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Te focus of this study is to classify fag-transitive 2-designs. We have come to the conclusion that if D is a nontrivial 2-design
having block size 5 and G is a two-dimensional projective special linear group which acts fag-transitively onDwith q≢ 1 (mod 4),
then D is a 2-(11, 5, 2) design, a 2-(11, 5, 12) design, a 2-(q + 1, 5, 2(q − 1)) design with q ≡ 3 (mod 4) or a 2-(q + 1, 5, (q − 1)/3)

design with q � 2f (where f> 2 is an even).

1. Introduction

In the year of 1987, Davies [1] drew a conclusion that if
a 2-(v, k, λ) design D has a point-imprimitive fag-transitive
automorphism group G, then given the value of λ, there is
a superior limit on the block size k. We can easily arrive at
a conclusion that the existence of the pairs (D, G) is not
infnite only if λ is fxed, where G acting on D is point-
imprimitive and fag-transitive. Meanwhile, the hidden
meaning is that, as long as we set k fxed, there are only a fnite
number of such designs. Still further, on the basis of the proof
of ([2], Proposition 4.1), one proving that for a nontrivial point-
imprimitive and fag-transitive 2-(v, k, λ) design D, its block
size k≥ 6. Without a doubt, we have that the fag-transitive
automorphism group G for our paper of the 2-(v, 5, λ) design
is defnitely point-primitive. Te O’Nan–Scott theorem shows
that one of the following is doomed to hold for any fnite
primitive permutation group G (for more details, see [3]):

(a) G is of almost simple type
(b) G is of afne type
(c) G is of simple diagonal type
(d) G is of product type
(e) G is of twisted wreath product type

In order to solve the problem more completely, we
narrow down the scope of our problem; here, we only
consider the case (a) and G is a two dimensional projective
special linear group PSL(2, q).

For q≢ 1 (mod 4), the group PSL(2, q) acts 3-
homogeneously on the one-dimensional projective line.
We immediately inferred that if B is a set consisting of
some k-subsets of the projective line P, then (P,B) is
a 3-(q + 1, k, λ) design for some λ in the condition that B
is a union of G-orbits with G � PSL(2, q). Tereafter that is
why PSL(2, q) becomes a coveted treasure when it comes
to construct a 3-design. For instance, through the way
PSL(2, q) acts on the 4-element subsets of the one-
dimensional projective line, the authors of [4] de-
termined all 3-designs of PSL(2, q) with block size 4. By
using the same processing method, Keranen and Kreher
[5] completely solved such designs of block size 5. On the
other hand, for q ≡ 1 (mod 4), Keranen et al. [6] has
completely determined all quadruple systems admitting
PSL(2, q) as their automorphism group. Unfortunately,
the 3-(q + 1, 5, λ) designs with the automorphism group
PSL(2, q) remain uncertain.

Many scholars have turned to another direction of ex-
ploration, focusing on 2-designs whose automorphism
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group is the projective group PSL(2, q), which acts transi-
tively on the fags. Here, fags are point-block pairs (α, B)

such that α ∈ B. In 1986, Delandtsheer [7] discovered a 2-
(q(q − 1)/2, q/2, 1) design with q � 2f ≥ 8 (it is usually called
Witt-Bose-Shrikhandle space W(q)) on the way to classify
fag-transitive 2-(v, k, 1) design. Tree savants of literature
[8] are absorbed in symmetric designs and give them
a complete classifcation. Zhan and Zhou [9], in 2018, dealt
with the situation where D is a nonsymmetric design with
parameters r and λ that are coprime. Te most classifcation
of 2-(v, 4, λ) designs, characterized by PSL(2, q) as a fag-
transitive automorphism group, is presented in [10], ofering
a complete and elegant classifcation of such designs.

Our paper aims to studying 2-designs with block sizes
of 5 and fag-transitive automorphism groups that are the
two-dimensional special linear projective group PSL(2, q),
where q≢ 1 (mod 4). Obviously, it is of great signifcance
to contribute to fully classify the 2-(v, 5, λ) designs per-
mitting a fag-transitive automorphism group. Further-
more, the main outcomes of our paper are displayed as
follows.

Theorem 1. Assume that D is a nontrivial 2-design with
block size 5. Let G � PSL(2, q) act fag-transitively onD with
q≢ 1 (mod 4). Ten one of the following conclusions is proved
to be tenable:

(1) D is a 2-(11,5,2) design or a 2-(11,5,12) design with
q � 11

(2) D is a 2-(q + 1, 5, 2(q − 1)) design with q ≡ 11, 19, 31
or 59 (mod 60)

(3) D is a 2-(q + 1, 5, (q − 1/3)) design with q � 2f and
f> 2 is an even integer

In order to have a better understanding for the proving
process of Teorem 1 in the third section, we will demonstrate
some basic concepts and general principles which will be
employed during the process of proving our conclusion.

2. Notation and Preliminaries

Assuming that B is a set containing b blocks and P is a set
containing v points, the pair (P,B) points to a 2-designD

that satisfes every block including k points, 2 diferent
points are exactly comprised in λ blocks, and a given point is
relative to r blocks. In general, we handle the case
2< k< v − 1, where D is called nontrivial. Particularly,
a design D is said to be symmetric if the total number of
blocks inD is equal to the total number of points; otherwise,
it is called nonsymmteric. A 2-(v, k, λ) design is often called
a fnite linear space when λ � 1. For the study of a 2-design,
the following lemma is almost involved for each time.

