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Te growth of world population has fueled environmental, legal, and social concerns, making governments and companies
attempt to mitigate the environmental and social implications stemming from supply chain operations. Te state-run Envi-
ronmental Protection Agency has initially ofered fnancial incentives (subsidies) meant to encourage supply chain managers to
use cleaner technologies in order to minimize pollution. In today’s competitive markets, using green technologies remains vital. In
the present project, we have examined a class of closed-loop supply chain competitive facility location-routing problems.
According to the framework of the competition, one of the players, called the Leader, opens its facilities frst. Te second player,
called the Follower, makes its decision when Leader’s location is known. Afterwards, each customer chooses an open facility based
on some preference huf rules before returning the benefts to one of the two companies. Te follower, under the infuence of the
leader’s decisions, performs the best reaction in order to obtain the maximum capture of the market. So, a bilevel mixed-integer
linear programming model is formulated.Te objective function at both levels includes market capture proft, fxed and operating
costs, and fnancial incentives. A metaheuristic quantum binary particle swarm optimization (PSO) is developed via Benders
decomposition algorithm to solve the proposed model. To evaluate the convergence rate and solution quality, the method is
applied to some random test instances generated in the literature. Te computational results indicate that the proposed method is
capable of efciently solving the model.

1. Introduction

In facility location problem—a well-known discrete opti-
mization—a company decides on plants and facilities to be
opened from a given set, open plants to be assigned to each
open facilities, and open facilities to be allocated to each
customer to maximize proft or market capture. For decades,
logistic network design problems that consider facility lo-
cations and product fow have been extensively studied.
Recently, given the increasing pressures from environmental
and social requirements, many manufacturers have adopted
second-hand products and their recovery activities in the
production process. Consequently, the design of reverse
logistics networks have caused concern pertaining to not

only economic aspects but also how such networks can afect
other aspects of human life, such as environment and the
sustainability of natural resources. Implementing reverse
logistics operations requires setting up additional appro-
priate logistics infrastructure for the arising fows of used
and recovered products. Physical location, plants, facilities,
and transportation links need to be chosen to transfer a new
product from manufacturers to end customers and convey
used reverse products from customers to manufacturers or
suppliers for recovery or safe disposal [1].

Furthermore, global concerns about sustainable issues
have grown rapidly, leading all governmental and non-
governmental environmental ofcials and activists into
trying to encourage companies to take into account
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sustainability and environmental issues in their strategic
decision-making [2]. Sustainable development is responsive
to the needs of current generations without being able to
meet future needs [3]. As stated by Zhang and Li, [4],
Mondal and Giri [5], and Zhang et al. [6], governments use
the idea of encouragement or pressure to motivate com-
panies into aiming for lower emissions through utilizing
innovative technologies when manufacturing products.
Such state intervention could be carried out via a federal
agency.

For instance, Temur and Bolat [7] refer to two common
regulatory approaches considered by the US Environmental
Protection Agency. Te frst, standardization in the tech-
nology used in production processes, is a general rule for all
manufacturers. Te second is an optional mode, with
a performance-based mechanism in which the manufac-
turers can use the technology they want. Evidently, in ad-
dition to the two frameworks mentioned, the US
Environmental Protection Agency has recently used sub-
sidies or fnancial incentives for manufacturers to bring new
technologies into action [1]. Indeed, the government is
increasing its environmental concerns by providing such
fnancial incentives. Te idea, in other words, acts the op-
posite way that taxation does. Jung and Feng have in-
vestigated the government’s subsidy design problem for
using green technologies in an evolving industry and the
subsidy’s impact on the environment and social welfare [8].
Tese ideas are not unique to a specifc country or continent.
Tus, besides the United States, some Asian countries, such
as South Korea, China, Taiwan, Philippines, and Tailand,
subsidize using electric vehicles and solar panels in supply
chains [9]. Aldieri and Vinci, in [10], have provided an
overview of pollution control incentives for developing
countries. Moreover, Jia et al. [11] have also elaborated on
the importance and potential impacts of pollution control
incentives on the supply chain. In Zare et al. [12] and Zare
et al. [13], there is a detailed explanation of new technologies,
including environmentally friendly technologies that gov-
ernments can support companies in using.

Te fundamentals of the present research are based upon
the work carried out by Chalmardi and Camacho-Vallejo
[1], and Mondal and Giri [5]. Tey assume that the gov-
ernment subsidizes suppliers, who use green technologies to
manufacture products. Chalmardi and Camacho-Vallejo [1]
propose a bilevel model with the frst level representing
government incentives, while the second represents the
producer frms. End consumers are involved in the second
level of the model. Tere are multiple signifcant diferences
[1, 5] in the present research. Te frst is how to consider
government incentives. It is assumed that the government
ofers subsidies to both competing frms at two decision
levels. Additionally, the type of supply chain is taken into
account; a closed-loop-supply chain (CLSC) includes all the
components involved. Te third is the competition over
obtaining market share by two rival companies, present in
our study but not in previous works. Yet the third diference
makes it possible to strike a balance among subsidies for
clean technology and profts via customer attraction.
Terefore, this paper examines a bilevel leader-follower

model, which looks into government-ofered fnancial in-
centives to the CLSC managers at both levels. Te maximum
objective capture should be used to incorporate location
decisions into leader-follower decisions. Closed-Loop
Supply Chain Management (CLSCM) motivates the actors
involved to integrate cleaner technologies.

Te key contributions are highlighted as follows:

(i) Proposing a new mathematical competitive bilevel
model based in green sustainable CLSCM.

(ii) Incorporating government-ofered fnancial in-
centives meant to encourage two competitive frms
to use green technology in the proposed model.

(iii) Presenting a hybrid model based on quantum bi-
nary PSO and Benders decomposition method

(iv) Generalizing the example of new test examples
based on similar cases in the subject literature to
evaluating the algorithm

2. Literature Review

Based on the existing literature, most studies conducted in
the feld of supply chain management (SCM) have dealt
with multiobjective models, single-level, and supply
chains without considering all layers involved. Besides,
works related to competitive bilevel programming models
that include sustainability issues have received compar-
atively less attention. Tree fundamental aspects should
generally be considered in sustainable decisions: econ-
omy, environment, and community. Tat is to say that
a sustainable company is one capable of doing business
with the purposes of community, environmental, and
economic well-being in its operations [14]. Growing
environmental concerns and their consequent pressures
lead to the development and implementation of sus-
tainable approaches during corporate decision-making.
Terefore, much of recent research focuses on reducing
pollution caused by SCM; such reductions can be made
possible by a greater tendency toward cleaner production
and technologies. As a whole, in SCM issues, measures are
taken based on the location, quantity, and capacity of
facilities, while also taking into account the fow of ma-
terial between locations. In supply chain issues, with the
main approach of sustainability (SSCM), the objective is
commonly to optimize long-term economic proftability,
environmental performance, and social aspects [15].
Nowadays, in light of such aspects as environmental
conditions, the management of the complete consump-
tion cycle of a product is the responsibility of the primary
service provider, meaning it is not possible to fully
manage a supply chain from the point of view of envi-
ronmental conditions without considering how to manage
the products consumed. A CLSC manager is responsible
for the production and product management both. Listeş
and Dekker [16] are pioneers in designing Closed-Loop
Supply Chain Management, followed by too much efort.
A mixed-integer (MIP) biobjective problem is proposed in
[17]. In this model, the objective functions maximize the
responsiveness of the proposed CLSCM network while
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minimizing the total costs. Furthermore, a memetic al-
gorithm is applied to solve the model. Keyvanshokooh
et al. [18] have introduced an MIP model for the multi-
echelon, multiperiod, and multicommodity SCM, in
which a dynamic pricing approach is used to solve the
model. In [19], a mixed-integer nonlinear programming
(MINLP) model is proposed to optimize crucial strategic
and tactical decisions in the CLSCM network. A non-
deterministic biobjective model is developed in [20]. Te
interactive fuzzy solution method is used in the newly
introduced model. Te same model is addressed in
[21, 22]. A comprehensive review of CLSCM has been
done in [23], in which a robust model is proposed for
tackling uncertainties in some cost data, supply param-
eters, or demand elements. Tey propose a more complex
stochastic CLSCM for a multiechelon multiproduct
model. Under such a scenario, the return rate is de-
termined by a fnite (limited) set of feasible possibilities,
with the demands holding unpredictable values. Te
ability of the multiperiod, multiproduct, and multilevel
supply chain model to handle the risks involved in a build-
to-order strategy is confrmed by Keyvanshokooh et al.
[24]. Tey have proposed a proft maximization MILP
CLSCM model by considering fexibility in satisfying
demand and collected returns based on a specifc pro-
cedure. A hybrid uncertainty CLSCM is addressed in [25].
Soleimani and Kannan [26] have studied the deterministic
multilevel multiproduct periodic CLSCM for large-scale
problems. A hybrid method based on genetic algorithm
(GA) and particle swarm optimization (PSO) has been
applied to their proposed model. Yadegari et al. [27] have
considered three transportation modes and propose an
integrated logistics network model. Te memetic algo-
rithm is used to solve the presented model.

