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Te variational inequality framework holds signifcant prominence across various domains including economic fnance, network
transportation, and game theory. In addition, a novel approach utilizing a neural network model is introduced in the current work
to address a box constrained variational inequality problem. Initially, the original problem is reformulated into a nonsmooth
equation, following which the neural network model is meticulously devised to tackle this reformulated equation. Tis study
comprehensively investigated inherent characteristics and properties of this neural network model. In addition, employing the
Lyapunov function method, stability analysis of the neural network model proposed is rigorously demonstrated in the Lyapunov
sense. Furthermore, the efcacy of the proposed technique is substantiated through numerical simulations, providing empirical
support for its applicability and efectiveness.

1. Introduction

Variational inequalities serve as a comprehensive framework
for examining numerous optimization problems and possess
signifcant applications across various domains such as
economics, engineering, and transportation, among others,
as detailed in the monograph [1] and associated literature.
As elucidated in [2], variational inequalities represent
a contemporary extension of variational principles, with
their historical roots tracing back to seminal works by Euler,
Lagrange, and the Bernoulli siblings. Te concepts and
methodologies inherent in variational inequalities are cur-
rently being employed across a spectrum of scientifc dis-
ciplines, showcasing their efcacy and innovation, as
evidenced by scholarly contributions [3–10].

In this article, we study a box constrained variational
inequality problem (BVIP(l, u, F)) as follows: fnding x ∈ X

and thus.

(y − x)
T
F(x)≥ 0, ∀y ∈ X, (1)

where F: Rn⟶ Rn is continuously diferentiable,
X � x ∈ Rn | l≤ x≤ u{ }, l � (l1, l2, · · · ln)T, li ∈ R, u � (u1, u2,

· · · un)T, ui ∈ R, and li < ui, i � 1, 2, · · · n.
A number of numerical methods including interior point

methods [11], Newton methods [12, 13], penalty methods
[14], and extragradient methods [15–17], have been pro-
posed for solving variational inequality problems. Numerical
methods are predominantly approached from a discrete time
standpoint, owing to their practical feasibility for imple-
mentation on digital computers.

Te utilization of neural networks in addressing varia-
tional inequalities, especially within engineering applica-
tions demanding real-time solutions, has garnered
signifcant attention in recent years, as discussed extensively
in the literature [18–31]. ANNs ofer promising prospects
due to their potential for efcient hardware implementation
and the ability to provide real-time solutions, which may be
challenging to achieve with traditional numerical algo-
rithms, particularly for high-dimensional and dense prob-
lem settings. Various neural network architectures and
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methodologies have been proposed to tackle diferent as-
pects of variational inequality problems. For instance, in
[24], the authors introduce a novel neural network approach
for addressing constrained variational inequalities, which
demonstrates stability properties under Lyapunov sense.
Similarly, in [25] shows a projection neural network for
addressing variational inequalities, with proven stability
under certain conditions. Moreover, for mixed variational
inequalities, the author proposes a proximal projection
neural network method in [26], showcasing convergence
properties under Lipschitz continuity conditions. Tese
studies highlight the versatility and efcacy of neural net-
works in addressing diverse variational inequality problem
formulations. Despite the advancements, it is acknowledged
that most existing neural network approaches focus on
general variational inequality problems and may not fully
exploit the specifc structure of BVIP(l, u, F) formulations.
Tis presents an opportunity for further research to develop
specialized neural network architectures tailored to exploit
the unique characteristics of box-constrained variational
inequality problems, potentially leading to enhanced ef-
ciency and efectiveness in solving such problems.

