cyclic codes over
fnite chain rings with length coprime to the characteristic of
residue feld have been investigated in references [2, 16, 22].
Islam and Prakash have established a unique set of gener-
ators for cyclic codes over Zpk in reference [4] and for cyclic
codes over Fq + uFq, u2 � 0 in reference [5]. A. Sharma and
T. Sidana have studied cyclic codes of ps length over fnite
chain rings in reference [15], thereby extending the results of
Kiah et al. on cyclic codes over Galois rings [14]. Dinh
explored the structure and properties of cyclic codes of
length ps over fnite chain rings with nilpotency index 2 [13].
However, in most of the studies, there have been some
limitations on either the length of code or the nilpotency
index of the ring. We do not impose any such restriction in
this paper. Salagean made use of the existence of a Grobner
basis for an ideal of a polynomial ring to establish a unique

set of generators for a cyclic code over a fnite chain ring with
arbitrary parameters [18]. Al-Ashker et al. have also worked
in the same direction in the paper [28] by extending the
novel approach given by Siap and Abualrub [12] which pulls
back the generators of a cyclic code over Z2 to establish the
structure of cyclic codes over the ring Z2 + uZ2 + · · · + uk− 1

Zk− 1, uk � 0. Tey have also extended this approach over the
fnite chain ring Fq + uFq + · · · + uk− 1Fq− 1, uk � 0 [24].
Monika and Sehmi have given a constructive approach
to establish a generating set for a cyclic code over a fnite
chain ring by making use of minimal degree polynomials of
certain subsets of the code [20]. We make some advance-
ments to this study by establishing a unique set of generators
for a cyclic code over a fnite chain ring with arbitrary
parameters. It is noted that this unique set of generators
retains all the properties of generators obtained in
reference [20].

Te paper is organised as follows: In Section 2, we state
some preliminary results. In Section 3, we establish a unique
set of generators for a cyclic code over a fnite chain ring. In
Section 4, we establish a minimal spanning set and rank of
the cyclic code. We give sufcient as well as necessary
conditions for a cyclic code to be an MDS code. We establish
sufcient as well as necessary conditions for a cyclic code of
length which is not coprime to the characteristic of residue
feld of the ring to be an MHDR code. Finally, we provide
a few examples of MDS and MHDR cyclic codes over some
fnite chain rings.
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2. Preliminaries

Let R be a fnite commutative chain ring. Let 〈c〉 be the
uniquemaximal ideal ofR and ] be the nilpotency index of c.
Let Fq � R/〈c〉 be the residue feld of R, where q � ps for
a prime p and a positive integer s.

Te following is a well-known result (for reference, see
[15]).

Proposition 1. Let R be a fnite commutative chain ring.
Ten, we have the following:

(i) charR � pa, where 1≤ a≤ ] and |R| � |Fq|] � ps]

(ii) Tere exists an element ζ ∈ R with multiplicative
order ps − 1. Te set ⊤ � 0, 1, ζ, ζ2, . . . , ζps− 2

􏽮 􏽯 is
called the Teichm€uller set of R

(iii) Every r ∈ R can be uniquely expressed as
r � r0 + r1c + · · · + r]− 1c

]− 1, where ri ∈⊤ for
0≤ i≤ ] − 1. Also, r is a unit in R if and only if r0 ≠ 0

Remark 2. Let k(z) � k0 + k1z + · · · + ktz
t, where kj ∈ R for

j � 0, 1, . . . , t is a polynomial of degree t in R[z]. By using
Proposition 1(iii), k(z) can be expressed as

k(z) � a0(z) + ca1(z) + · · · + c
]− 1

a]− 1(z), (1)

where aj(z) ∈⊤[z] for j � 0, 1, . . . , ] − 1.
We defne a map ϕ: R⟶⊤ by ϕ(r) � r(mod c) � r

for r ∈ R. Clearly, ϕ is a natural onto homomorphism, and
therefore, R � ⊤, where R denotes the image of R under ϕ.
Tis map can be naturally extended from R[z] to ⊤[z] by
􏽐