Te green supply chain is a slightly novel concept in
CLSCM. Talaei et al. [28] have defned a problem that looks
into environmental issues, such as reduced carbon dioxide
emission rates. A green sustainable location-routing in-
ventory model in CLSCM is presented in [29]. In this model,
economic, social, and environmental conditions as well as
efects have been reviewed. A robust nonlinear pro-
gramming model has been extended by [30] which works on
price, advertisement, and uncertain demands, solved by
a Lagrangian relaxation algorithm.

A review of the green reverse logistic and environmental
aspects has been completed in the survey paper on reverse
logistic models [31]. More environmental factors in
a CLSCM have been focused upon in a model by Giri et al.
[32]. A disruption risk using the transshipment strategy in
CLSCM has been proposed in [33].

Asghari et al. [34] plan an operational and tactical
framework to promote advertising programs in a direct-sales
CLSCM taking into consideration diferent elasticity efects.
In order to impact the proftability of manufacturers posi-
tively, they propose an optimization model for pricing
similar products. Soleimani et al. have developed one of the

most comprehensive mathematical models on the sustain-
ability of CLSCM [35]. In theirs, which involves three
choices of remanufacturing, recycling, and disposing of the
returned items, the distribution facilities act as warehouses
and collection centers.

Te competition is an integral part of supply chain
issues. Recently, the approach was partially included in
the CLSCM literature. For instance, a competitive bilevel
approach to CLSCM design model is presented by
Rezapour et al. [36]. A nondeterministic competitive
CLSCM is designed in [37]. It considers Stackelberg’s
competition between two supply chains based on their
returns, profts, and demands. Such competition between
manufacturers and retailers in the CLSCM was proposed
in [38]. Te purpose of this study is to examine the impact
of manufacturer fairness concerns on CLSC decisions and
profts in the green economy. Fathollahi-Fard et al. [39]
address a static Stackelberg game between nurses, and
patients within the HHCS framework by proposing
a bilevel programming model [40] develops two BiLevel
Stackelberg Models (BLSMs) under special conditions in
the presence of strategic customers. Optimal production
and order quantities and prices are determined by a se-
quential game at both levels. Fathollahi-Fard et al. [41]
have developed a multilevel static Stackelberg game
programming model to design the location allocation of
the real case study of the CLSC. Inspired by the performed
work, this paper aims to defne a competitive, sustainable
CLSC model. In addition to environmental and sustain-
ability issues, the competition problem between two
companies is covered. Indeed, when a company intends to
produce, distribute, or provide a particular service in the
market, it cannot ignore other companies with similar
activities. Tere is, therefore, defnite competition among
these companies as diferent decision-makers. Such hi-
erarchy distinguishes bilevel programming problems
from those of biobjective. In competitive SCM problems,
one of the main factors to yield a company’s success in
gaining market share is the correct location of centers. Te
basic duty of competitive location models is to fnd the
location at which the captured market share is maximized
under the existing conditions. A Stackelberg game leader-
follower model is considered, proposing that location
decisions should be incorporated in leader and follower
decisions by the maximum objective capture in a green
CLSC. In general, in the leader-follower model, a new
competing facility known as the follower is expected to
join the market at some point in the future, trying to
maximize its market share by establishing its facility in the
location. Te leader’s location decision afects the com-
petitor’s location decision. On the other hand, it is ex-
pected that a future competitive entrance would impact
the leader’s choice of site in some way. Te leader’s goal is
to choose a site that will maximize its market share across
the time horizon, including the market share that will be
captured when the rival enters the market [42]. Most
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competitive issues lead to the appearance of bilevel or
multilevel models. Tese problems are entirely diferent
from single-level ones due mostly to structure and so-
lution methods applied.

NP-hardness of bilevel programming problems (even
in the “simplest case linear”) has been established in [43]
and was strongly proved in [44]. Tus, solving such
problems is challenging, which is why many algorithms
have been proposed in the literature. Some, including
[45], have provided global optimization algorithms by
relaxing the inner issue in a convex manner before rep-
resenting the corresponding result using required and
sufcient optimality criteria [46] which suggests a global
optimization method that uses bilevel nonlinear opti-
mization to determine the fexibility test. Multiparametric
programming, which can transform bilevel problem into
a family of single-level optimization problems, was pro-
posed in [47]. Tus, the authors in [45] verify some new
other methods; [48, 49] and [50] particularly consider
algorithms for bilevel linear programming. Te cutting-
plane approach to approximate the lower-level feasible
region has been proposed in [51]; hence, this algorithm is
applicable when the upper-level problem includes con-
tinuous variables while the lower-level problem encom-
passes integer variables. On the other hand, linear
programming duality was used for the opposite case [52],
where the lower-level problem is linear, and the upper-
level problem is an integer. In [53], the authors have
developed a basic enumeration scheme to identify feasible
solutions in the discrete case. Mathieu, has in [54],
proposed a two-level GA-based (GABBA) method to solve
bilevel programming problems (BLPPs). Te same GA-
based method is proposed by Hejazi et al. [55], as the
results are put together for comparison with those of
Gendreau et al. [56]. A developed version of GA has been
proposed by Oduguwa and Roy [57], an elitist algorithm
created to encourage limited asymmetric collaboration
between two players to solve diferent classes of BLPPs
within a single framework.

An applicable Lagrangian-based algorithm [58] and the
metaheuristic method using quantum binary particle swarm
optimization- (QBPSO-) based method [59] were used to
solve a particular class of bilevel problems. Considering the
overall similarity of the model structure presented in [59]
and the computational results of the PSOmethod in [59], the
method can be implemented on P1. However, given the
difculty in solving the generated subproblems in the PSO
method, Benders heuristic decomposition algorithm is ef-
fciently used for some of the following problems. Terefore,
one of the key goals of the present study is to demonstrate
whether it is possible tomodify and adapt the hybrid method
of QBPSO and Benders decomposition to successfully solve
the proposed BLPP.

Summarizing the fndings of the study, data presented in
Table 1 indicate that there is no mathematical model for
a competitive CLSC when government incentives are
in place.

Te remainder of the present paper is organized to
cover the following: Section 3, where the proposed
problem and its related mathematical model are de-
scribed. Section 4 explains a hybrid method. Section 5
incorporates the introduction of the sample test problem
and computational results.

3. Problem Definition

Te considered CLSC to be designed needs fve echelons,
including suppliers, plants, facilities, customers, and recy-
cling centers.Te basic assumptions considered in themodel
formulation are as follows:

(i) Unit material costs are the same for all suppliers in
supply chain.

(ii) Recycling centers and facilities buy returned products
from customers with the diferent and variable price
ofered by the two competing companies.

(iii) All customer demands must be satisfed, and all
returned products must be purchased.

(iv) A single period and single product supply chain is
taken into account.

In this system (Figure 1), the priority of distribution and
planning is as follows: a raw material is delivered from the
supplier to the plant, a primary product from the plant to the
facility, a primary product from the facility to the customer,
a reverse product from the customer to the facility, a usable
reverse product from the facility to the plant, a useless re-
verse product from the facility to the recycling center, and
ultimately a renewed material from the recycling center to
the supplier. All purchased raw materials are made in the
factories, and all reverted goods are frst sent back to the
facilities for product recovery, where some are recovered and
sent back to the factories as a main good. Other checked
reverse products are then sent back from the facilities to the
recycling centers, where they are renewed as useless raw
materials. Afterwards, they are shipped back to the suppliers.
Forward and recovered products, indicating that the
renewed from the facilities are the same as the primary in
terms of customer satisfaction, could meet the demand.