Te introduction of specialized neural networks tailored
for addressing time-varying equations has signifcantly
advanced the feld, as evidenced by the Zeroing Neural
Network (ZNN) model discussed in [32, 33]. Te ZNN
model ofers exponential convergence towards theoretical
solutions of time-varying equations, representing a notable
improvement over existing methods. Building upon this
foundation, subsequent research eforts have yielded valu-
able outcomes, as documented in various studies such as
[34–37]. One limitation of the classic ZNN is its reliance on
infnite time cost for convergence to the theoretical solution.
To address this limitation, some new Neural Networks are
introduced in [38]. Moreover, they have been shown to be
efective in tackling nonconvex Quadratic Programming
(QP) problems [39]. However, as computational scales in-
crease, the time required to obtain results becomes pro-
hibitive, necessitating even faster convergence speeds for
practical applications. In response to this need, a neural
network with varying parameters was developed in [40–42].
Tis innovation represents a signifcant advancement in
accelerating convergence speeds, addressing the challenges
posed by larger computational scales. In addition, in [43],
the authors integrate a redefned error monitor function into
the neural network design.Tis integration enhances control
over mobile redundant manipulators during tracking tasks,
ofering superior performance in terms of overshoot, ro-
bustness, and convergence speed compared to traditional
neural networks, as demonstrated in [44]. Tese advance-
ments underscore the potential of specialized neural net-
works in addressing complex dynamic equations and hold
promise for future research endeavors in the feld.

Te paper introduces a novel neural network method
aimed at solving (1). Stability analysis of the neural network
proposed is shown on the basis of Lyapunov’s sense, and the
convergence of the solution sequence is guaranteed. Com-
pared to existing studies, the article’s main contributions can
be summarized as follows:

(1) Utilizing the structure of BVIP(l, u, F), the paper
provides a nonsmooth equation formulation for
solving the problem defned by (1). Subsequently,
a neural network method is proposed to tackle (1).

(2) In contrast to the method proposed in [6] and the
classical neural network method described in [31],
the proposedmethod facilitates faster convergence of
the solution trajectory towards the equilibrium
point. Tis improvement is evidenced by the nu-
merical experiments conducted in Section 5.

(3) Unlike neural networks relying on projection
functions as discussed in [6], our neural network
in this paper operates independently of estimating
any parameters, simplifying the computational
process.

Overall, these contributions highlight the efectiveness of
the neural network put forward in addressing BVIP(l, u, F),
ofering advancements over existing approaches and dem-
onstrating promise for future applications.

Te structure of the current study is presented: Section 2
gives preliminaries necessary for understanding the sub-
sequent sections. Section 3 introduces a neural network
model for a nonsmooth equation. Section 4 establishes the
consistency and stability analysis results. Section 5 conducts
several numerical tests.

Te notations specifed below will be utilized consis-
tently throughout this paper. AT is used to denote the
transpose of a matrix A, 〈x, y〉 to represent the inner
product of x and y in vector space, ‖z‖ denotes the Euclidean
norm for any z ∈ Rn. In addition, for φ: Rn⟶ R∪ ±∞{ },
∇φ(x) signifes the gradient of φ at x. Furthermore, for
ϕ: Rn⟶ Rm, Jϕ(x) represents the Jacobian matrix of ϕ
evaluated at x. Tese notations will remain consistent
throughout the entirety of this paper to ensure clarity and
coherence.

2. A Neutral Network Based on
Nonsmooth Equation

A neutral network based on a nonsmooth equation for-
mulation of BVIP(l, u, F) is proposed in the current section.
Some foundational concepts such as P matrix, P0 function,
uniform P function, Clarke subdiferentiation, isolated
equilibrium point, Stability in the sense of Lyapunov, ex-
ponential stability and asymptotical stability are sourced
from [1, 45, 46].

We adopt a nonsmooth equation formulation of
BVIP(l, u, F) from [47]. First, we introduce ψ: Rn⟶ R+

defned by

ψ(a, b) � min2 [− ϕ(a, b)]+, a , (2)

where

ϕ(a, b) �

������

a
2

+ b
2



− (a + b), (3)

with ϕ: R2⟶ R being called the F-B function [48].
Ten, Ψ,Φ: Rn⟶ Rn can be defned by
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Φi(x) �

���������������

ψ ui − xi, − Fi(x)( 



� min − ϕ ui − xi, − Fi(x)(  +, ui − xi ,

Ψi(x) �

�������������

ψ xi − li, Fi(x)( 



� min − ϕ xi − li, Fi(x)(  +, xi − li ,

(4)

where i � 1, 2, . . . , n. We also introduce G: Rn⟶ Rn de-
fned by

Gi(x) �

��������������

Ψi(x)
2

+Φi(x)
2



�

�������������������������

xi − li( 
2

+ ϕ ui − xi, − Fi(x)( 
2



, xi < li andFi(x)< 0,

− ϕ xi − li, Fi(x)( , li ≤xi ≤ ui andFi(x)≥ 0,

− ϕ ui − xi, − Fi(x)( , li ≤xi ≤ ui andFi(x)< 0,

xi − ui, xi > ui andFi(x)< 0

li − xi, xi < li andFi(x)≥ 0,
������������������������

ui − xi( 
2

+ ϕ xi − li, Fi(x)( 
2



, xi > ui andFi(x)≥ 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)

with i � 1, 2, . . . , n.
Consider

f(x) �
1
2
‖G(x)‖

2
, (6)

where

G(x) �

��������������

Φ1(x)
2

+ Ψ1(x)
2



⋮
��������������

Φn(x)
2

+ Ψn(x)
2



⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (7)

According to Teorem 2.2 in [47], f(x) is nonnegative,
and f(x) � 0 is equivalent to that x ∈ Rn is a solution of
BVIP(l, u, F). Moreover, if f is continuously diferentiable
when F is continuously diferentiable.

Utilizing the fastest descent method for BVIP(l, u, F), we
now delve into a neural network model of the frst order as
follows:

d(x(t))

dt
� − τ∇f(x), x t0(  � x0, (8)

where t0 refers to the initial time and τ represents a factor
that determines the step size in simulation. If τ is greater
than 1, it suggests that a larger step can be utilized during the
simulation process. In addition, Figure 1 shows the block
diagram framework of (8).

3. Consistency and Stability of (8)

We focus on consistency analysis and stability analysis of the
neutral network (8) proposed in this part.

We begin by examining the connection between the
equilibrium point of (8) and the solutions to BVIP(l, u, F).

Theorem 1. Suppose that x∗ represents a solution of
BVIP(l, u, F). In such a case, x∗ also serves as an equilibrium
point of (8). Conversely, if x∗ serves as an equilibrium point of
(8) and all elements V ∈ zcG(x∗) are nonsingular, or if li and
ui, i � 1, 2, . . . , n are fnite and F satisfes the properties of
a P0 function, in what follows, x∗ serves as a solution to
BVIP(l, u, F).

Proof. If x∗ is a solution of BVIP(l, u, F), according to [47],
f(x∗) � 0, implying G(x∗) � 0. Denote V be an element in
zcG(x∗), then according to [49], the following can be
acquired:

∇f x
∗

(  � V
T
G x
∗

(  � 0, (9)

which means that x∗ is an equilibrium point of (8). Con-
versely, if ∇f(x∗) � 0 and all V ∈ zcG(x∗) are nonsingular,
then from (9) we have G(x∗) � 0, hence f(x∗) � 0, in-
dicating that x∗ represents a solution of BVIP(l, u, F). If F is
a P0 function, the conclusion follows directly fromTeorem
4.2 in [47]. □
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Next, we study the trajectory of the solution to (8).

Lemma  . Te function f(x(t)) decreases or remains con-
stant as the variable t increases.

Proof. Since

df((x(t)))

dt
� ∇f(x(t))

Td(x(t))

dt
� ∇f(x(t))

T
(− τ∇f(x(t))) � − τ‖∇f(x(t))‖

2 ≤ 0. (10)

Terefore, the function f(x(t)) decreases or remains
constant as the variable t increases. □

We next defne the level set of the starting point x0 as

Lf x0(  � x ∈ R
n ∣ f(x)≤f x0(  . (11)

Theorem 3. For an arbitrary initial state x0 ∈ Rn

(i) Tere exists exactly one maximal solution x(t),
t ∈ [t0, τ(x0)) and τ(x0)>T0;

(ii) If X is bounded or F satisfes the uniform P property,
then τ(x0) � +∞.