k
i�0aiz

i↦􏽐
k
i�0aiz

i, where ai ∈ R for 0≤ i≤ k.
Let us now recall some basic defnitions and known

results.
A linear code C with length n over a fnite commu-

tative chain ring R is said to be a cyclic code if
(cn− 1, c0, . . . , cn− 2) ∈ C for every (c0, c1, . . . , cn− 1) ∈ C. It
is well established that C can be viewed as an ideal
of R[z]/〈zn − 1〉. Te Hamming weight wH(c) of
c � (c0, c1 · · · cn− 1) ∈ C is defned as the number of integers
i such that ci ≠ 0 for 0≤ i≤ n − 1. Te Hamming distance
dH(C) of a code C over R is given by
dH(C) � min wH(c): c is a nontrivial element of C􏼈 􏼉. C is
said to be an MDS (maximum distance separable) code
with respect to the Hamming metric if |C| � |R|n− dH(C)+1.
Te rank of C is defned as the total number of elements in
the minimal spanning set of C. C is said to be an MHDR
(maximum Hamming distance with respect to rank) code
if dH(C) � n − rank(C) + 1. Te ith torsion code of C is
defned as Tori(C) � ϕ(k(z)) ∈R[z]: cik(z) ∈ C􏼈 􏼉, where
0≤ i≤ ] − 1. Ten, Tori(C) for all i, 0≤ i≤ ] − 1 is a prin-
cipally generated cyclic code over the residue feld of R.
Te degree of the generator polynomial of Tori(C) is
called the ith torsional degree of C. A polynomial in R[z] is
said to be monic if its leading coefcient, i.e., the co-
efcient of its leading term is a unit in R. Te leading
coefcient of a polynomial k(z) in R[z] is denoted
by lc(k(z)).

3. Unique Set of Generators

In this section, a unique set of generators for a cyclic code C

of arbitrary length n over R has been established. For this, let
us frst recall the construction given by Monika et al. to
obtain a generating set for a cyclic code C over a fnite chain
ring R [20]. Let f0(z), f1(z), . . . , fm(z) be minimal degree
polynomials of certain subsets of C such that deg(fj(z)) �

tj < n and the leading coefcient of fj(z) is equal to cij uj,
where uj is some unit in R, tj < tj+1, ij > ij+1, and ij is the
smallest of such power. If i0 � 0, then f0(z) is a monic
polynomial and we have m � 0.

Lemma 3 (see [20]). Let C be a cyclic code having a length n

over R and fj(z), 0≤ j≤m, be polynomials as defned above.
Ten, we have the following:

(i) C is generated by the set fj(z); j � 0, 1, . . . , m􏽮 􏽯

(ii) For 0≤ j≤m, fj(z) � cij hj(z), where hj(z) is
a monic polynomial over the fnite commutative
chain ring having nilpotency index ] − ij and
maximal ideal 〈c〉

(iii) fj(z); j � 0, 1, . . . , m􏽮 􏽯 forms a Grobner basis for C

Te following results are straightforward generalisations
of reference [19] for cyclic codes over the class of Galois rings
to fnite chain rings and have been communicated in ref-
erence [21]. Tese results are required to proceed further.

Lemma 4 (see [21]). We consider a cyclic code C of arbitrary
length n over R generated by f0(z), f1(z), . . . , fm(z)􏼈 􏼉 as
defned above. Ten, for every (z) ∈ Torij

(C), deg(a(z))≥ tj.
Also, Torij

(C) � 〈hj(z)〉 and tj is the ithj torsional degree
of C.

Remark 5 (see [21]). Let C � 〈f0(z), f1(z), . . . , fm(z)〉 be
a cyclic code having a length n over R, where fj(z) for j �

0, 1, . . . , m are polynomials as defned above. Ten, we have

(i) Tor0(C) � Tor1(C) � · · · � Torim − 1(C) � 0{ }

(ii) Torij
(C) � Torij+1(C) � · · · � Torij− 1− 1(C) ⊂ Torij− 1

(C) for j � 1, 2, . . . , m

(iii) Tori0
(C) � Tori0+1(C) � · · · � Tor]− 2(C) � Tor]− 1

(C)

Remark 6. For a cyclic code C with a generating set as
defned above, the abovementioned remark implies that

(i) for i0 ≤ i≤ ] − 1, the ith torsional degree of C is t0

(ii) for 1≤ j≤m and ij ≤ i≤ ij− 1 − 1, the ith torsional
degree of C is tj

Theorem  (see [21]). Let C be a cyclic code having an
arbitrary length n over R generated by polynomials
f0(z), f1(z), . . . , fm(z) as defned earlier. If |⊤| � ps, then
we have
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|C| � p
s n]− nim+t0k0+t1k1+···+tmkm( )( ), (2)

where tj for j � 0, 1, . . . , m are the torsional degrees of
Torij

(C), k0 � ] − i0, and kj � ij− 1 − ij for j � 1, 2, . . . , m.

Theorem 8 (see [21]). Let C � 〈f0(z), f1(z), . . . , fm(z)〉

be a cyclic code as defned above. Ten, dH(C) � dH

(Tori0(C)) � dH(〈h0(z)〉).