In supply chains, the environmental efect of all factors is
measured against harmful greenhouse gas (GHG) emissions,
such as CO2, CFCs, and NOx. However, the opened plants,
facilities, and recycling centers have environmental efects,
which are taken into account. In this regard, governments
with their responsibilities for environmental protection,
encourage supply chain managers to fght of ecological
damage. Transporting products throughout the network,
opening plants, facilities, and recycling centers, as well as
manufacturing at plants and recycling at recycling centers,
cause and contribute to these contaminants. Against such
a backdrop, the present study looks into government-
granted fnancial incentives to persuade frms into using
cleaner technologies across plants and recycling centers. In
order to promote sustainable networks, the governments
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make those ofers to supply chain managers. As an incentive,
there is a limited budget available.Within such a competitive
market, all players get to have a say, including the leader
company, the follower company, and the customers. It is
convenient to summarize this decision-making into the
following process: In the frst stage, the leader company
decides on the location of plants, facilities, and recycling
centers with types of technologies (ofers to protect the
environment), and fxes the prices for the reverse product. In
the second, taking the leader company’s decision into ac-
count, the follower company decides on the location of the
plants, facilities, and recycling centers (with technologies) to
be opened for new and reverse products. Government in-
centives often lead both leaders and followers to act in the
direction of reducing environmental pollution risks. Finally,
in the third stage, each consumer enjoys the option to meet
his or her demands using the goods of both businesses,
purchasing new items and selling old ones to generate
revenue for both companies. Te decision-making problem
for the leader company pertains to choices that yield the
highest proft, with the knowledge that the follower com-
pany is in a push to maximize proft and attract customers.
As a rule of thumb, it is assumed that when the leader
company makes decision, it does have precise information
on the types of facilities the follower company could ofer,
i.e., a detailed forecast is provided by the follower or for each
decision from the leader which generated the best response.
Moreover, it is assumed that both companies recognize the
fact that the preferences of all customers are based on the
distance, price, and the facilities’ attractiveness (e.g., good
services, spacious centers, restaurants, and accessible
parking lots). Indeed, changes in those varying preferences
could afect the companies’ capture.

3.1. Attractiveness and Distance. At any given time, cus-
tomers do prefer to walk into facilities with higher attrac-
tiveness and shorter distance.

3.2. Price. Customers or sellers usually prefer to sell their
products to the highest bids. Tis preference, indeed, is
related to the frms, rather than facilities; however, the
previous preference has to do with the facilities.

Let i, i′ ∈ I be the index of potential facilities, with j ∈ J

standing as the index for demand points; dij is the distance
from facility i to demand point j, σ2 is a related distance
function, qrL

ij is the price at which the leader purchases the
products from customers, and σ3 is a related price function.
Incorporating the attractiveness of facility to capture de-
mand point, Ai is the attractiveness of potential facility i, σ1

is a related attractiveness function of facility i, and ρL
ij(ρ
′L
ij) is

the attractiveness of facility i for demand point j for new
(reverse) products defned as ρL

ij � (σ1(Ai)/σ2(dij)) and

ρ′
L

ij � (σ1(Ai) + σ3(qrL
ij)/σ

2(dij)). Te rule could then be
afected by the following linear order notation. Indeed, the
preferences are determined by a linear order ≺j on I; relation
i′≺ji for any i, i′ ∈ I means that if two facilities of i and i′ are
opened, customer j prefers facility i. Moreover, for all
i, i′ ∈ I, relation i′≺

j
i means that either i′≺ji or i′ � i. It is

assumed that σ1 and σ3 are linear functions, while σ2 is
a quadratic function. All other symbols used are given in
Appendix A. Te mathematical model of the competitive
green CLSC with government incentive is addressed in the
following (refer to P1):

Suppliers Production Centers Distribution Centers Customers

Collection/Inspection
Centers

Recycling Centers

Disposal Centers

Figure 1: Closed-loop supply chain network.
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L
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Equation (1) presents the leader’s objective function,
with the frst statement showing the leader’s market capture
amount. Te second phrase demonstrates the cost of pur-
chased returned products from the customers by facilities,
while the third, fourth, and ffth terms represent fxed
opening costs of plants, facilities, and recycling centers,
respectively. Te sixth one deals with long-term contract
costs with suppliers. Te transportation costs from suppliers
to plants, plants to facilities, facilities to customers, and
facilities to recycling centers, facilities to plants, and recy-
cling centers to suppliers are exhibited in terms seven to
twelve, respectively. Tirteen to sixteen are the
manufacturing operating costs, as well as those of separating,
recovering, and recycling. Te seventeenth term shows the
profts of returning the reverse products from facilities to
plants, and the eighteenth pertains to the achieved proft by
selling reverse products to suppliers from recycling centers.
Te nineteen concerns the costs of purchasing raw materials
from suppliers by plants. Te next seven summations

measure the environmental efect linked to the shipment of
material from suppliers to plants, plants to facilities (or
facilities to plants), facilities to customers, facilities to
recycling centers, and recycling centers to suppliers beside
the environmental efect related to the manufacturing of the
products in plants and recycling the reverse products in the
recycling centers, respectively. Te twenty-seventh and
twenty-eighth phrases indicate the costs of contamination
caused by manufacturing and remanufacturing of the
products at plants and recycling centers, respectively. Fi-
nally, the last two terms represent the fnancial incentives
obtained by the supply chain manager thanks to using the
installed cleaner technologies at plants and recycling centers,
respectively.

Constraint (2) ensures all raw materials shipped from
suppliers, and reverse products from facilities to plants to be
used during the manufacturing process. Constraint (3)
guarantees the shipment of all manufactured products from
plants to facilities. Constraint (4) shows that every single
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customer demandmust be satisfed. Constraint (5) expresses
the maximum limit of products purchased from suppliers by
opened plants. Constraint (6) shows the limitation of the
manufacturing capacity at an opened plant using a certain
type of technology. Constraints (7) and (8) express the
capacity limit of open facilities for products shipped from
open plants and reverse products from customers, re-
spectively. Constraints (9) and (10) guarantee a unique type
of technology to be used in an opened plant and recycling
center, respectively. Constraint (11) asserts that each cus-
tomer can only select an installed facility. Inequality (12)
means that only one open facility can be chosen based upon
selection rule ≺j on I. Constraints (13) stipulate that each
customer is assigned to exactly one leader’s facility at frst.
Constraints (14) and (15) are the same as constraints (10) and
(11) for reverse products. Constraint (16) guarantees all
purchased reverse products to be shipped from facilities to

plants and recycling centers. Constraints (17) and (18) show
the reverse shipped products from facilities to plants and
recycling centers, respectively. Te recycling capacity cap for
a recycling facility that has been operational and is using
a certain technology is shown in constraint (19). All reverse
products must be transferred from facilities to recycling
centers in order to be employed in the recycling process,
according to constraint (20). Constraint (21) guarantees the
shipment of all recycled products from recycling centers to
suppliers. Constraints (22-24) state a maximum number of
opened facilities, plants, and recycling centers, respectively.
Constraint (25) is the budget at the government’s disposal to
provide fnancial incentives to the plants and recycling
centers in exchange for their use of cleaner technologies.
Constraint (26) indicates the type of variables linked to the
follower’s decision, which the followers’ problem is stated as
follows:
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Te maximum total utility of the follower is stated as
function (27). Constraints (28)–(52) can be considered in
a fashion similar to the leader for the follower. Constraints
(38)–(41) guarantee the selection of an open facility by
a customer according to the given rule; moreover, it shows
that if a facility is opened by the leader, it cannot be opened
by the follower.

Evidently, the above bilevel model involves the following
hierarchy:

P2: max
x

Z1 � c
1
x + d

1
y

s.t. A
1
x + B

1
y≤g

1

x ∈ X

max
y

c
2
x + d

2
y

s.t. A
2
x + B

2
y≤g

2

y ∈ Y,

(53)

where x and y are the upper-level and lower-level variables,
respectively, c1x + d1y, c2x + d2y are upper-level and lower-
level objective functions, and A1x + B1y≤g1 and
A2x + B2y≤g2 are known as upper-level and lower-level
constraints, respectively. In the section to follow, a hybrid
metaheuristic algorithm is applied to solve the model.

4. Solution Method

To solve bilevel problems and their extensions, many al-
gorithms have been discussed, including exact and heuristic
algorithms. Te metaheuristic hybrid algorithm presented
here functions better than other ones in the literature. It can
also be easily implemented by varying software. To properly
implement the algorithm, the structure of model, and its
features need to be clearly understood. Tis model is ex-
pected to be characterized by the following properties:

(a) Te constraints of the upper-level problem do not
have any lower-level variables.

(b) Any feasible solution to the upper-level problem
leads to a feasible solution to the lower-level one.

(c) Te lower-level problem includes only the binary
location variables of the upper-level problem.

Such features pave the way for the QBPSO method to be
used, details of which will be discussed further.

QBPSO is comprehensively applied to solve IP problems.
Te key contribution of the present paper is the way it adapts
the algorithm with the Benders decomposition algorithm to
solve the efciency of the bilevel problem in question. An
overview of both methods is given below and how to im-
plement it will be explained later.

4.1. Preliminaries. Te particle swarm optimization (PSO)
method is a population-based algorithm initially proposed
by Kennedy and Eberhart [60], in which the social behavior
of a fock of birds is simulated, as the birds (particles) show
the candidate solutions to the problem, fying via the search
space to fnd the optimal solution. In each iteration, the
particles move to the desired level by following their best
solutions before the best global position is discovered by
each particle in the swarm.

