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In this study, we defned some new sequence spaces using regular Tribonacci matrix.We examined some properties of these spaces
such as completeness, Schauder basis. We have identifed α−, β−, and c−duals of the newly created spaces.

1. Introduction and Preliminaries

Let us we denote the space of all real or complex sequence by
w. We write the sequence spaces of all convergent, null,
bounded, and absolutely p− summable sequences by c, c0,
l∞, and lp, respectively. Also we will denote the space of all
bounded, convergent, and absolutely convergent series with
bs, cs, and l1, respectively. Te space lp(1≤p<∞) is Banach
space with xp � (􏽐

∞
k�0|xk|p)1/p and c, c0, and l∞ are Banach

spaces with x∞ � supk|xk|.

Let X be a linear metric space. A function q: X⟶ R is
called a paranorm, if

(P1) q(x)≥ 0 for ∈ X

(P2) q(−x) � q(x) for all x ∈ X

(P3) q(x + y)≤ q(x) + q(y) for all x, y ∈ X

(P4) If (λn) is a sequence of scalars with λn⟶ λ as
n⟶∞ and (xn) is a sequence of vectors with q(xn −

x)⟶ 0 as n⟶∞, then q(λnxn − λx)⟶ 0 as
n⟶∞

A paranorm q, where q(x) � 0 implies x � θ, is termed
as a total paranorm, and the combination (X, q) is referred
to as a total paranormed space. It is widely recognized that
the metric of any linear metric space is represented by some
total paranorm (see ([1],Teorem 10.4.2, page 183)). To gain
a better understanding of the theory of paranormed spaces,
you can refer to these valuable articles (see Barlak [2], Zengin
Alp [3], İlkhan et al. [4], and many others).

Let p � (pk) be a bounded sequence of real numbers
such that pk > 0, sup

k∈N
pk � P, and S � max 1, P{ }. For any

ζ ∈ R and k ∈ N, it has been established in [2] that

|ζ|
pk ≤max 1, |ζ|

S
􏽮 􏽯. (1)

Troughout this study we will assume that
p−1

k + (pk
′)−1 � 1 provided that 1< inf pk <P<∞. Maddox

[5, 6] introduced the linear spaces c(p), c0(p), l∞(p), and
l(p) by

c(p) � z � zk( 􏼁 ∈ w: lim
k⟶∞

zk − l
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
pk � 0 for some l ∈ R􏼚 􏼛,

c0(p) � z � zk( 􏼁 ∈ w: lim
k⟶∞

zk

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
pk � 0􏼚 􏼛,

l∞(p) � z � zk( 􏼁 ∈ w: sup
k⟶∞

zk

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
pk <∞􏼨 􏼩,

l(p) � z � zk( 􏼁 ∈ w: 􏽘
k

zk

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
pk <∞

⎧⎨

⎩

⎫⎬

⎭.

(2)

Te linear spaces c(p), c0(p), l∞(p), and l(p) are
complete spaces paranormed by

q∞(z) � sup
k∈N

zk

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
pk/S, iff inf

k∈N
pk > 0, (3)

and
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q(z) � 􏽘
k

zk

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
pk⎛⎝ ⎞⎠

1/S

, (4)

respectively.
Let A � (ark) be an infnite matrix of real or complex

numbers and X, Y be subsets of w. We write
Ar(x) � 􏽐

k

arkxk and Ax � Ar(x) for r, k ∈ N. For a se-

quence space X, the matrix domain of an infnite matrix A is
defned by

XA � x � xk( 􏼁 ∈ w: Ax ∈ X􏼈 􏼉, (5)

which is also a sequence space. We denote with (X,Y) the
class of all matrices A such that A : X⟶Y.

Recently, the literature focused on the creation of new
sequence spaces through the matrix domain and the in-
vestigation of their algebraic and topological properties, and
the study of matrix transformations has expanded. To en-
hance comprehension of the theory concerning sequence
spaces, you can refer to these valuable articles (see Altay et al.
[7], Gürdal [8], Şahiner and Gürdal [9], Gürdal and Şahiner
[10], Et and Esi [11], Aiyub et al. [12], and many others).