Remark 9. Let cik(z), cjw(z) ∈ R[z] such that i≥ j,
deg(k(z))≥ deg(w(z)), and w(z) is monic. Let a, b ∈ R be

the leading coefcient of k(z) and w(z), respectively. Ten,
we have

c
i
k(z) − c

i− j
ab

− 1
z
deg(k(z))− deg(w(z))

c
j
w(z) � c

i
s1(z),

(3)

for some s1(z) ∈ R[z] such that deg(s1(z))< deg(k(z)). If
deg(s1(z))≥ deg(w(z)), then by applying a similar argu-
ment as mentioned above on cis1(z), we have

c
i
s1(z) − c

i− jlc s1(z)( 􏼁b
− 1

z
deg s1(z)( )− deg(w(z))

c
j
w(z) � c

i
s2(z), (4)

for some s2(z) ∈ R[z] such that deg(s2(z))< deg(s1(z)).
Again, if deg(s2(z))≥ deg(w(z)), then repeatedly apply the
abovementioned argument a fnite number of times to obtain

polynomials s3(z), s4(z), . . . , sl(z) in R[z] with deg(s2(z))>
deg(s3(z))> · · · > deg(sl(z))≥ deg(w(z)) such that

c
i
sl(z) − c

i− jlc sl(z)( 􏼁b
− 1

z
deg sl(z)( )− deg(w(z))

c
j
w(z) � c

i
s(z), (5)

where s(z) ∈ R[z] and deg(s(z))< deg(w(z)). Now, by
back substituting all these values of cisl(z), cisl− 1(z), . . . ,

cis1(z) one by one, we fnally get

c
i
k(z) − q(z)c

j
w(z) � c

i
s(z), (6)

for q(z), s(z) ∈ R[z], deg(q(z))≤ deg(k(z)) − deg(w(z)),
and deg(s(z)) < deg(w(z)).

In the following theorem, a unique set of generators for
a cyclic code C over a fnite chain ring R has been obtained,
which retains all the properties as that of the generating set
obtained in reference [20].

For a positive integer t, defne Bt � a(z){

∈⊤[z], such that deg(a(z))< t}.

Theorem 10. Let C � 〈f0(z), f1(z), . . . , fm(z)〉 be a cyclic
code having an arbitrary length over R as defned above.Ten,
there exist polynomials u0(z),u1(z), . . . ,um(z) in C such
that for 0≤ j≤m, we have

uj(z) � 􏽘
]− 1

l�ij

c
l
bj,l(z), (7)

where bj,l(z) ∈⊤[z] for ij ≤ l≤ ] − 1, bj,ij
(z) � hj(z), such

that hj(z) is the generator polynomial of ithj torsion code of C

and deg(bj,ij
(z)) � tj. Furthermore, bj,l(z) ∈ Btj

for
ij < l< ij− 1, bj,l(z) ∈ Btr

for ir ≤ l< ir− 1 and j − 1≥ r≥ 1, and
bj,l(z) ∈ Bt0

for i0 ≤ l≤ ] − 1. Also, C is generated by the set
u0(z),u1(z), . . . ,um(z)􏼈 􏼉 which retains all the properties as
that of the generating set f0(z), f1(z), . . . , fm(z)􏼈 􏼉 and
uj(z) are unique in this form.

Proof. Let C � 〈f0(z), f1(z), . . . , fm(z)〉 be a cyclic code
over R such that fj(z) are polynomials as defned above. By
construction, it is clear that f0(z) is unique in C. Terefore,
f0(z) � u0(z). Now, we consider that

f1(z) � 􏽘

]− 1

l�i1

a1,l(z), (8)

where a1,l(z) ∈⊤[z] for i1 ≤ l≤ ] − 1, a1,i1
(z) � h1(z) such

that h1(z) is the generator polynomial of ith1 torsion code of
C, and deg(a1,i1

(z)) � t1 and a1,l(z) ∈ Bt1
for i1 < l≤ ] − 1. If

a1,l(z) ∈ Bt0
for i0 ≤ l≤ ] − 1, then f1(z) is of the desired

form. Otherwise, suppose k≤ ] − i0 − 1 to be the least
nonnegative integer such that a1,i0+k(z) ∉ Bt0

. Ten,
deg(a1,i0+k(z))≥ t0. By Remark 9, we have

c
i0+k

a1,i0+k(z) � c
i0h0(z)q

(1)
k (z) + c

i0+k
s

(1)
k (z), (9)

for some polynomials q
(1)
k (z), s

(1)
k (z) ∈ R[z] such that

deg(s
(1)
k (z))< t0. Let ci0+ks

(1)
k (z) � 􏽐

]− 1
l�i0+kcls

(1)
k,l (z), where

s
(1)
k,l (z) ∈ Bt0

for i0 + k≤ l≤ ] − 1. We substitute this in
equation (9) and then back substitute the value of
ci0+ka1,i0+k(z) in equation (8) to get

f1(z) � 􏽘

]− 1

l�i1 ,l≠i0+k

c
l
a1,l(z) + c

i0h0(z)q
(1)
k (z)

+ 􏽘
]− 1

l�i0+k

c
l
s

(1)
k,l (z).