Should K be assumed as the dimension of the search
space, then for the ith particle, the current position and
velocity vectors are represented as Xi � (x1

i , ..., x
j
i , ..., xK

i )

and Vi � (v1i , ..., v
j
i , ..., vK

i ). Let P besti �

(P best1i , ..., P bestji , ..., P bestKi ) show the best position of the
ith particle and g best � (g best1, ..., g bestj, ..., g bestK) be
the group’s best position recorded so far. Te following
equations will demonstrate how to update the velocity and
position respectively of ith particle at tth iteration to t + 1th
iteration:

Vi(t + 1) � wVi(t) + c1r1 P besti(t)(  − Xi(t) + c2r2(Gbest(t)) − Xi(t)( 

Xi(t + 1) � Xi(t) + Vi(t + 1),
(54)

where w is the inertia weight and c1 and c2 are acceleration
coefcients representing the degree of belief in the particle’s
own experience and the whole swarm experience, re-
spectively. Ten, r1 and r2 are random values within a range
of [0, 1].

4.1.1. Binary PSO (BPSO). Kennedy and Eberhart [60] have
proposed the binary version of PSO (BPSO). In theirs, each
particle is represented by a string of 0 and 1. Particle velocity
is related to the probability with which a slight fip can occur.

Remarkably, the updating equation for velocity remains
unchanged while the equation of updating position changes
as shown in the following:

x
j
i (t) �

1, if u
j

i (t)> S v
j

i (t) ,

0, otherwise,

⎧⎨

⎩ (55)

where u
j
i (t) is a random number belonging to [0,1], and

S(v
j
i (t)) is the velocity value sigmoid function

(1/(1 + exp(−v
j
i (t)))) that specifes the probability of jth bit

of the ith particle, i.e., x
j
i (t) being 0 or 1 at the tth iteration.
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4.1.2. Quantum Binary PSO (QBPSO). An example of
a successful theory is QBPSO proposed by Mirhassani et al.
as a “mechanism of biological evolution” and “simulation of
things [59]. One of the major drawbacks of BPSO is being
unintelligent S(v

j
i ), making it unable to lead the particles

into the promising region of the search space. Furthermore,
parameter selection is difcult. QBPSO, by contrast, over-
comes such challenges. In QBPSO, instead of a sigmoid
function, a population of quantum particle vector Q(t),
which is based on the quantum bit, is used. Remarkably, the
smallest unit that carries information is known as a quantum
bit or “qubit,” which can be either “1” or “0” or in any
extraordinary position. Hence, the quantum particle pop-
ulation is expressed as Q(t) � [Q1(t), ..., Qi(t), ..., QN(t)],

where Qi(t) � [q1i (t), ..., q
j
i (t), ..., qK

i (t)] and 0≤ q
j
i (t)

≤ 1, i � 1, 2, ..., N, j � 1, 2, ..., K represent the probability of
the jth bit for the ith particle to take zero value at the tth

iteration.
In QBPSO, a quantum particle vector

Qi(t) � [q1i (t), ..., q
j
i (t), ..., qK

i (t)] updates the position of
particles by the following rule:

x
j
i (t) �

1, if u
j
i (t)> q

j
i (t),

0, otherwise.

⎧⎨

⎩ (56)

Tus, the following rules are used to help update the
quantum particle vector:

Qgroupbest(t) � α∗Gbest(t) + β∗ (1 − Gbest(t)),

Qselfbest,i(t) � α∗P besti(t) + β∗ 1 − Pbesti(t)( ,

Qi(t + 1) � w∗Qi(t) + c1 ∗Qselfbest,i(t) + c2 ∗Qgroupbest(t),

(57)

in which α, β are control parameters satisfed in relations
α + β � 1, 0≤ α, β≤ 1. Additionally, these parameters are
tuned to control the degree of Qi. w, c1, c2 are PSO pa-
rameters and satisfed in relations w + c1 + c2
� 1, 0≤w, c1, c2 ≤ 1. Te parameters represent the degree of
belief in oneself, local maximum, and global maximum,
respectively. Te general framework of QBPSO for the
proposed bilevel model is described as follows.

4.1.3. Benders Decomposition. To verify the Benders de-
composition, consider the following problem:

minZ � c1x + c2y

s.t. Ax + By � b

x≥ 0, y ∈ Y.

(58)

Te above problem is decomposed in the following
Benders subproblem (SP):

minZ(x) � c1x

s.t. Ax � b − By

x≥ 0,

(59)

whose dual is

maxZ(u) � (b − By)u

s.t. uA≤ c1,
(60)

where u is the dual value corresponding to constraint x≥ 0.
Based on the dual SP mentioned above, the Master Benders
(MP) problem is

min c2y + α

s.t. (b − By)u≤ α ∀u ∈ Ρ⊆℧

(b − By)u≤ 0 ∀u ∈ Β⊆℧

y ∈ Y,

(61)

where Ρ and Β are subsets of extreme points and extreme
rays of ℧, respectively, and ℧ is defned by constraint
uA≤ c1. Benders showed that this algorithm below fnds an
optimal solution after a fnite number of steps, or proves that
none exists Algorithm 1.

In the given algorithm, UB stands for the upper bound
and LB stands for the lower bound.Te constant ε represents
the user-defned optimality gap.

4.1.4. Benders Decomposition with Pareto-Optimal. In this
section, we will try to show how to create the strongest
possible cut.

A cut (b − By)u≤ α corresponding to u1⊆℧, dominates
that corresponding to u2⊆℧, if

(b − By)u2 ≤ (b − By)u1 ∀y ∈ Y. (62)

We say that cut is Pareto-optimal cut if it is not dom-
inated by any other cut. Also, the point u corresponding to
this intersection is called Pareto-optimal.

Now, let ri(S) and Sc be the relative interior and the
convex hull of the set S⊆Rk, then every point y ∈ ri(Yc) is
called the principal or core point of Y. Te following the-
orems help us to create a Pareto-optimal cut.

Theorem 1. Let y0 ∈ ri(Yc) and u be the optimal solution of
the dual SP, then the optimal solution u0 of the following
problem is Pareto-optimal.
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maxZ(u) � b − By0( u

s.t. uA≤ c1

(b − By)u � Z(u).

(63)

Proof. Conversely, suppose that u0 is not Pareto-optimal;
that is, there is a u1, such that ∀y ∈ Y:
(b − By)u0 ≤ (b − By)u1. Now, let ω ∈ Yc, so there exist
y1, y2, ..., yn ∈ Y, λ1, λ2, ..., λn with 0≤ λi ≤ 1 such that
ω � 

n
i�1λiyi, so for every ω ∈ Yc, (b − Bω)u0 ≤ (b − Bω)u1.

And so, y � y that u1 must be the optimal solution of
the Z(u), i.e., u1 ⊆℧(y). It implies that
(b − By0)u1 � (b − By0)u0, and since u1 dominates u0,
there is at least one y∈ Y such that
(b − By)u0 < (b − By)u1. On the other hand, y0 ∈ ri(Yc)

and this means that there exists a scalar θ> 0, in which
ω � θy0 + (1 − θ)y is belong to the Yc. Ten, by multi-
plying θ the equation (b − By0)u1 � (b − By0)u0 and
multiplying (b − By)u0 < (b − By)u1 by (1 − θ) and adding
them gives (b − Bω)u0 > (b − Bω)u1. However, this in-
equality contradicts the hypothesis and shows that our
assumption that u0 is not Pareto-optimal was wrong. Tis
completes the argument. □

Theorem 2. With the same hypothesis as in ofTeorem 1, the
following problem is also Pareto-optimal.

Proof. Te proof is almost identical to Teorem 1 proof.

maxZ(u) � b − By0( u

s.t. uA≤ c1.
(64)

Te above theorems help the Benders master problem
make progress towards the best solution from the frst it-
eration. Tis is shown by the following steps Algorithm 2:
□

4.2. QBPSO for Solving the Proposed BLPP. Te QBPSO
algorithm [61] is adopted to solve mixed-integer linear
BLPPs, where calculating upper and lower levels iteratively
makes it possible to get closer to the optimal solution step by
step. Representation of each solution is done through lo-
cation variables, and other variables can be determined from
these binary variables by solving some of the following
subproblems. Terefore, X and Y are used for the upper and
lower level location variables, respectively (Algorithm 3).

Te pseudocode of the algorithm is given by Figure 2 in
Appendix B. Based on properties (a) and (b), the follower’s
optimal solution always exists for each fxed Xr. Further-
more, feasible solutions are generated for the leader in the
initialization phase, a feature which is preserved during the
algorithm implementation.

4.3. Benders Decomposition Phase. What remains is how to
solve the lower-level problem, which is an NP-hard problem
warranting an efcient solution. By examining the follower
model, it is found that this submodel is a suitable case for the
Benders decomposition algorithm to be used. Te model
does generally have a set of binary variables (i.e.,
eF

s , yF
pt, xF

i , xF
ij , x
′F
ij , zF

kt′
), and when these variables are as-

sumed constant, a simple linear model is obtained. Based on
the follower’s objective function and the type of constraints,
the xF

i variable can be considered continuous 0≤ xF
i ≤ 1.