Te investigations into Tribonacci numbers were initially
undertaken by a 14-year-old student Mark Feinberg [13] in
1963. Let (tk)k∈N be the sequence of Tribonacci numbers
defned by the third-order recurrence relation tk � tk−1 +

tk−2 + tk−3 for k≥ 3, with initial values t0 � t1 � 1 and t2 � 2.

Hence, the initial elements of the Tribonacci sequence
are 1,1,2,4,7,13,24, . . .. Some fundamental characteristics of
the Tribonacci sequence are as follows:

lim
k→∞

tk

tk+1
� 0, 54368901 . . .

lim
k→∞

tk+1

tk

� 1, 83929 . . .

􏽘

k

n�0
tn �

tk+2 + tk − 1
2

, for k≥ 0.

(6)

Afterwards, there has appeared much research with
some arguments related of Tribonacci sequence (see Bruce
[14], Choi [15], Kılıç [16], Pethe [17], Scott [18], and many
others).

Yaying and Hazarika [19] defned the regular matrix T �

(trk) involving Tribonacci numbers as follows:

trk �

2tk

tr+2 + tr − 1
, if 0≤ k≤ r,

0, if k> r.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(7)

Equivalently,

T �

1 0 0 0 . . . . . .

1
2

1
2

0 0 0 . . .

1
4

1
4

1
2

0 0 . . .

1
8

1
8

1
4

1
2

0 . . .

1
15

1
15

2
15

4
15

7
15

. . .

⋮ ⋮ ⋮ ⋮ ⋮ ⋱

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (8)

Te authors have defned the Tribonacci sequence spaces
X(T) as the set of all sequences z for which their trans-
formations under T, denoted as Tz, belong to the spaces lp
and l∞.

X(T) � z � zk( 􏼁 ∈ w: (Tz) ∈ X􏼈 􏼉, (9)

where X � lp, 1≤p<∞, or X � l∞.

We would like to mention that the sequences z � (zk)

and y � (yk) are related by

yr � (Tz)r � 􏽘
r

k�0

2tk

tr+2 + tr − 1
zk, (10)

for each r ∈ N.

In later times, Yaying and Kara [20] introduced the
Tribonacci sequence spaces X(T) with the following
defnitions:

X(T) � z � zk( 􏼁 ∈ w: (Tz) ∈ X􏼈 􏼉, (11)

where X � c or c0.

In a more recent study, Dağli and Yaying [21] have
defned some new paranormed sequence spaces using reg-
ular Tribonacci matrix.
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Now, we give defnition of new sequence spaces. Let u � (ur) be any fxed sequence of nonzero complex
numbers and p � (pr) be the bounded sequence real
numbers. We have defned the following sequence spaces:

c(T, p, u) � z � zr( 􏼁 ∈ w: lim
r→∞

ur 􏽘

r

n�0

2tk

tr+2 + tr − 1
zk

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

pr

exists
⎧⎨

⎩

⎫⎬

⎭,

c0(T, p, u) � z � zr( 􏼁 ∈ w: lim
r→∞

ur 􏽘

r

k�0

2tk

tr+2 + tr − 1
zk

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

pr

� 0
⎧⎨

⎩

⎫⎬

⎭,

l∞(T, p, u) � z � zr( 􏼁 ∈ w: sup
r∈N

ur 􏽘

r

k�0

2tk

tr+2 + tr − 1
zk

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

pr

<∞
⎧⎨

⎩

⎫⎬

⎭,

l(T, p, u) � z � zr( 􏼁 ∈ w: 􏽘
r

ur 􏽘

r

k�0

2tk

tr+2 + tr − 1
zk

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

pr

<∞
⎧⎨

⎩

⎫⎬

⎭.

(12)

Using (5), we may redefne these sequence spaces by
c(T, p, u) � (c(p, u))T, c0(T, p, u) � (c0(p, u))T, l∞(T, p,

u) � (l∞(p, u))T, and l(T, p, u) � (l(p, u))T.

Remark 1. If we take u � (1, 1, 1, . . .) and p � (1, 1, 1, . . .),
we obtain that the sequence spaces c(T, p, u), c0(T, p, u),
and l∞(T, p, u) reduce to the sequence spaces c(T), c0(T),
and l∞(T), respectively. Also if u � (1, 1, 1, . . .) and pr � p

for all r ∈ N, we obtain that the sequence space l(T, p, u)

reduces to lp(T).