(10)

Tis implies that
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f1(z) − c
i0h0(z)q

(1)
k (z) � 􏽘

i0+k− 1

l�i1

c
l
a1,l(z) + c

i0+k
s

(1)
k,i0+k(z)

+ 􏽘
]− 1

l�i0+k+1
c

l
a1,l(z) + s

(1)
k,l (z)􏼐 􏼑.

(11)

Clearly, the term with content ci0+k on the right-hand
side of the abovementioned equation now belongs to Bt0

.
Following the same arguments as mentioned above for every
a1,i0+k′(z) ∉ Bt0

, where k< k′ ≤ ] − i0 − 1, we can obtain
a polynomial say u1(z) � 􏽐

]− 1
l�i1

b1,l(z) in C by subtracting
a suitable multiple of f0(z) from f1(z) which will satisfy all
the desired properties, i.e., b1,l(z) ∈⊤[z], b1,i1

(z) � h1(z),
b1,l(z) ∈ Bt1

for i1 < l< i0 and b1,l(z) ∈ Bt0
for i0 ≤ l≤ ] − 1

such that C � 〈u0(z),u1(z), f2 (z), . . . , fm(z)〉.
Now consider the following polynomial:

f2(z) � 􏽘
]− 1

l�i2

a2,l(z), (12)

where a2,l(z) ∈⊤[z] for i1 ≤ l≤ ] − 1, a2,i2
(z) � h2(z), and

deg(a2,i2
(z)) � t2 and a2,l ∈ Bt2

for i2 < l≤ ] − 1. Further-
more, if a2,l(z) ∈ Bt1

for i1 ≤ l< i0 and a2,l(z) ∈ Bt0
for

i0 ≤ l≤ ] − 1, then f2(z) is of the desired form. Otherwise, let
there exist least positive integers k≤ ] − i0 − 1 and r≤ i0 −

i1 − 1 such that a2,i0+k(z) ∉ Bt0
and a2,i1+r(z) ∉ Bt1

. By using
Remark 9 for a2,i0+k(z) and a2,i1+r(z), we have

c
i0+k

a2,i0+k(z) − c
i0h0(z)q

(2)
k (z) � c

i0+k
s

(2)
k (z),

c
i1+r

a2,i1+r(z) − c
i1h1(z)q

(2)
r (z) � c

i1+r
s

(2)
r (z),

(13)

such that q
(2)
k (z), s

(2)
k (z), q(2)

r (z), s(2)
r (z) ∈ R[z] and the

degrees of s
(2)
k (z) and s(2)

r (z) are strictly less than that of t0

and t1, respectively. Let s
(2)
k (z) � 􏽐

]− 1
l�i0+kcls

(2)
k,l (z) and

s(2)
r (z) � 􏽐

]− 1
l�i1+rc

ls
(2)
r,l (z) for every s

(2)
k,l (z), s

(2)
r,l (z) in ⊤[z].

Ten, s
(2)
k,l (z) ∈ Bt0

for i0 ≤ l≤ ] − 1 and s
(2)
r,l (z) ∈ Bt1

for
i1 + r≤ l≤ ] − 1. Using this to obtain the value of a2,i0+k(z)

and a2,i1+r(z) and then back substituting these values in the
summand for f2(z), we get f2(z) − ci1h1(z)q(2)

r (z)

− ci0h0(z)q
(2)
k (z)􏽐

i1+r− 1
l�i2

cla2,l(z) + ci1+rs
(2)
r,i1+r(z) + 􏽐

i0+k− 1
l�i1+r+1c

l

(a2,l(z)s
(2)
r,l (z)) + ci0+ks

(2)
k,i0+k(z)􏽐

v− 1
l�i0+k+1c

l(a2,l(z) + s
(2)
r,l (z)+

s
(2)
k,l (z)). Clearly, on the right-hand side of this equation, the
term with content ci1+r now has a degree that is strictly less
than that of t1 and the term with content ci0+k has a degree
that is strictly less than that of t0. Following the similar
arguments as mentioned above for every k< k′ ≤ ] − i0 − 1
and r< r′ ≤ i0 − i1 − 1, we can fnally obtain a polynomial
u2(z) � 􏽐

]− 1
l�i2

clb2,l(z) in C by subtracting a suitable multiple
of f0(z) and f1(z) from f2(z) and u2(z) satisfes all the
desired properties. Similarly, for every 3≤ j≤m, we can

obtain a polynomial uj(z) � 􏽐
]− 1
l�ij

bj,l(z) in C by subtracting
suitable multiples of fj− 1(z), fj− 2(z), . . . , f0(z) from
fj(z), such that uj(z) is of the desired form and
C � 〈u0(z),u1(z), . . . ,um(z)〉. It is clear from the above-
mentioned arguments that these uj(z) have the same
structural properties as those of fj(z), for every 0≤ j≤m.