Proof. (i) It can be found that∇f(x) is continuous, hence by
Teorem 2.5 in [50], we know that the maximal solution
remains unique. (ii) If otherwise, we have τ(x0)< +∞, and
by Teorem 2.6 in [50], limt⟶τ(x0)‖x(t)‖ �∞, let

τ0 � inf s≥ 0 ∣ s< τ x0( , x(s) ∈ L
c
f x0(  <∞, (12)

where Lc
f(x0) � Rn\Lf(x0). By the continuity of f, Lf(x0)

refers to a closed set. If X is bounded or F satisfes the
uniformP property, then byTeorem 3.2 in [51], the level set
is bounded, so Lf(x0) is a bounded closed set. Ten, we get
x(τ0) ∈ Lf(x0) and τ0 < τ(x0). Moreover, this means that
a s ∈ (τ0, τ(x0)) exists that

f(x(s))>f x0( >f x τ0( ( , (13)

which, by Lemma 2, contradicts that f(x(·)) is non-
increasing regarding t. As a result, τ(x0) � +∞. □

Inspired by Corollary in 4.3 in [50], the following result
can be obtained.

Theorem 4. Let x(t) ∈ [t0, τ(x0)) be the unique maximum
solution of the diferential equation model (8), τ(x0) � +∞
and x(t){ } is bounded, then

lim
t⟶∞
∇f(x(t)) � 0. (14)

Furthermore, if x∗ denotes the convergence point of
trajectory x(t) and all elements V ∈ zcG(x∗) are non-
singular for, then x∗ is a solution of BVIP(l, u, F).

Proof. According to Lemma 2, f(x(t)) has a lower bound.
And the unconstrained minimization problem (6) corre-
sponding to model (1) is the steepest descending dynamic
model. Terefore, according to Corollary 4.3 in [50], the
analysis of this model shows that the trajectory of (8) will
reach a steady state, and the conclusion can be established.

Furthermore, if x∗ is the convergence point of the
trajectory x(t), limt⟶∞x(t) � x∗. According to (14), it can
be concluded that ∇f(x∗) � 0. Since all V ∈ zcG(x∗) are
nonsingular, the conclusion can be drawn from
Teorem 1. □

Remark 5. If li and ui, i � 1, 2, . . . , n are fnite, then non-
singularity of elements in zcG(x∗) in Teorem 4 can be
replaced by P0 property of function the F.

Invoking from [46, 50], we provide some stability results
for (8).

–τ f

*

∂G(x)

G(x)

Figure 1: Block diagram of (8).
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Theorem 6. Let x∗ be an isolated equilibrium point of (8), we
have for (8), x∗ is asymptotically stable.

Proof. At frst, it is demonstrated that f(x) serves as
a Lyapunov function over the set Ω∗, a neighborhood of x∗,
for equation (8). Using the defnition of f(x), it is non-
negative across Rn. Because x∗ is isolated, f(x∗) � 0 and for
any x ∈ Ω∗/ x∗{ }, f(x)> 0. Next, we verify the second
condition in the defnition of a Lyapunov function. It can be
found that:
df(x(t))

dt
� ∇xf(x(t))

Td(x(t))

dt
� − ∇xf(x(t))

T∇xf(x(t))


≤ 0.

(15)

Tus, the function f(x) acts as a Lyapunov function for (8)
over the set Ω∗. As x∗ is an isolated equilibrium point, we
have df(x(t))/dt< 0, ∀x ∈ Ω∗/ x∗{ }. By Lemma 5.3 in [46],
it can follow that x∗ is asymptotically stable for (8). □

Theorem 7. Let x∗ be a solution of BVIP(l, u, F) and
JxF(x∗) is a P matrix, then we have for (8), x∗ is expo-
nentially stable.

Proof. Defne x∗ be a solution of BVIP(l, u, F), and later it
holds that

∇f x
∗

(  � V
T
G x
∗

(  � 0, (16)

for V ∈ zcG(x∗), therefore, x∗ is an equilibrium point.
Suppose that x∗ is not an isolated equilibrium point, later we
can select a sequence xk  which converges to x∗ as k tends
to infnity and satisfes xk ≠x∗.

∇f xk(  � V
T
k G xk(  � 0, (17)

for Vk ∈ zcG(xk). Since JxF(x∗) is a P matrix, we know
from Corollary 5.3 in [47] that when k is large enough, Vk is
nonsingular, which, by (17), means that G(xk) � 0. Tere-
fore, xk refers to a solution of BVIP(l, u, F) for k large
enough. However, by [1], it holds that under condition of

JxF(x∗) being a P matrix, BVIP(l, u, F) has at most a so-
lution, which is a contradiction. As a result, x∗ stands alone
as an equilibrium point.