In this paper, we examined some properties of these
spaces such as completeness, Schauder basis. We establish
that the novel sequence spaces c(T, p, u), c0(T, p, u),
l∞(T, p, u), and l(T, p, u) are linearly isomorphic to the
spaces c(p), c0(p), l∞(p), and l(p), correspondingly.

2. Main Results

Now, let us give the completeness of the sequence spaces
c0(T, p, u) and l(T, p, u).

Theorem 2. Te sequence spaces c0(T, p, u) and l(T, p, u)

are complete linear metric spaces paranormed as follows:

q∞(z) � sup
r∈N

ur 􏽘

r

k�0

2tk

tr+2 + tr − 1
zk

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

pr/S

, (13)

and

qp(z) � 􏽘
r

ur 􏽘

r

k�0

2tk

tr+2 + tm − 1
zk

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

pm

⎛⎝ ⎞⎠

1/S

, (14)

respectively, where 0≤pr ≤P<∞. It is obvious that the
spaces c(T, p, u) and l∞(T, p, u) are paranormed spaces with

q∞ when inf pr > 0, c(T, p, u) � c(T) and l∞(T, p, u) �

l∞(T).

Proof. We will demonstrate the claim solely for l(T, p, u)

with the remaining cases following similar proofs. Let z �

(zk), y � (yk) ∈ l(T, p, u), and it follows from Maddox [27,
page 30] that

􏽘
r

ur 􏽘

r

k�0

2tk

tr+2 + tr − 1
zk + yk( 􏼁

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

pr

⎛⎝ ⎞⎠

1/S

≤ 􏽘
r

ur 􏽘

r

k�0

2tk

tr+2 + tr − 1
zk

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

pr

⎛⎝ ⎞⎠

1/S

+ 􏽘
r

ur 􏽘

r

n�0

2tk

tr+2 + tr − 1
yk( 􏼁

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

pr

⎛⎝ ⎞⎠

1/S

.

(15)

Derived from (1) and (15), we ascertain the linearity of
l(T, p, u) concerning scalar multiplication and coordinate-
wise addition. Additionally, it is evident that qp(θ) � 0 and
qp(−z) � qp(z) for all z in l(T, p, u). Based on (1) and (15),
we establish the subadditivity of qp as well as
qp(ζz)≤max 1, |ζ|{ }qp(z) for any ζ ∈ R.

Let zm{ } be any sequence in l(T, p, u) such that qp(zr −

z)⟶ 0 and (ζr
) be any sequence in R such that

(ζr
)⟶ ζ. With the help of the subadditivity of qp, we can

write

qp z
r

( 􏼁≤ qp(z) + qp z
r

− z( 􏼁, (16)

from which one can attain the boundedness of qp(zr) and
the fact that
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qp ζkz
r

− ζz( 􏼁 � 􏽘
r

ur 􏽘

r

k�0

2tk

tk+2 + tk − 1
ζkz

r
− ζzk( 􏼁

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

pr

⎛⎝ ⎞⎠

1/S

≤ ζkz
r

− ζ
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌qp z
r

( 􏼁 + |ζ|qp z
r

− z( 􏼁⟶ 0, (as r⟶∞).

(17)

Tis provides the continuity of scalar multiplication.
Consequently, qp is a paranorm on l(T, p, u). To demon-
strate the completeness of l(T, p, u), let vi􏼈 􏼉 be any Cauchy
sequence in l(T, p, u) such that vi � (vi

0, vi
1, vi

2, . . .) for every
i ∈ N. For a given ε> 0, there exists an integer r0(ε) ∈ N such
that

qp v
i
− v

j
􏼐 􏼑< ε, (18)

for all i, j≥ r0(ε). By utilizing the defnition qp, we have

Tr v
i
− v

j
􏼐 􏼑≤ 􏽘

r

Tr v
i

􏼐 􏼑 − Tr v
j

􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
pr⎛⎝ ⎞⎠

1/S

< ε, (19)

for every i, j≥ r0(ε), and this gives that
Tr(v0), Tr(v1), Tr(v2), . . .􏼈 􏼉 is a Cauchy sequence of real
numbers for every fxed r ∈ N. In view of the fact that R is
complete, we get Tr(vi)⟶ Tr(v), as i⟶∞ for each fxed
r ∈ N. Considering these infnitely numerous limits
T0(v), T1(v), T2(v), . . . , let us establish the sequence
T0(v), T1(v), T2(v), . . .􏼈 􏼉. It arises from (18) that