Ten, we show that the polynomials uj(z), 0≤ j≤m

obtained above are unique in this form. Let
C � 〈u0(z),u1(z), . . . ,um(z)〉 � 〈w0(z), w1 (z), . . . , wm

(z)〉, where uj(z) � 􏽐
]− 1
l�ij

clbj,l(z) and wj(z) � 􏽐
]− 1
l�ij

cl

dj,l(z), such that bj,l(z), dj,l(z) ∈⊤[z] for ij ≤ l≤ ] − 1,
bj,ij

(z) � dj,ij
(z) � hj(z) for the generator polynomial hj(z)

of the ithj torsion code of C, and deg(bj,ij
(z)) �

deg(dj,ij
(z)) � tj. Furthermore, bj,l(z), dj,l(z) ∈ Btj

for
ij < l< ij− 1, bj,l(z), dj,l(z) ∈ Btr

for ir ≤ l< ir− 1 and
j − 1≥ r≥ 1, and bj,l(z), dj,l(z) ∈ Bt0

for i0 ≤ l≤ ] − 1.
Clearly, w0(z) � f0(z) � u0(z) by the abovementioned
construction. For 1≤ j≤m, we consider the following
polynomial:

wj(z) − uj(z) � 􏽘
]− 1

l�ij

c
l

dj,l(z) − bj,l(z)􏼐 􏼑. (14)

Let us denote the polynomials dj,l(z) − bj,l(z) by ej,l(z)

for ij ≤ l≤ ] − 1. Ten, we have

wj(z) − uj(z) � c
ij+1

􏽘

]− 1

l�ij+1
c

l− ij − 1
ej,l(z), (15)

since dj,ij
(z) � bj,ij

(z) � hj(z), i.e., ej,ij
(z) � 0. We have

that ϕ(􏽐
]− 1
l�ij+1c

l− ij− 1ej,l(z)) � ej,ij+1(z) ∈ Torij+1(C). From
Remark 5 and Lemma 4, we have that Tor ij+1(C) � Tor

ij
(C) � 〈hj(z)〉 for ij + 1< ij− 1. Terefore, ej,ij+1(z) ∈

〈hj(z)〉 but deg(ej,ij+1(z))< tj which implies that
ej,ij+1(z) � 0. By substituting this in equation (15) and ap-
plying the same arguments a fnite number of times, we get
ej,l(z) � 0 for ij ≤ l< ij− 1. By substituting this in equation
(15), we have

wj(z) − uj(z) � c
ij− 1 􏽘

]− 1

l�ij− 1

c
l− ij− 1ej,l(z). (16)

We have ϕ(􏽐
]− 1
l�ij− 1

cl− ij− 1ej,l(z)) � ej,ij− 1
(z) ∈ Torij− 1

(C).
By using Lemma 4, we get that ej,ij− 1

(z) ∈ 〈hj− 1(z)〉. Ten,
ej,ij− 1

(z) � 0, since deg(ej,ij− 1
(z))< tj− 1. By using this in

equation (15), we get

wj(z) − uj(z) � c
ij− 1+1

􏽘

]− 1

l�ij− 1+1
c

l− ij− 1+1
ej,l(z). (17)

Again, we have ϕ(􏽐
]− 1
l�ij− 1+1c

l− ij− 1+1ej,l(z)) � ej,ij− 1+1(z)

∈ Torij− 1+1(C). By using Remark 5 and Lemma 4, we get
that ej,ij− 1+1(z) ∈ Torij− 1+1(C) � Torij− 1

(C) � 〈hj− 1(z)〉 for
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ij− 1 + 1< ij− 2. Ten, ej,ij− 1+1(z) � 0, since deg(ej,ij− 1+1(z))

< tj− 1. By substituting this in equation (15) and repeatedly
applying the same argument a fnite number of times, we get
ej,l(z) � 0 for ij− 1 ≤ l< ij− 2. Working in a similar manner for
every l≤ ] − 1, we can fnally conclude that
wj(z) − uj(z) � 0. Hence, the generator polynomials uj(z)

for 0≤ j≤m are unique in C. □

Remark 11. It is observed that the unique set of generators
obtained in Teorem 7 forms a Grobner basis for C over R.

4. MDS and MHDR Cyclic Codes over a Finite
Chain Ring

In this section, the minimal spanning set and rank of a cyclic
code C over a fnite chain ring R have been established.
Sufcient as well as necessary conditions for a cyclic code to
be an MDS code and for a cyclic code to be an MHDR code
have been obtained. Finally, to support our results, some
examples of optimal cyclic codes have been presented.