Hence, the variables eF
s , yF

pt, xF
ij , x′Fij , zF

kt′
are binary, while the

variables xF
i , uF

sp, gF
pt, g′Fkt , vF

pi, qrF
ij , oF

ks, wF
ip, w′Fik are continu-

ous. Terefore, in the decomposition algorithm, one sub-
problem contains continuous variables and constant values
of binary ones (27, 28, 29, 30, 31, 32, 33, 36, 37, 39, 40, 41, 42,
43, 44, 45, and 46); the other subproblem, referred to as the
master problem, consists of binary, and constraint variables
(34, 35, 38, 47, 48, and 49). An optimization constraint at
each iteration of the Benders algorithm is obviously added to
each master problem.

Ρ←Β←∅, UB←∞.
MP: Solve the relaxed MP.
if infeasible then return infeasible.

SP: Use y to solve the dual SP.
if dual SP unbounded
then Β ← Β∪ u{ }, goto MP.
Ρ←Ρ∪ u{ }, LB← c2y + α,
UB←min UB, c2y + Z(u) .
if UB− LB> ε then goto MP.
return x (the dual of u ) and y.

ALGORITHM 1: Benders algorithm.
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Ρ←Β←∅, UB←∞.
Pareto: Find a point y0.
Use y0 to solve the independent problem of theorem 2.
Ρ←Ρ∪ u{ }

MP: Solve the relaxed MP.
if infeasible then return infeasible.

SP: Use y to solve the dual SP.
if dual SP unbounded
then Β←Β∪ u{ }, goto Pareto.
Ρ←Ρ∪ u{ }, LB← c2y + α,
UB←min UB, c2y + Z(u) .
if UB− LB> ε then goto Pareto.
return x (the dual of u ) and y.

ALGORITHM 2: Benders algorithm with Pareto-optimal cut.

Step1: (Initialization)
1.1. Set the value parameters of the QBPSO algorithm and population sizes N, Qi.
1.2. By equation x

j

i (t), randomly generate the initialized value of the leader’s decision variables Xr � (eLrs , yLr
pt , xLr

i , zLr
kt′

) for any
particle; next, in the lower level, the follower’s problem is solved by fxing Xr.
Let Y∗r � (eFrs , yFr

pt , xFr
i , zFr

kt′
)∗ (also (xFr

ij , x′
Fr
ij , zFr

kt′
, uFr

sp, gFr
pt , g′Frkt , vFrpi , qr

Fr
ij , oFrks , wFr

ip , w′Frik )∗) be the optimal solution to the follower
problem. Ten, the leader problem is solved by fxing Xr and optimal values of the lower level (regarding Xr) in the upper-level
problem, while the ftness value of the current position of the rth particle (Xr, Y∗r ) is calculated using F(Xr, Y∗r ), whereF is the leader’s
objective function. Consider the personal best position of the rth particle Pbestr � (Xbestr, Ybestr) equal to (Xr, Y∗r ) and set the
global best position Gbest � (Xbest, Ybest).
Step 2: (Updating Xr) Change Qr and update Xr according to the QBPSO algorithm.
Step 3: (Obtaining the follower’s reaction and determining the particle’s ftness) by fxing new Xr in the lower-level problem, obtain the
follower’s optimal solution Y∗r . Afterwards, in the upper-level problem, the position and ftness value of F(Xr, Y∗r ) is calculated by
fxing (Xr, Y∗r ).
Step 4: (Updating the personal best position) If the ftness value of (Xr, Y∗r ) is better than that of Pbesti � (Xbesti, Ybesti), update
Pbesti.
Step 5: (Updating the global best position) after comparing the ftness value of Gbest with that of all personal best positions, Gbest is
updated with the global best position Gbest � (Xgbest,Ygbest).
Step 6: (Termination) Go to step 2 until the stopping criterion is met.

ALGORITHM 3: Adopted QBPSO algorithm.
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4.3.1. Benders Subproblem. For a given variable
(eF

s , yF
pt, xF

ij , x′Fij , zF

kt′), the Benders subproblem SP(1) is
written as follows:

SP(1): min 
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Figure 2: Pseudocode of the QBPSO algorithm.
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(65)

Given the structure of SP(1), the model certainly serves
as a feasible solution (since SP(1) is a minimization problem,
and the included variables are bounded from below). Te
SP(1) subproblem can be solved and broken down into
a linear subproblem based on two sets of variables

xF
i , uF

sp, gF
pt, vF

pi, wF
ip and g′Fkt , oF

ks, w′Fik . Assuming that θ1, ..., θ17
are dual variables of constraints 27, 28, 29, 30, 31, 32, 33, 36,
37, 39, 40, 41, 42, 43, 44, 45, and 46, respectively, then the
following model is the dual of the Bands subproblem shown
in SPD(θ | e, y, x, x′, z):
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(69)
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in which ∆ set is a polyhedron created from the solution
space of the dual problem. Te solution to problem
SPD(θ|e, y, x, x′, z) can be used to generate the feasible cut
constraint (which is the optimal cut) in the Benders master
problem.

4.3.2. Benders Master Subproblem. D(SPD) set can be
viewed as the extreme point of the dual problem
SPD(θ1, ..., θ17 | e, y, x, x′, z). Te Benders master problem
(MP) could, as a result, be written in the following form:
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(70)

Te master problem is now transformed into
a problem with binary variables eF

s , yF
pt, xF

ij , x
′F
ij , zF

kt′
and

a continuous variable π. Using double values obtained
from the Benders subproblem, a generated cut (51) is
incorporated into the master problem in each iteration.
As the Benders subproblem is always bounded and fea-
sible, the dual subproblem is similarly feasible and
bounded as well based on the strong dual theorem.
Terefore, the added constraint in each iteration is an
optimal cut constraint and merely eliminates the non-
optimal ones. In order to examine the constraints added
to the MP model based on extreme points D(SPD), the
branch-and-cut idea is proposed. Te MP problem is
solved before solving the subproblem to reach the optimal
one in the classical implementation of the Benders

method, meaning that in the MP problem, similar so-
lutions are unnecessarily remet. Terefore, the problem is
solved in a branch and boundary tree as [62]. In each
potential solution of the search tree, the subproblem is
solved, and the optimal generated cut is added if needed.

4.3.3. Pareto-Optimal Cut Generation. Reducing the num-
ber of iterations is of signifcant value in speeding up the
implementation of the Benders method. In this section,
a cutting Pareto-optimum solution method, introduced by
Magnanti and Wang [63], is presented. Let Z be a set of
feasible solutions to the master problem, MP, and opt(P) be
the optimal solution to a problem P, then defne the function
C(eF

s , yF
pt, xF

ij , x′Fij , zF

kt′
, θ1, ..., θ17) as follows:
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Magnanti and Wang introduced the concept of domi-
nant cut within the Benders method. Te cut generated by

the dual solution (θ
1
, ..., θ

17
) is said to be dominant over the
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Furthermore, inequality, at least at one point, is strict.
Tis is called an optimal-Pareto cut if no more dominant cut
is available. Additionally, inequality, at least at one point, is
strict. Tis is called an optimal-Pareto cut if no more

dominant cut is available. To obtain the inferred optimal-
Pareto cut, solving the following scheduling problem is
needed:
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where the polyhedron ∆ is generated from the solution space
of dual problem SPD; also, (e

F

s , y
F

pt, x
F

ij , x
′F
ij , z

F

kt′) ∈ ri(Zc) is
an interior point of the convex hull of Z, named
a central point.

For the frst value of the central point, one can employ
a heuristic method, leading in turn to a feasible solution. Be-
sides, for the iterations to come, the mean of the certain current
point and the active solution to theMP problem is used. Finally,
the following steps are taken to perform the Benders technique:

Step 1: Consider the start point (eF
s , yF

pt, xF
ij , x′Fij , zF

kt′)

and interior point (e
F

s , y
F

pt, x
F

ij , x
′F
ij , z

F

kt′) ∈ ri(Zc) for the
beginning.
Step 2: Solve the MW model based on
(eF

s , yF
pt, xF

ij , x′Fij , zF

kt′) and (e
F

s , y
F

pt, x
F

ij , x
′F
ij , z

F

kt′) ∈ ri(Zc),
and generate the optimal-Pareto cut.
Step 3: Add the Pareto cut produced in step 2 to the
MW, before solving it with the newly added cut.
Step 4: If the diference in the solution of the main Benders
model in two consecutive iterations (current and previous)
is below a given value ε or the number of iterations is equal
to or greater than a defned boundary, then the algorithm
ends. Otherwise, go to the second stage.

Step 5: Te last optimal solution of the subproblem
determines the value of continuous variables, and it is
the last solution to the MWwhich determines the value
of integer variables.

Te fowchart (Figure 3) of the proposed method is given
below. Also, the pseudocode of the algorithms is given by
Figure 4 in Appendix B.