􏽘

k

r�0
Tr v

i
􏼐 􏼑 − Tr v

j
􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
pr ≤ qp v

i
− v

j
􏼐 􏼑

S
< εS

, (20)

for all fxed k ∈ N and i, j≥ r0(ε). If the limit is taken for
k⟶∞ and j⟶∞ in (20), qp(vi − vj)< ε is obtained.
We consider ε � 1 in (20) so that i≥ r0(1). Afterwards, we
apply Minkowski’s inequality, and we get that

􏽘
r

Tr(v)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
pr⎛⎝ ⎞⎠

1/S

≤ qp v
i
− v􏼐 􏼑 + qp v

i
􏼐 􏼑≤ 1 + qp v

i
􏼐 􏼑,

(21)

for every fxed i ∈ N. Terefore, we have v ∈ l(T, p, u). In
view of the fact that qp(vi − v)< ε for all i≥ r0(ε), we have
vi⟶ v, as i⟶∞. As a result, l(T, p, u) is complete. □

Theorem 3. Te sequence spaces c(T, p, u), c0(T, p, u),
l∞(T, p, u), and l(T, p, u) are linearly isomorphic to the
spaces c(p), c0(p), l∞(p), and l(p) correspondingly where
0<pr ≤ S<∞.

Proof. We will establish the claim exclusively for l(T, p, u)

while the others can be similarly demonstrated. To achieve
this, we need to establish the existence of a linear trans-
formation between l(T, p, u) and l(p) that satisfes the
properties of being injective, surjective, and preserving
paranorm. Let H: l(T, p, u)⟶ l(p) be a transformation
such that Hz � ((Tz)r) for z ∈ l(T, p, u).

Te linearity of H is evident due to the inherent linearity
found in all matrix transformations. Furthermore, the
injectiveness of the transformation H is established by the
fact that if Hz � θ, then it follows that z � θ. If we denote the
sequence z � (zr) for r ∈ N as

zr � 􏽘
r

j�r−1
(−1)

r−jtr+2 + tr − 1
2tj

yj, (22)

for any sequence y � (yr) ∈ l(p), then we have

qp(z) � 􏽘
r

ur 􏽘

r

k�0

2tk

tr+2 + tr − 1
zk

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

pr

⎛⎝ ⎞⎠

1/S

� 􏽘
r

ur 􏽘

r

k�0

2tk

tr+2 + tr − 1
(−1)

k−jtk+2 + tk − 1
2tj

yj

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

pr

⎛⎝ ⎞⎠

1/S

� 􏽘
r

yr

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
pr⎛⎝ ⎞⎠

1/S

� q(z)<∞,

(23)
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from which we get z ∈ l(T, p, u). Terefore, since H is
surjective and preserves the paranorm, this concludes
the proof.

Let us construct Schauder bases for the sequence spaces
c(T, p, u), c0(T, p, u), and l(T, p, u).

A sequence a � (an) in X is recognized a Schauder basis
for X if and only if there is a unique sequence of scalars (αn)

such that g(x − 􏽐
m
n�0αnδn)⟶ 0 as m⟶∞. Ten we

write
x � 􏽘

n

αnan. (24)

We are ready to provide a Schauder basis for the recently
defned paranormed sequence spaces. □
Theorem 4. Let us defne the sequence b(k) � (b(k)

r ) in
l(T, p, u) as follows:

b
(k)
r �

(−1)
r−ktk+2 + tk − 1

2tr

, if r − 1≤ k≤ r,

0, if 0≤ k< r − 1 or k> r,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(25)

where r ∈ N is fxed. Ten

(i) Te set e, b(k)􏼈 􏼉 is a Schauder basis for the space
c(T, p, u) and any z in c(T, p, u) is solely determined
by

z � ζe + 􏽘
k

yk − ζ( 􏼁b
(k)

, (26)

where ζ � lim
r⟶∞

yr � lim
r⟶∞

(Tz)r.