Theorem 12. Let C be a cyclic code having an arbitrary
length n over a fnite chain ring R. Ten, rank(C) � n − t0,
where t0 is the degree of minimal degree polynomial in C.

Proof. Let C be a cyclic code having an arbitrary length n
over R. Let u0(z),u1(z), . . . ,um(z)􏼈 􏼉 be a unique set of
generators for C as obtained above. Clearly, the set S �

um(z),􏼈 zum(z), . . . , zn− tm− 1um (z),um− 1(z), zum− 1
(z), . . . , zn− tm− 1− 1um− 1(z), . . . ,u1(z), zu1(z), . . . , zn− t1− 1

u1(z),u0(z), zu0(z), . . . , zn− t0− 1u0(z)} spans C. Now, we
shall prove that S

′
� um(z), zum(z), . . . , z

n− tm − 1
􏽮

um(z),um− 1(z), zum− 1(z), . . . , z
tm− tm− 1− 1

um− 1(z), . . . , u1
(z), zu1(z), . . . , z

t2− t1− 1
u1(z), u0(z), zu0(z), . . . , z

t1− t0− 1

u0(z)} also spans C. For this, we need to prove that
ztj+1− tjuj(z) for 0≤ j≤m − 1 are in span S′. We shall show
this by induction on j. First, we prove that
zt1− t0u0(z) ∈ span S′. Clearly, zt1− t0u0(z) is a polynomial of
degree t1 in C. Ten, we have zt1− t0u0(z) − ci0− i1u1(z) �

q0(z)u0(z) for some q0(z) ∈ R[z] with a degree less than
t1 − t0 which implies that
zt1− t0u0(z) − ci0− i1u1(z) ∈ span S′. Terefore, we have
zt1− t0u0(z) ∈ span S′. We suppose that zt2− t1u1(z),

zt3− t2u2(z), . . . , ztj− tj− 1uj− 1(z) ∈ span S′ for 1≤ j≤m − 1.
Now, we will show that ztj+1− tjuj(z) ∈ span S′. Clearly,
ztj+1− tjuj(z) is a polynomial of degree tj+1 in C. Ten, we
have ztj+1− tjuj(z) − cij− ij+1uj+1(z) ∈ 〈u0(z),u1(z), . . . ,

uj(z)〉; and ztj+1− tjuj(z) � cij− ij+1 uj+1(z) + m0(z)u0(z)+

m1u1(z) + · · · + mjuj(z), where mi(z) ∈ R[z] and
deg(mi(z))< ti+1 − ti for all i, 0≤ i≤ j. Tis implies that
miui(z) ∈ span S′ for 0≤ i≤ j, which further implies that
ztj+1− tjuj(z) ∈ span S′. Terefore, we have ztj+1− tjuj(z)

∈ span S′ for all j, 0≤ j≤m − 1.
Ten, we prove the linear independence of S′. Let if

possible, there exist αj,r ∈ R such that

z
n− tm − 1

um(z) � αm,0um(z) + αm,1zum(z) + · · · + αm,n− tm − 2z
n− tm − 2

um(z)

+ αm− 1,0um− 1(z) + αm− 1,1zum− 1(z) + · · ·

+ αm− 1,tm − tm− 1− 1z
tm − tm− 1− 1

um− 1(z) + · · ·

+ α1,0u1(z) + α1,1zu1(z) + · · · + α1,t2− t1− 1z
t2− t1− 1

u1(z)

+ α0,0u0(z) + α0,1zu0(z) + · · · + α0,t1− t0− 1z
t1− t0− 1

u0(z).

(18)

Tis implies that zn− tm − 1um(z) � αm(z) um(z) + αm− 1
(z)um− 1(z) + · · · + α0(z)u0(z), where αm (z) � αm,0 + αm,1
z + · · · + αm,n− tm− 2z

n− tm− 2 and αi(z) � αi,0 + αi,1z + · · · +

αi,ti+1− ti − 1z
ti+1− ti − 1 for 0≤ i≤m − 1. Clearly, deg(αm(z))≤ n −

2 and deg(αi(z))≤ ti+1 − 1 for all i, 0≤ i≤m − 1. Ten, by
multiplying equation (18) by c]− im− 1 , we get

z
]− tm− 1

c
]− im− 1um(z) � αm(z)c

]− im− 1um(z). (19)

Ten, the degree of LHS of equation (19) is n − 1 but that
of RHS is atmost n − 2 which is a contradiction. Terefore,
zn− tm − 1um(z) cannot be expressed as a linear combination
of elements of S′. We can apply similar arguments to prove
that none of ztm − tm− 1− 1um− 1(z), ztm− 1− tm− 2− 1um− 2 (z), . . . ,

zt1− t0− 1u0(z) can be expressed as a linear combination of
elements of S′. Terefore, we get that S′ is linearly

independent, and hence, it is a minimal spanning set for C. It
follows that rank(C) � n − t0.