5. Computational Results

Tis section presents the computational experiments used to
assess the performance of the proposed hybrid algorithm in
solving the model, while also ofering some sensitive ana-
lyses. To evaluate the efciency of the method in terms of
convergence rate and solution quality, the method is applied
to random-test instances generated to assess the algorithms’
performance. Computational experimentation is conducted
over a set of 30 instances with varying scales.

Tese instances are generated based on the real-case
instances presented in [2, 64]. Te size of each instance is
reported in Table 2. Te instances are denoted as Ins L
(S, P, T, T′, I, J, K), in which L accounts for the instance
number, and S, P, T, T′, I, J, and K represent the number of
suppliers, plants, producing technology, recycling
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technology, distribution centers, and customers, as well as
the number of recycling centers, respectively.

5.1. Parameter Setting. One of the most practical techniques
to determine the values of parameters in metaheuristic al-
gorithms for the purpose of retaining optimum performance
is the Taguchi method. Hence, to reach the optimal or near-
optimal solution in this step, the efect of three parameters
c1, c2 and α on the QBPSO efciency and capability is
provided. Remarkably enough, based on the relations α +

β � 1 and w + c1 + c2 � 1, setting the values of parameters
c1, c2, and α sufces. For these factors, fve levels are con-
sidered in Table 3. As such, the Taguchi L25 orthogonal array
is selected (due to the number of parameters and their se-
lected levels). Terefore, 25 experiments should be

performed using a combination of levels for each parameter
based on L25.

Te medium size of the instance (5, 10, 10,

10, 12, 30, 10) is used to calibrate the parameters of the
proposed hybrid-based heuristic algorithm. Twenty-fve
particles are regarded as the population size, and the
maximum iteration number of 100 is used for the stopping
criterion. For each set of parameters, ten runs of algorithm
are considered. Te average value of proft for the leader as
the signal-to-noise (S/N) ratio is performed with the best-
known value (S/N) being used when it comes to more ef-
fcient performance.

Consequently, to identify the best optimal combination
of the levels of parameters, the mean value of S/N is
computed for each single level. Te results are presented in
Figures 5–7.

Yes 

No 

Yes
No

No yes 

Generate random swarms

Generate the initialized value of the leader's decision variables Xr

Solving follower's problem to generate follower's decision variables Y*
r

Solving the leader problem to evaluate particle position (F (Xr,Y*
r)) 

Calculate Pbestr = (Xbestr, Ybestr)

Calculate Gbest = (Xbest, Ybest)

Generate random swarms

Change Qr and update leader's 

Obtaining the follower's reaction and determining the particle's fitness

Updating the personal best position Pbesti

Updating the global best position Gbest

Stopping criterion is met

Stop

Benders Phase
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R=1, S=1

Solve the master problem and 
update Benders’ lower bound

Benders’ upper bound-
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Update integer variables and 
solve the subproblem

Subproblem is unbounded?

Update upper bound
Create new Benders cut

Add the cut to the master problem
R = R + 1

Obtain bounded cut

S=S+1

Figure 3: Flowchart of the hybrid PSO-benders decomposition method.
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Te results from the above fgures show that the efects of
the parameter α on QBPSO performance to reach the op-
timal value of a leader’s proft are more signifcant than the

two remaining parameters c1, c2. However, the optimum
level of parameter c1, c2, and α stand at
c1(2) � 0.2, c2(3) � 0.3, and α(1) � 0.15.

Figure 4: Pseudocode of the benders decomposition algorithm.

Table 2: Sizes of the test instances.

Small-scale sizes Medium-scale size Large-scale size
Ins1 (2,3,4,4,3,10,3) Ins11 (5,5,5,5,10,25,5) Ins21 (7,10,10,10,15,35,10)

Ins2 (2,4,4,4,3,12,4) Ins12 (5,5,5,5,12,25,5) Ins22 (7,12,12,12,15,35,12)

Ins3 (2,3,4,4,5,12,3) Ins13 (5,6,6,6,12,25,6) Ins23 (8,12,12,12,15,38,12)

Ins4 (2,3,4,4,5,15,3) Ins14 (5,7,7,7,12,25,7) Ins24 (8,12,12,12,18,40,12)

Ins5 (3,4,4,4,7,15,4) Ins15 (5,8,8,8,12,25,8) Ins25 (8,15,10,10,20,40,15)

Ins6 (3,4,5,5,8,15,4) Ins16 (5,8,8,8,12,28,8) Ins26 (8,17,10,10,20,42,17)

Ins7 (3,4,5,5,8,20,4) Ins17 (5,10,10,10,12,30,8) Ins27 (8,17,10,10,22,45,17)

Ins8 (3,4,5,5,10,20,5) Ins18 (5,10,10,10,12,30,10) Ins28 (8,17,10,10,25,50,17)

Ins9 (3,5,5,5,10,22,5) Ins19 (5,10,10,10,15,30,10) Ins29 (8,18,10,10,27,52,18)

Ins10 (3,5,5,5,10,25,5) Ins20 (5,10,10,10,15,32,10) Ins30 (8,20,10,10,30,55,20)

Table 3: Te levels of parameters.

Parameter
Levels

1 2 3 4 5
α 0.15 0.35 0.55 0.75 0.95
c1 0.1 0.2 0.3 0.4 0.5
c2 0.1 0.2 0.3 0.4 0.5
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Table 4 reports the analysis of variance to determine the
most efective parameters in QBPSO performance. Te
column percentage contribution shows the signifcance of
parameter efects on the PSO-based method performance. It
can be clearly deduced that α is an important and unique
parameter in this method, with a 98.3% share in yield.

Finally, based on the above analysis, a proposed hybrid
algorithm with an optimal combination of parameters is
used to solve the problem being studied.

5.2. Evaluation of the Proposed Algorithm. All generated
instances are carried out by the proposed hybrid algorithm
on a PC Pentium Intel Core i5 with 4GB of RAM. Te
algorithms are coded in AIMMS 3.12 optimization software
with solver CPLEX12. For the most efcient performance of
the hybrid method, diferent swarm sizes are brought in
fromN� 10 to 100 to be allocated to each group of instances.
Te most efcient performance for the algorithm (based on
the highest objective function quality) is within 20 to 55.
Since the samples are randomly generated, the optimal
solution remains unknown. Tus, the bilevel parametric
optimization toolbox (B-POP) [65], Lagrangean relaxation-
based method [58], and hybrid method based on the genetic

algorithm [58] are applied to show the efciency of the
proposed algorithm. Moreover, for each data test, 10 in-
dependent runs are performed due to the randomness in-
volved in the hybrid algorithm, from which the best and
average Gaps of the leader’s objective function are selected
and presented. For readability, a relative percentile Gap is
applied as the following formula:

Gap �
F

H
F
LR orF

G
  − F 

F
× 100, (74)

where FH, FLR, FG denotes the best values of the solution
yielded by the proposed hybrid, Lagrangean relaxation
(upper bound), and genetic-based algorithms, respectively,
for the leader’s proft. F denotes the best lower bound value
solution achieved by the B-POP toolbox. For the termination
condition, the maximum CPU time allowed (in seconds) is
used. Te results obtained for small and medium scales are
given in Tables 5 and 6. Te frst column of the tables
demonstrates the swarm size N (also applied to a number of
the genes in the genetic-based method).Te third and fourth
columns show the best and average gaps between the
proposed method and the B-POP toolbox, respectively. Te
ffth and sixth columns illustrate the best and average gaps
between the Lagrangean relation algorithm and the B-POP
toolbox, respectively. Te seventh and eighth columns show
the best and average gaps between the genetic-based method
and the B-POP toolbox, respectively. Te maximum CPU
time allowed (rounded in seconds) for termination of the
algorithms is reported in the next adjacent columns. Te
time is raised to 7200 sec to catch up with the growing size of
the problem.

For small-size tests, the B-POP is able to fnd the optimal
solution in a reasonable time span. Tis, however, is not
possible for medium-sized tests. Terefore, the most
workable solution is reported with a time limit of
7200 seconds.

Based on Table 5, the proposed hybrid method can
obtain the optimal solution for all small-size cases, except for
Ins7 and 10, and the best optimality gap ranges are between
0 and 0.5, proof of the efciency of the proposed algorithm
for an optimal solution for those instances.

For the same medium cases in particular, e.g., Ins17 to
Ins20, the optimal solution is not available by the B-POP
within the given time constraints. In most of these cases, the
proposed algorithm either introduces a better solution or at
least fnds a solution equal to that of the feasible bound
provided by the B-POP. Tis is evidently confrmed by
nonpositive gaps. However, the gap between the solution
obtained by the B-POP and the objective value of the hybrid
solution remains below 2%.