(ii) Te sequence b(k) is a Schauder basis for the spaces
l(T, p, u) and c0(T, p, u) and any z in l(T, p, u) is
uniquely determined by

z � 􏽘
k

ykb
(k)

, (27)

where yk � (Tz)k for each k ∈ N.

Proof. We will establish the claim solely for l(T, p, u) with
the other cases following analogous proofs.

It is obvious that

Tb
(k)

� e
(k) ∈ l(p), (28)

for 0<pk ≤P<∞. Let z ∈ l(T, p, u) and denote

z
[v]

� 􏽘
r

k�0
(Tz)kb

(k)
, (29)

for each nonnegative integer v. By employing (28) and (29),
we derive

Tz
[v]

� 􏽘
r

k�0
(Tz)kTb

(k)

� (Tz)ke
(k)

,

(30)

and

T z − z
[v]

􏼐 􏼑􏼐 􏼑
r

�
0, if 0≤ r≤ v,

(Tz)r, if r> v.
􏼨 (31)

Now, for a given ε> 0 there exists an integer v0 such that

􏽘
r≥v

(Tz)r

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
pr⎛⎝ ⎞⎠

1/S

<
ε
2
, (32)

for all v≥ v0. Tis provides us with the information that

qp z − z
[v]

􏼐 􏼑 � 􏽘
r≥v

(Tz)r

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
pr⎛⎝ ⎞⎠

1/S

≤ 􏽘
r≥v0

(Tz)r

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
pr⎛⎝ ⎞⎠

1/S

<
ε
2
< ε,

(33)

for all v≥ v0. Tis results in a representation like (27). To
show the uniqueness of (27), another representation of (27)
is z � 􏽐

k

y′b(k). Ten we write

(Tz)r � 􏽘
k

yk
′ Tb

(k)
􏼐 􏼑

r
� 􏽘

k

yk
′e(k)

r � yr
′, (r ∈ N). (34)

Terefore, representation of (27) is unique. □

3. The α− , β− , and γ−Duals

In this section, we identifed α−, β−, and c−duals of the
sequence spaces c(T, p, u), c0(T, p, u), l∞(T, p, u), and l

(T, p, u).

Now, we will provide some lemmas for our in-
vestigations. Let A � (ark) represent an infnite matrix of
real or complex numbers and N denote the family of all
fnite subsets of N.

Lemma  (see [22]). Te subsequent statements are valid:

(i) Suppose that 1<pk ≤P<∞ for every k ∈ N. Ten
A � (ark) ∈ (l(p), l1) if there is an integer R> 1 such
that

sup
M∈N

􏽘

∞

k�0
􏽘
r∈M

arkR
−1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

pk
′

<∞. (35)

(ii) Suppose that 0<pk ≤ 1 for every k ∈ N. Ten A �

(ark) ∈ (l(p), l1) if
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sup
M∈N

sup
k∈N

􏽘
r∈M

ark

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

pk

<∞. (36)

Lemma 6 (see [23]). Te subsequent statements are valid:

(i) Suppose that 1<pk ≤P<∞ for every k ∈ N. Ten
A � (ark) ∈ (l(p), l∞) if there is an integer R> 1
such that

sup
r∈N

􏽘

∞

k�0
arkR

−1􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
pk
′
<∞. (37)

(ii) Suppose that 0<pk ≤ 1 for each k ∈ N. Ten A �

(ark) ∈ (l(p), l∞) if

sup
r,k∈N

ark

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
pk <∞. (38)

(iii) Suppose that 1<pk ≤P<∞ for each k ∈ N. Ten
A � (ark) ∈ (l(p), c) if (37) and (38) hold and

lim
r⟶∞

ark � βr, (39)

for all k ∈ N, also holds.