Te following theorem determines all the MDS cyclic
codes of arbitrary length over a fnite chain ring R. □

Theorem 13. A cyclic code C having a length n over R is an
MDS if and only if it is principally generated by a monic
polynomial and Tor0(C) is an MDS cyclic code having
a length n over ⊤ with respect to Hamming metric.

Proof. Let C � 〈u0(z),u1(z), . . . ,um(z)〉 be anMDS cyclic
code having a length n over R such that uj(z), 0≤ j≤m are
polynomials as inTeorem 10. Since C is an MDS, therefore,
|C| � |R|n− dH(C)+1. By using Teorem 7, we have
ps(n]− nim − t0k0− t1k1− ···− tmkm) � ps](n− dH(C)+1) which implies that
nim + t0k0 + t1k1 + · · · + tmkm � ](dH(C) − 1). Tus, we can

Journal of Mathematics 5



conclude that tj � 0 for 1≤ j≤m and im � 0 because im +

k0 + k1 + · · · + km � ] and tm > tm− 1 > · · · > t0 ≥ dH(C) − 1.
Tis implies that C is principally generated by a monic
polynomial and t0 � dH(C) − 1. By usingTeorems 7 and 8,
we have |⊤|(n− dH(Tor0(C))+1) � ps(n− dH(Tor0(C))+1) �

ps(n− dH(C)+1) � ps(n− t0) � |Tor0(C)|. Tus, Tor0(C) is an
MDS cyclic code over the residue feld ⊤.

Conversely, suppose a cyclic code C having a length n

over R is principally generated by a monic polynomial,
say u0(z) as obtained in Teorem 10 and Tor0(C) is an
MDS code over ⊤. Ten, this means that i0 � 0 and

|Tor0(C)| � |⊤|(n− dH(Tor0(C))+1). By using Teorems 7
and 8, we can conclude that |R|n− dH(C)+1 �

ps](n− dH(Tor0(C))+1) � ps](n− t0) � |C|, i.e., C is an MDS cyclic
code over R.

Te following lemma by Sharma and Sidana determines
the Hamming distance of a cyclic code C of length n′pr,
(n′, p) � 1, and r≥ 1 over a fnite chain ring R as given in
reference [27]. □

Lemma 14 (see [27]). Let C be a cyclic code having a length
n � n′pr for (n′, p) � 1 and r≥ 1 over R. Ten, we have

dH(C) �

1, if t0 � 0,

l + 2, if lpr− 1 + 1≤ t0 ≤ (l + 1)pr− 1,

with 0≤ l≤ p − 2,

(i + 1)p
k
, if pr − pr− k +(i − 1)pr− k− 1

+ 1≤ t0 ≤ p
r

− pr− k + ipr− k− 1
,

with 1≤ i≤ p − 1 and 1≤ k ≤ r − 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(20)

We use Lemma 14 mentioned above to determine all
MHDR cyclic codes of length n′pr, (n′, p) � 1 and r≥ 1 over
R in Teorems 15 and 16.

Theorem 15. A cyclic code C of length n′p, (n′, p) � 1 over
a fnite chain ring R is an MHDR code.

Proof. LetC be a cyclic code of length n′p, (n′, p) � 1 overR.
By Lemma 14, we have

dH(C) �
1, if t0 � 0,

t0 + 1, if 1≤ t0 ≤p − 1,
􏼨 (21)

which implies that dH(C) � t0 + 1 � n − rank(C) + 1 for
0≤ t0 ≤p − 1 by using Teorem 12. Hence, a cyclic code of
length n′p, (n′, p) � 1 over R is always an MHDR code. □

Theorem 16. Let C be a cyclic code having a length n �

n′pr, r> 1 over R. Ten, C is an MHDR if and only if
t0 ∈ 0, 1, pr − 1􏼈 􏼉.

Proof. By Lemma 14, we have the following:

(i) for t0 � 0, the Hamming distance of C is 1, which is
the same as n − rank(C) + 1 by using Teorem 12.
So, C is an MHDR code.

(ii) for lpr− 1 + 1≤ t0 ≤ (l + 1)pr− 1 with 0≤ l≤p − 2, the
Hamming distance of C is l + 2. Here, C is an
MHDR if and only if dH(C) � n − rank(C) + 1, i.e.,
l + 1 � t0 by using Teorem 12. Ten, lpr− 1 + 1≤ t0
would imply lpr− 1 + 1≤ l + 1, i.e., l(pr− 1 − 1)≤ 0. It
follows that l(pr− 1 − 1) � 0, which implies l � 0,
since pr− 1 ≠ 1. Ten, C is an MHDR if and only if
t0 � 1.