Based on a general analogy between the proposed
method and Lagrangian and genetic-based methods, the
QBPSO-Benders works relatively faster, and the genetic-
based algorithm is speedier than the QBPSO-Benders.
Hence, the solutions obtained from the proposed method
work better than those from the other two. Generally, the
time required increases as expected but is still reasonable for
this category of problems. For large-scale tests, the B-POP is
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Figure 5: Mean of SNR graph for α.
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Figure 6: Mean of SNR graph for c1.
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Figure 7: Mean of SNR graph for c2.
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incapable of fnding any feasible solutions in a reasonable
time of 7200 seconds.Terefore, only a comparison (Table 7)
is made between the three methods.Te average gap (Gap �

(FH − FLR(FG))/FLR(FG) × 100) between these three
methods and the execution time of the methods have also
been incorporated and reported.

Te results in Table 7 underline the superiority and
quality of the solution obtained fromQBPSO-basedmethod.
In all instances, the proposed algorithm stops earlier than
the specifed time, while the Lagrangian-based method fails
to yield better solutions despite spending longer time. Te
genetic algorithm, however, comes to an end highly quickly.
Tis is explained by the fact that the suggested solution
employs the Benders decomposition methodology, which
takes longer to execute. Instead, the outcome is a superior,
more intelligent answer. Figure 8 compares the time solu-
tions of the methods.

To study the convergence of the proposed method,
a medium-size instance (5,8,8,8,12,28,8) is applied. Te
convergence characteristics are shown in Figure 9.

In this certain instance, 443 seconds are totally needed to
obtain an upper-bound value of 1.83 × 10− 8 by the
Lagrangian-based algorithm, and in 187 seconds, the
genetic-based algorithm is stopped with the objective value
1.63 × 10− 8, while the proposed QBPSO-based algorithm is
able to obtain 1.7 × 10− 8 in 202 seconds, a manifest in-
dication that the QBPSO-based algorithm is a relatively fast,
reliable, and efcient method.

5.3. Sensitive Analysis. Let us now examine the efects of f-
nancial incentives in an example, for which Ins10 is taken. Te
instance is solved by the hybrid algorithm, with the results
showing that the leader uses technology 4 in plant 2 and
technology 3 at recycling center 2 for the purpose of securing
fnancial incentives. Te related environmental impact and f-
nancial incentives of the technologies in the plant and recycling
centers are given in Tables 8–11, respectively:

Although opening and manufacturing costs remain too
high, plant 2 with technology 4 and recycling center 2 with
technology 3 (which the relevant values highlighted in Tables

Table 4: Te analysis of variance.

Parameters Sum of squares Degrees of freedom Mean squares Percentage contribution (%)
α 467.56 4 115.64 98.29
c1 1.72 4 0.61 0.58
c2 3.61 4 1.23 1.13
Total 472.89 12 100

Table 5: Results for the small size.

Prob.
type N Best

gap (H)
Ave gap
(H)

Best
gap (LR)

Ave gap
(LR)

Best
gap (G)

Ave gap
(G)

Ave time
(H)

Ave time
(LR)

Ave time
(G)

Ins1 20 0 0.32 0 0.25 0 0.48 12 25 8
Ins2 20 0 0.65 0 0.79 0 1.19 14 29 11
Ins3 20 0 0.38 0.12 1.44 0.3 1.58 14 28 12
Ins4 20 0 0.45 1.1 2.17 0.57 2.94 17 38 16
Ins5 20 0 0.8 0.54 1.06 1.13 3.84 25 47 20
Ins6 20 0 1.52 1.42 2.43 0.8 2.91 28 64 22
Ins7 20 0.5 1.4 0.87 2.39 1.18 3.11 42 96 35
Ins8 25 0 1.03 1.93 3.21 1.14 4.94 70 162 57
Ins9 25 0 0.67 1.15 2.94 1.63 4.10 85 198 63
Ins10 25 0.4 1.13 1.06 2.57 0.71 3.37 93 373 72

Table 6: Results for the medium size.

Prob.
type N Best

gap (H)
Ave gap
(H)

Best
gap (LR)

Ave gap
(LR)

Best
gap (G)

Ave gap
(G)

Ave time
(H)

Ave time
(LR)

Ave time
(G)

Ins11 25 0 2.45 1.45 3.53 1.78 4.45 104 447 86
Ins12 25 0 1.87 1.77 2.29 1.13 2.87 110 615 95
Ins13 25 −0.39 1.05 2.50 4.15 2.41 5.01 133 739 105
Ins14 30 −0.42 1.14 3.26 5.84 2.02 5.72 320 1026 197
Ins15 30 0 3.21 1.85 5.37 2.46 6.16 415 1618 275
Ins16 30 0 2.58 1.34 3.43 2.51 5.49 440 1750 348
Ins17 40 −0.71 3.13 −0.49 4.16 0.05 3.26 1000 3204 703
Ins18 40 −1.11 2.48 −0.72 5.83 −0.1 1.22 1000 3107 803
Ins19 40 −1.75 −0.07 −1.08 1.64 −0.62 1.84 1000 3320 812
Ins20 40 — — — — — — 1050 3503 880
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Table 7: Results for the large size.

Prob. type N Ave gap
(LR)

Ave gap
(G)

Ave time
(H)

Ave time
(LR)

Ave time
(G)

Ins21 40 −2.01 3.28 1300 4433 931
Ins22 45 −1.36 4.10 1750 4580 1276
Ins23 45 −0.91 2.45 2000 5953 1531
Ins24 45 −2.38 5.54 2150 6209 1639
Ins25 50 −3.01 4.70 3000 7200 1882
Ins26 50 −2.64 5.28 3100 7200 2133
Ins27 50 −3.55 3.72 3300 7200 2223
Ins28 50 −3.03 6.18 3500 7200 2534
Ins29 55 −5.35 8.21 4305 7200 2901
Ins30 55 −5.88 7.84 4920 7200 3120
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Figure 8: Comparison of the time solutions.
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Figure 9: Convergence characteristics of the hybrid method.

Table 8: Parameter Ecypt related to technologies.

Plants Technology
1 1,324,251 1,210,259 1,001,280 1,011,145 1,132,385
2 2,205,764 971,011 1,170,582 843,868 908,028
3 2,047,886 999,257 1,312,687 1,079,444 1,670,673
4 1,127,193 985,624 1,351,648 824,154 1,440,499
5 1,443,283 1,006,654 1,427,250 1,412,013 1,910,309
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8–11) bring along less environmental impacts. Tese cleaner
technologies stand a higher chance of receiving government
incentives.

Now, to show the efectiveness of fnancial incentives, the
leader’s advantages and the follower’s disadvantages are
quantifed when the fnancial incentives are fxed for the

leader. To this end, it is demonstrated how the benefts to the
leader and follower vary if the fnancial incentives to the
leader are halved, i.e., λpt/2 and ηkt′ /2, respectively. Fur-
thermore, Table 12 reported the percentages of follower
losses of market share stemming from the changes in the
fnancial incentives.

Table 9: Parameter Eczkt′ related to technologies.

Recycling center Technology
1 449,911 568,967 454,881 541,543 512,538
2 505,023 455,331 46 ,885 553,317 473,843
3 467,706 549,534 538,545 486,452 495,552
4 498,213 504,099 508,864 528,415 481,231
5 512,833 436,604 532,062 481,310 490,553

Table 10: Parameter λpt related to fnancial incentives of technologies.

Plants Technology
1 5,543,423 6,196,259 5,506,980 5,097,565 5,516,657
2 4,321,218 5,906,65 6,207,582 6,21,809 4,004,216
3 6,323,356 5,689,598 5,742,870 5,307,405 6,698,417
4 4,406,429 4,608,386 5,453,438 4,760,002 5,104,525
5 5,453,498 5,761,697 4,341,876 5,120,003 5,508,064

Table 11: Parameter ηkt′ related to fnancial incentives of technologies.

Recycling center Technology
1 2,298,002 2,874,610 2,501,129 2,475,558 1,155,769
2 1,431,540 2,619,047 2,590,583 1,901,253 2,583,015
3 2,809,621 2,056,593 1,805,080 1,139,651 2,407,293
4 1,904,002 2,650,009 2,841,053 1,990,241 2,243,574
5 1,254,337 1,403,513 2,650,790 1,396,547 2,005,374

Table 12: Te follower’s market share loss due to halved fnancial incentives.