Theorem 7. Let wk � 1/|uk|, and consider the sets Hi,

1≤ i≤ 5, defned by

H1 � ∪
R>1

h � hk( 􏼁 ∈ w: sup
M∈N

􏽘

∞

k�0
􏽘

r∈M
(−1)

r−ktk+2 + tk − 1
2tr

hrR
−1/pk

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
wk <∞

⎧⎨

⎩

⎫⎬

⎭,

H2 � h � hk( 􏼁 ∈ w: 􏽘

∞

r�0
􏽘

∞

k�0
(−1)

r−ktk+2 + tk − 1
2tr

hr

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
wk <∞

⎧⎨

⎩

⎫⎬

⎭,

H3 � ∩
R>1

h � hk( 􏼁 ∈ w: sup
N∈N

􏽘

∞

r�0
􏽘
k∈N

(−1)
r−ktk+2 + tk − 1

2tr

hrR
1/pk

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
wk <∞

⎧⎨

⎩

⎫⎬

⎭,

H4 � ∪
R>1

h � hk( 􏼁 ∈ w: sup
M∈N

􏽘

∞

k�0
􏽘

r∈M
(−1)

r−ktk+2 + tk − 1
2tr

hrR
−1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

pk
′

wk <∞
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

H5 � h � hk( 􏼁 ∈ w: sup
M∈N

sup
k∈N

􏽘
r∈M

(−1)
r−ktk+2 + tk − 1

2tr

hrR
−1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

pk

wk <∞
⎧⎨

⎩

⎫⎬

⎭.

(40)

Ten,

(i) [c(T, p, u)]α � H1 ∩H2 and [c0(T, p, u)]α � H1,

(ii) [l∞(T, p, u)]α � H3 and [l(T, p, u)]α �

H4, 1<pk ≤P<∞,

H5, 0<pk ≤ 1.
􏼨

Proof. We will establish the claim exclusively for l(T, p, u)

while the others can be similarly demonstrated. In view of
(22), we see the equality

hrxr � 􏽘
r

k�r−1
(−1)

r−ktk+2 + tk − 1
2tr

hryk � (A(t)y)r (41)

holds for h � (hk) ∈ w, where A(t) � (at
rk) is triangle de-

fned as

a
t
rk �

􏽘

r

k�r−1
(−1)

r−ktk+2 + tk − 1
2tr

hr, r − 1≤ k≤ r,

0, otherwise.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(42)

Terefore, hx � (hkxk) ∈ l1 whenever x ∈ l(T, p, u) if
A(t)y ∈ l1 whenever y ∈ l(p). Tis indicates that
h � (hk) ∈ [l(T, p, u)]α if A(t) ∈ (l(p), l1). Hence, by
employing Lemma 5, we observe that
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∃R> 1 ∋ sup
M∈N

􏽘

∞

k�0
􏽘
r∈M

(−1)
r−ktk+2 + tk − 1

2tr

hrR
−1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

pk
′

wk <∞, 1<pk ≤P<∞,

sup
M∈N

sup
k∈N

􏽘
r∈M

(−1)
r−ktk+2 + tk − 1

2tr

hrR
−1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

pk

wk <∞, 0<pk ≤ 1.

(43)

Tis indicates that

[l(T, p, u)]
α

�
H4, 1<pk ≤P<∞,

H5, 0<pk ≤ 1.
􏼨 (44)

□

Theorem 8. Let wk � 1/|uk|, and consider the sets Hi,

6≤ i≤ 10, defned by

H6 � ∪
R>1

h � hk( 􏼁 ∈ w: 􏽘
∞

k�0

hk

tk

−
hk+1

tk+1
􏼠 􏼡

tk+2 + tk − 1
2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
R

−1/pk wk <∞
⎧⎨

⎩

⎫⎬

⎭,

H7 � ∩
R>1

h � hk( 􏼁 ∈ w: 􏽘
∞

k�0

hk

tk

−
hk+1

tk+1
􏼠 􏼡

tk+2 + tk − 1
2

R

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

1/pk

wk <∞
⎧⎨

⎩

⎫⎬

⎭and
tk+2 + tk − 1

2tk

hk􏼠 􏼡R
1/pk wk􏼨 􏼩 ∈ c0,

H8 � ∩
R>1

h � hk( 􏼁 ∈ w: 􏽘
∞

k�0

hk

tk

−
hk+1

tk+1
􏼠 􏼡

tk+2 + tk − 1
2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
R
1/pk wk <∞