By Teorem 6, x∗ is asymptotically stable. By Corollary
5.3 in [47], ∃ c> 0 and δ > 0 such that for every x ∈ B(x∗, δ)

and every V ∈ zcG(x), V is invertible and fulflls ‖V− 1‖≤ c.
So ∃ κ1 > 0 and κ2 > 0 and thus:

κ1‖v‖
2 ≤ v

T
V

T
V≤ κ2‖v‖

2
, ∀x ∈ B x

∗
, δ( . (18)

By Proposition 2.4 in [47], G is semismooth, which, by
Proposition 2.4 in [50], means the following expansion

G(x) � G x
∗

(  + V x − x
∗

(  + o ‖ x − x
∗

‖( , (19)

for any V ∈ zcG(x).
Te proof that follows bears resemblance to the proof

found in Teorem 5.5 of [46], and we write them out for
completeness.

Defne δ be sufciently small such that.

o ‖x − x
∗
‖( 


≤ ϵ ‖x − x

∗
‖, (20)

for ∀x ∈ B(x∗, δ) and some 0< ϵ< κ1. Next, let

Γ(t) � ‖x(t) − x
∗
‖
2
, t ∈ t0, +∞ . (21)

In what follows, we have

dΓ(t)

dt
� 2 x(t) − x

∗
( 

Tdx(t)

dt

� − 2 x(t) − x
∗

( 
T∇xf(x(t))

� − 2 x(t) − x
∗

( 
T

V
T
G(x(t)) ,

(22)

for every V ∈ zcG(x). Suppose

τ � inf t ∈ t0, +∞ ∣‖x(t) − x
∗
‖ ≥ δ , (23)

is the time at which the solution frst exits the ball B(x∗, δ).
Terefore, we can obtain G(x∗) � 0, and for ∀t ∈ I � [t0, τ)

dΓ(t)

dt
� − 2 x(t) − x

∗
( 

T
V

T
G(x(t)) 

� − 2 x(t) − x
∗

( 
T
V

T
G x
∗

(  + V x(t) − x
∗

(  + o ‖x(t) − x
∗
‖(  

≤ − 2 x(t) − x
∗

( 
T
V

T
V x(t) − x

∗
(  + ϵ ‖x(t) − x

∗
‖

≤ − 2κ1 + ϵ(  ‖x(t) − x
∗
‖

� − 2κ1 + ϵ( Γ(t).

(24)

By [[52], Corollary 2.1], we have the equivalence of

Γ(t)≤ e
− 2κ1+ϵ( )tΓ t0( , t ∈I, (25)

and

‖x(t) − x
∗
‖ ≤ e

ωt
‖x t0(  − x

∗
‖ , t ∈I, (26)

Journal of Mathematics 5



where ω � − κ1 + ϵ/2< 0. When τ < +∞, then

δ ≤ limsup
t⟶τ

‖x(t) − x
∗
‖ ≤ e

ωτ
‖x t0(  − x

∗
‖ < δ, (27)

which refers to a contradiction. Terefore, we have τ � +∞
and the proof is fnished. □

4. Numerical Tests

In the current section, multiple instances of box-constrained
variational inequalities are provided for validating the developed
neural network model. Our simulation is based on MATLAB
(2018B) and its ode45 solver. Te examples come from [31].

Example 1. Consider (1), where

F(x) �

4x1 + 2x2 + 2x3 + x4 − 8

2x1 + 4x2 + x4 − 6

2x1 + 2x3 + 2x4 − 4

− x1 − x2 − 2x3 + 3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (28)

and X � [0, 5]4. Te solution to the variational inequality is
x∗ � (4/3, 7/9, 4/9, 2/9)T.

Next, the neutral network (8) will be used to calculate the
variational inequality (1). Some numerical results are re-
ported. In [6, 31], diferent neutral networks are proposed to
solving BVIP, we compare those numerical test results with
ours. In [6, 31], the neutral networks are based on the
following diferential equations, respectively:

dx

dt
� − ζ1

x − hx

‖ x − hx ‖
μ − ζ2

x − hx

‖ x − hx ‖
], (29)

and

dx

dt
� − x + hx, (30)

where hx � PX(x − βF(x)), ζ1 > 0, ζ2 > 0, μ ∈ (0, 1), ]< 0,
PX(·) denotes the projection operator on set X.