Prob. type Loss(%)(fixed λpt and ηkt′ ) Loss(%)(λpt/2) Loss(%)(ηkt′ /2)

Ins1 74.416 75.909 74.485
Ins2 58.309 58.374 58.333
Ins3 48.416 49.557 48.037
Ins4 55.638 56.440 56.105
Ins5 58.043 60.181 59.542
Ins6 62.906 63.508 63.409
Ins7 58.573 59.007 58.730
Ins8 45.889 46.372 46.221
Ins9 39.226 40.583 39.378
Ins10 68.380 70.116 69.055
Ins11 51.329 51.550 51.526
Ins12 60.534 61.338 61.097
Ins13 51.333 54.275 52.542
Ins14 64.677 64.905 64.810
Ins15 49.002 50.335 49.366
Ins16 58.600 59.608 58.992
Ins17 53.812 53.880 53.812
Ins18 60.079 61.406 60.152
Ins19 57.544 59.265 58.390
Ins20 60.951 61.432 61.277
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Table 12 shows that followers bag more market share
when government incentives to the leader are lowered. In
fact, with the reduction of fnancial incentives, the leader, as
the frst decision-maker, will enjoy less power in choosing
the facility. Rather than incentives, it is the costs that remain
the key deciding factor in choosing facilities with technol-
ogies. Terefore, some plants, facilities, and technologies
which are cost efective with government incentives, may no
longer stay so after incentives are slashed.

Yet the same conclusion cannot be stated for incentives
HCi and LTi, as in the test instances, the efect of HCi proves
greater than LTi.

6. Conclusions

Te present study models bilevel programming on
a competitive, CLSC network design problem. In the
proposed model, the environmental impacts brought
about by establishing or opening plants, recycling centers,
and facilities, as well as the emissions for which product
manufacturing is responsible, recycling (in diferent
centers), and transporting, are all looked into. Assume
that two rival companies produce a commodity simul-
taneously and they decide to open plants, recycling
centers, and facilities. Te best open facilities will satisfy
customer demand based on each customer’s huf rule
preferences. It is presumed that with its fnancial in-
centives, the government aims to encourage competitive
frms to bring in cleaner technologies. Tis new model,
which represents one of the main innovations of the ar-
ticle, can be used in many areas that beneft from gov-
ernment incentives. Another innovation of the article
refers to the problem solution method, which is a heuristic
method.

Since bilevel problems are inherently Np-hard, to solve
the proposed model, a metaheuristic algorithm based on the
quantum PSO method is adopted, for which several single-
level subproblems, some still NP-hard, are solved. Based on
the structure of these subproblems, a Benders de-
composition method is used, while a new rule for cut
generation is implemented at Benders decomposition steps.

To evaluate the algorithm, we try to generalize the ex-
ample of new test examples based on similar cases in the
subject literature. So, thirty instances with varying sizes are
considered.

Computational experiments demonstrate that the pro-
posed method is a fast and efcient algorithm to help solve
instances when the appropriate parameters are employed.
Te results of the computational experiments show that
fnancial incentives positively afect the use of cleaner
technologies in the design of supply chain networks, miti-
gating environmental damage.

Terefore, the proposed model can be used as a fresh
approach to CLSC sustainability, promising signifcant
contribution to tackling environmental implications.

As a novel and innovative strategy, fnancial incentives
can be variable. A three-level model is needed where the
government considers fnancial incentives at the frst level,
and delivers them to the competing companies, at the other

two. Moreover, uncertainty could arise with regard to some
parameters, such as the demand of retailers or the amount of
fnancial incentives required to deploy technologies in
a factory, leading to a more serious issue. Lastly, the La-
grangian method or even the branch and bound method can
be brought forward to implement metaheuristic methods,
such as the PSO.

Appendix

A. The Symbols Used in the Paper

Te used sets, indices, and parameters in the model for-
mulation are as follows:

Sets and Indexes:

S Te set of suppliers (s ∈ S)

P Te set of plants (p ∈ P)

T Te set of technologies (t ∈ T)

L An index used to show the leader company
I Te set of potential locations for facilities (i ∈ I)

J Te set of customers (j ∈ J)

K Te set of recycling centers (k ∈ K)

F An index used to show the follower company

Parameters:

qj Te amount of demand related to the j th customer
hj Te amount of proft earned from each share unit
obtained from the j th customer
cusp Te unit cost of conveying the raw material from
supplier s to plant p

cvpi Te unit cost of conveying the raw material from
plant p to facility i

Ecvpi Environmental impact linked to the distribution
of the raw material from plant p to facility i

cxij Te unit cost of conveying the product from fa-
cility i to customer j

Ecxij Environmental impact linked to the distribution
of the products by facility i to customer j

cbusp Te cost of buying the raw material from
supplier s for plant p

cgpt Te manufacturing cost of the raw material in
plant p by technology t

cg′
kt′

Te manufacturing cost of the recycled product
at recycling center k with technology t′

cri Te operating cost of the unit reverse products in
facility i

cxi Te fxed operating cost of opening facility i

Ecusp Environmental impact linked to the distribution
of primary products by supplier s in plant p

Fp Te fxed operating cost of opening plant p

Fs Te fxed cost of inking contract with supplier s

CEpt Te fxed operating cost of technology t at
plant p

cypt Te fxed operating cost of plant p with tech-
nology t(cypt � Fp + CEpt)

Ecypt Environmental impact related to opening plant
p with technology t

rj Te reverse rate of products from customer j
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λpt Te fnancial incentives in the case of opening
plant p with technology t

c Te percentage at which the reverse products can be
recovered at a facility for shipment to the plant
prL

ij(prF
ij ) Te cost of purchasing the reverse products

from customer j with facility i by the leader
(follower) frm
pcL

ip(pcF
ip) Te price realized by the leader (follower)

frm for selling reverse products by facility i to plant l
czip Te cost of conveying reverse products from
facility i to plant p

czik Te cost of conveying reverse products from
facility i to recycling center k

Eczik Environmental impact linked to conveying re-
verse products from facility i to recycling center k

CEzkt′ Te fxed operating cost of technology t′ at
recycling center k

czkt′Te fxed operating cost of recycling center k with
technology t′(czkt′ � Fk + CEzkt′)
Eczkt′ Environmental impact related to technology t′

at recycling center k

ηkt′ Te fnancial incentives in the case of opening
recycling center k with technology t′

cckt′ Te per-unit recovering cost of reverse products
at recycling center k with technology t′

p′cL
ks(p′cF

ks) Te price realized by the leader (follower)
frm for selling reverse products to supplier s by
recycling center k

qrL
ij(qrF

ij ) Te per-unit price realized by the leader for
purchasing reverse products from customer j at fa-
cility i by the leader (follower)
csks Te cost of conveying reverse products from
recycling center k to supplier s

Ecsks Environmental impact related to the distribu-
tion of reverse products from recycling center k to
supplier s

EMpt Te per-unit cost of emission caused by
manufacturing at plant p with technology t

EMkt′ Te per-unit cost of emission caused by
remanufacturing at recycling center k with technology
t′

Caps Te capacity of supplier s to handle primary
products
Cappt Te capacity of plant p with technology t to
handle primary products
Cai Te capacity of facility i to handle primary
products
Caddt′ Te capacity of recycling center d with tech-
nology t′ to handle primary products
cbusp Te cost of purchasing each unit from supplier s

by plant p

BL(BF) Temaximum fnancial incentives realized by
the government for the leader (follower)
Ai Te attractiveness parameter of facility i

dij Te distance of facility i to customer j

Xmax
(Ymax, Zmax)

Maximum number of opened facilities
(plants, recycling centers)

Decision variables:

eL
s (eF

s ) 1 if supplier s is selected for ofering the ser-
vices by the leader (follower); otherwise, 0
uL
sp(uF

sp) Quantity of the forward products shipped
from supplier s to plant p by the leader (follower) frm
gL
pt(gF

pt) Amount of products manufactured at plant p

with technology t by the leader (follower)
g′Lkt(g′Fkt ) Amount of products recycled at recycling
center k with technology t′ by the leader (follower)
yL
pt(yF

pt) 1 if plant p is used with technology t by the
leader (follower); otherwise, 0
vL
pi(vF

pi) Quantity of the forward products shipped
from plant p to facility i by the leader (follower)
xL

i (xF
i ) 1 if the location i is open by the leader (fol-

lower) as a facility; otherwise, 0
xL
ij(xF

ij ) 1 if customer j chooses facility i used by the
leader (follower); otherwise, 0
x′Lij (x′Fij ) 1 if customer j chooses facility i (for reverse
products) used by the leader (follower); otherwise, 0
zL

kt′
(zF

kt′
) 1 if recycling center k is used with technology t′

by the leader (follower); otherwise, 0
oL
ks(oF

ks) Quantity of the reverse products shipped
from recycling center k to supplier s by the leader
(follower)
wL

ip(wF
ip) Quantity of the reverse products shipped

from facility i to plant p by the leader (follower)
wL

ij(wF
ij ) Quantity of the reverse products shipped

from customer j to plant i by the leader (follower)
w′Lik(w′Fik ) Quantity of the reverse products shipped
from facility i to recycling center k by the leader
(follower)

B. The Pseudo-Code of QBPSO and Benders
Decomposition Algorithms

Pseudocode of the algorithms given in Figures 2 and 4.

Data Availability

Te data used to support the fndings of the study are not
available.
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