⎧⎨

⎩

⎫⎬

⎭and
hk

tk

−
hk+1

tk+1
􏼠 􏼡

tk+2 + tk − 1
2

R
1/pk wk􏼨 􏼩 ∈ l∞,

H9 � ∪
R>1

h � hk( 􏼁 ∈ w: 􏽘
∞

k�0

hk

tk

−
hk+1

tk+1
􏼠 􏼡

tk+2 + tk − 1
2

R
−1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

pk
′

wk <∞
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
and

tk+2 + tk − 1
2tk

hk􏼠 􏼡

pk
′

wk

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
∈ l∞,

H10 � h � hk( 􏼁 ∈ w:
hk

tk

−
hk+1

tk+1
􏼠 􏼡

tk+2 + tk − 1
2

􏼠 􏼡

pk

wk􏼨 􏼩 ∈ l∞􏼨 􏼩and
tk+2 + tk − 1

2tk

hk􏼠 􏼡

pk

wk􏼨 􏼩 ∈ l∞.

(45)

Ten,

(i) [c(T, p, u)]β � H6 ∩ cs and [c(T, p, u)]c � H6 ∩ bs,

(ii) [c0(T, p, u)]β � [c0(T, p, u)]c � H6,

(iii) [l∞(T, p, u)]β � H7 and [l∞(T, p, u)]c � H8,

(iv) [l(T, p, u)]β � [l(T, p, u)]c �
H9, 1<pk ≤P<∞,

H10, 0<pk ≤ 1.
􏼚

Proof. We will establish the claim exclusively for l(T, p, u)

while the others can be similarly demonstrated. We will only
demonstrate the assertion for l(T, p, u) with the remaining
cases being proven in a similar manner.

For h � (hk) ∈ w, we can write the following equation:

􏽘

r

k�0
hrxr � 􏽘

r

hr

k�0
􏽘

n

k�r−1
(−1)

r−ktk+2 + tk − 1
2tr

yk
⎡⎣ ⎤⎦

� 􏽘
r−1

k�0

hk

tk

−
hk+1

tk+1
􏼠 􏼡

tk+2 + tk − 1
2

yk +
tr+2 + tr − 1

2tr

yrhr � (D(t)y)r, r ∈ N,

(46)
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where D(t) � (dt
rk) is a triangle defned as

d
t
rk �

hk

tk

−
hk+1

tk+1
􏼠 􏼡

tk+2 + tk − 1
2

, 0≤ k< r,

tr+2 + tr − 1
2tr

hr, k � r,

0, otherwise.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(47)

In the light of (46), we see that hx � (hkxk) ∈ cs

whenever x ∈ l(T, p, u) if D(t)y ∈ c whenever y ∈ l(p).

Tis indicates that h � (hk) ∈ [l(T, p, u)]β if D(t) ∈ (l

(p), c). Hence, by employing Lemma 6, we observe that

􏽘

∞

k�0

hk

tk

−
hk+1

tk+1
􏼠 􏼡

tk+2 + tk − 1
2

R
−1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

pk
′

wk <∞, 1<pk ≤P<∞,

tk+2 + tk − 1
2tk

hk􏼠 􏼡

pk
′

wk

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
∈ l∞, 1<pk ≤P<∞,

(48)

and

hk

tk

−
hk+1

tk+1
􏼠 􏼡

tk+2 + tk − 1
2

􏼠 􏼡

pk

wk􏼨 􏼩 ∈ l∞, 0<pk ≤ 1,

tk+2 + tk − 1
2tk

hk􏼠 􏼡

pk

wk􏼨 􏼩 ∈ l∞, 0<pk ≤ 1.

(49)

Tis indicates that

[l(T, p, u)]
β

�
H9, 1<pk ≤P<∞,

H10, 0<pk ≤ 1.
􏼨 (50)

One can derive the c-dual of the space l(T, p, u) using
a comparable method. In order to prevent redundant rep-
etition, we will forgo presenting the proof. □

4. Conclusion

Maddox [5, 6] introduced the linear spaces c(p), c0(p),
l∞(p), and l(p). Recently, the literature focused on the
creation of new sequence spaces through the matrix domain
and the investigation of their algebraic and topological
properties, and the study of matrix transformations has
expanded. Yaying and Kara [20] introduced the Tribonacci
sequence spaces. In this study, we defned some new se-
quence spaces using regular Tribonacci matrix. We exam-
ined some properties of these spaces such as completeness,
Schauder basis. We have identifed α−, β−, and c−duals of
the newly created spaces. In the future, new sequence spaces
can be defned by taking this study into consideration.
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