Figures 2–4 depict the numerical test outcomes derived
from themodel (8), (27), and (29) of variational inequality (1).
x0 � (0, 0, 0, 0)T is selected as the initial point.

We know from Figures 2 and 3 that the trajectories of
solutions of neural network based on models (8), (27), and
(29) of box constrained variational inequality problem (1) all
converge to equilibrium point x∗ � (4/3, 7/9, 4/9, 2/9)T.
Moreover, compare with neural networks based on models
(29) and (30), the trajectories of solutions of the neural
network on the basis of model (8) converge to the equi-
librium point faster.

Example 2. Consider the BVIP(l, u, F) (1), where

F(x) �

x
3
1/100 + e

x1x2

2x
3
2/100 + e

x2x3

· · ·

nx
3
n/100 + e

xnx1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (31)

and X � [− 1, 6]n. Table 1 displays the numerical test results
based on the of model (8) with diferent n, x0 � (0, 0, . . . , 0)T

is selected as the initial point, n refers to the dimension of x,
k represents the number of iterations, Time(s) is the CPU
time and obj is the value of 1/2‖G(x)‖2.

Example 3. Consider the BVIP(l, u, F) (1), where F(x) �

Dx + q with

D �

4 − 2 0 · · · 0 0

1 4 − 2 · · · 0 0

⋮ ⋮ ⋮ ⋮ ⋮

0 0 0 · · · 4 − 2

0 0 0 · · · 1 4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (32)

y1
y2
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Figure 2: Numerical results for model (8).
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Figure 3: Numerical results for model (29).
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q � (1, 1, 1, . . . , 1)T and X � [− 5, 5]n.
Table 2 shows the numerical test results based on the of

model (8) with diferent n, x0 � (0, . . . , 0)T is selected as the
initial point, n is the dimension of x, Time(s) represents the
CPU time, and obj is the value of 1/2‖G(x)‖2.

Figure 5 shows the numerical test results of Example 3
based on the of model (8) with n � 4.

Example 4. Consider the (1), where

y1
y2

y3
y4

2 4 6 8 100
Time in seconds

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Tr
aj

ec
to

rie
s o

f x
 (t

)

Figure 4: Numerical results for model (30).

Table 1: Numerical fndings of Example 2 based on (8).

n k Time(s) obj
100 57 0.998 2.7978e − 005
300 413 12.084 3.0695e − 004
500 533 14.922 1.7702e − 004

Table 2: Numerical fndings of Example 3 based on (8).

X n Time(s) obj
[− 5, 5]4 4 3.076 3.7083e − 006
[− 5, 5]10 10 6.275 8.0301e − 005
[− 5, 5]100 100 72.382 1.9e − 003
[− 5, 5]1000 1000 1536.45 2.01e − 002
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Figure 5: Numerical fndings of Example 3 for model (8) with n � 4.
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Figure 6: Numerical results of Example 4 for model (8) with
τ � 1000.
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Figure 7: Numerical results of Example 4 for model (8) with
τ � 10.
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F(x) �

x
3
1 − 8

x1 + x
3
2 − 3

x
3
3 + 8

x
2
4 + x2 − 10

x5 + 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (33)

and X � x: a≤x≤ b{ }, a � (− 1, 0, − 5, 2, − 3)T, b � (4, 6, − 1,

7, 0)T. In addition, the solution to the variational inequality
is x∗ � (2, 1, − 2, 3, − 1)T.

Figures 6 and 7 show the numerical test results based on
the of model (8) of variational inequality 1.1 with diferent τ.

5. Conclusions

To conclude, this study introduces a neural network ap-
proach for addressing the box-constrained variational in-
equality problem. Alongside exploring the existence and
convergence of neural network trajectories, we also examine
the stability of solutions. Tese stability results include as-
ymptotic stability and exponential stability. Finally, nu-
merical experiments demonstrate the efectiveness of the
neural network method. Of course, like all algorithms, the
neural networkmethod put forward in the present study also
has drawbacks. For example, due to the involvement of
subdiferential estimation, the computing time may be
limited. Te smoothing method may be able to address this
drawback, which may be our future research topic.
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