(iii) for k � r − 1, t0 � pr − p + i, 1≤ i≤p − 1, the
Hamming distance of C is (i + 1)pr− 1. C is an
MHDR code if and only if (i + 1)pr− 1 �

n − rank(C) + 1 � t0 + 1 by using Teorem 12.
Ten, we have pr − p + i � t0 � (i + 1)pr− 1 − 1. It
follows that p(pr− 1 − 1) � (i + 1)(pr− 1 − 1), which
implies that i � p − 1, since pr− 1 ≠ 1. Ten, C is an
MHDR for t0 � pr − 1. It can be easily seen that for
other values of t0, C is not an MHDR code. □

Theorem 1 . Let C be an MDS cyclic code having an ar-
bitrary length over R. Ten, C is also an MHDR code over R.

Proof. Let C be anMDS cyclic code having an arbitrary length
n overR. ByTeorem 13,C is principally generated by amonic
polynomial over R say u0(z) with degrees t0 and i0 � 0 and
Tor 0(C) is also an MDS code over ⊤. Ten, we have

Tor0(C)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � p
s n− dH(C)+1( ). (22)

Also, from Teorem 7, we have

Tor0(C)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � p
s n− t0( ). (23)

Equations (22) and (23) together withTeorem 12 imply
that dH(C) � t0 + 1 � n − rank(C) + 1. Terefore, C is an
MHDR cyclic code over R. □

However, Example 1 shows that the converse of the
abovementioned statement is not true.

Example 1. Let R � Z5 + 5Z5. Let C � 〈5, (z − 1)24〉 be
a cyclic code having a length n � 25 over R. Here,
i0 � 1, i1 � 0, t0 � 0, t1 � 24, rank(C) � 25, and dH(C) � 1.
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By usingTeorem 16, we see that C is an MHDR cyclic code
over R. However, C is not an MDS code, since it is not
principally generated (using Teorem 17).

Example 2. Let R � Z5 + 5Z5. Let C � 〈(z − 1)24〉 be a cy-
clic code having a length n � 25 over R. Here, i0 � 0, t0 � 24,
rank(C) � 1, and dH(C) � 24. By using Teorem 16, we see
that C is an MHDR cyclic code over R. Also, C is an MDS
code, since it is principally generated by a monic polynomial
and |Tor0(C)| � 5 � |Z5|

n− dH(Tor0(C))+1 (using Teorem 13).

Example 3. Let R � Z2 + cZ2 + c2Z2 + c3Z2. Let C � 〈(z2 −

1) + c(z − 1) + c2(z − 1) + c3〉 be a cyclic code having
a length n � 6 over R. Here, i0 � 0, t0 � 2, rank(C) � 4, and
dH(C) � 3. It is principally generated by a monic poly-
nomial and |Tor0(C)| � 24 � |Z2|

n− dH(Tor0(C))+1 � 26− 3+1 �

24, so we see that C is anMDS code over R by usingTeorem
13. Also, from Teorem 15, we see that C is also an
MHDR code.

Example 4. Let R � Z2 + cZ2 + c2Z2 + c3Z2. Let C � 〈c2

(z3 − 1) + c3(z2 − 1)〉 be a cyclic code having a length n � 6
over R. Here, i0 � 2, t0 � 3, rank(C) � 3, and dH(C) � 2. It
is not generated by amonic polynomial, so byTeorem 13, C
is not an MDS code. Also, fromTeorem 15, we see that C is
not an MHDR code.

Example 5. Let R � Z3 + cZ3 + c2Z3. Let C � 〈c2(z2 − 1),

c(z2 − 1)3 + c2(z − 1)〉 be a cyclic code having a length n �

18 over R. Here, i0 � 2, i1 � 1 t0 � 2, t1 � 6, rank(C) � 16,
and dH(C) � 2. Since C is not generated by a monic
polynomial, so by Teorem 13, it is not an MDS code. Also,
from Teorem 16, we see that C is not an MHDR code.

5. Conclusion

In this work, a unique set of generators for a cyclic code
having an arbitrary length over a fnite chain ring with an
arbitrary nilpotency index has been established. Te mini-
mal spanning set and rank of the code have also been de-
termined. Furthermore, sufcient as well as necessary
conditions for a cyclic code having an arbitrary length to be
an MDS code and for a cyclic code having a length which is
not coprime to the characteristic of the residue feld of the
ring to be an MHDR code have been obtained. Some ex-
amples of optimal cyclic codes have also been presented.
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