Lemma 2 (see ([4], 1.2, 1.9)). Te following properties hold
for a 2-design:

(i) bk � vr
(ii) r(k − 1) � λ(v − 1)

More often than not, we use Aut(D) to represent the full
automorphism group of a design D. Tat is, Aut(D) is the
group in particular to those composed of all automorphisms
of D, where an automorphism of D refers to a permutation
that can permutate not only the point set P but also the
block set B. Tat is to say, when G is an automorphism
group of D, any element of G must belong to Aut(D), in
short, G≤Aut(D). If G has a primitive action on point set
and a transitive action on fag set, then we say design D is
point-primitive and fag-transitive, respectively.

Take any block B ∈B, and thereafter GB is the setwise
stabilizer. Below we will introduce a classical and commonly
used verdict about them.

Lemma 3. For a 2-designD � (P,B), let G≤Aut(D), and
F be the fag set ofD. If B ∈B, then the two statements given
below are interchangeable:

(i) G acts fag-transitively on F

(ii) G is a transitive group of B, and GB has a transitive
action on B

Te following lemma adds the fnishing touch to the
proof of our paper. Literature [1] demonstrates the proof in
detail and helps us to understand it better.

Lemma 4. Provided that G acts on a 2-design D fag-
transitively, let d be a subdegree of G with d≠ 1; then r di-
vides λd.

From ([4], Teorem 6) and ([5], Teorem 3.3), we can
reach the following result which is of most importance
through a simple calculation.

Lemma 5. Let G � PSL(2, q) with q≢ 1 (mod 4), and B be
a 5-element subset of one-dimensional projective line. Ten
the following two situations are to be true:

(1) If q ≡ 3 (mod 4), then |BG| is one of q(q2 − 1)/2 with
q> 3, q(q2 − 1)/6 with q ≡ 7, 19, 31, 43 (mod 60) or
q(q2 − 1)/10 with q ≡ 11, 19, 31, 59 (mod 60)

(2) If q � 2f, then |BG| is one of q(q2 − 1) with f≥ 4,
q(q2 − 1)/4 with f≥ 3 or q(q2 − 1)/60 with f even

Te following lemma displays the correlation between
3/2-transitive and 2-transitive which lies in ([11], Teorem
1.2). It is a special case that will arise in our paper discussion.

Lemma 6. Let G � PSL(2, q) be a fnite almost simple group,
and G acts on a set P with size v3/2-transitively. Ten the
following conclusions are true:

(i) G has a 2-transitive action on P

(ii) v � q(q − 1)/2 where q � 2f ≥ 8, and each nontrivial
subdegree of G is q + 1

3. Proof of Theorem 1

From the information provided above, we have known that
if D is a 2-design with k � 5 and G≤Aut(D) is a fag-
transitive group, then G must be a point-primitive group. If
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Gα is the set keeping a certain point α in P stationary, then
Gα must be one of the maximal subgroups in G. In the
following convention, rank (G) is denoted by the rank of G.

Proposition  . Suppose that G≤Aut(D) is fag-transitive
for whichD is a 2-design with block size 5.Ten rank (G)≤ 5.

Proof. Following Lemma 2, r � λ(v − 1)/k − 1 � λ(v − 1)/4.
Assuming d≠ 1 is a subdegree of G, then combining with
Lemma 4, we can easily derive that v − 1 | 4d. Consequently,
d ∈ v − 1/4, v − 1/2, 3(v − 1)/4, v − 1{ }. As a result, the pos-
sible value of the rank of G is 2, 3, 4, or 5. Moreover,

(i) If rank (G) � 3, then G has subdegrees
1, v − 1/4, 3(v − 1)/4{ } or 1, v − 1/2, (v − 1)/2{ }

(ii) If rank (G) � 4, then G has subdegrees
1, v − 1/4, (v − 1)/4, (v − 1)/2{ }

(iii) If rank (G) � 5, then G has subdegrees
1, v − 1/4, (v − 1)/4, v − 1/4, (v − 1)/4{ }

As mentioned above, the two-dimensional projective
special linear group PSL(2, q) acts doubly transitively on the
one-dimensional projective line. It is for this reason that ifB
is a G-orbit on 5-subsets of the one-dimensional projective
line, then B is destined to be the set of block of a 2-(q +

1, 5, λ) design for some λ. At the same time, it can be easily
seen that G is deemed to be the block-transitive automor-
phism group of such designs. □

Proposition 8. Let D be a nontrivial 2-(v, 5, λ) design. Let
G � PSL(2, q) be a fag-transitive automorphism group of D
with q≢ 1 (mod 4). Ten rank (G) � 2, and one of the fol-
lowing three statements is to be true:

(1) D has parameters (v, λ) � (11, 2) or (11,12), and
G � PSL(2, 11)

(2) D has parameters (v, λ) � (q + 1, 2(q − 1)) with
q ≡ 11, 19, 31 or 59 (mod 60)

(3) D has parameters (v, λ) � (q + 1, (q − 1)/3) with
q � 2f, where f> 2 is an even

Proof. Suppose that rank (G) � 5; then G is a 3/2-transitive
group by Proposition 7. According to Lemma 2(ii), we get
v � q(q − 1)/2 � 4(q + 1) + 1. Tus, q � 10, a contradiction.

Assume that rank (G) � 4. If H is maximal subgroup of
PSL(2, q), then the subdegrees of the representation
PSL(2, q) on the cosets of H can be found in [9, 12]. Ob-
viously, we know that G has no subdegrees
1, v − 1/4, (v − 1)/4, (v − 1)/2{ }.

Suppose that rank (G) � 3. For the caseG has subdegrees
1, v − 1/2, (v − 1)/2{ }, G is a 3/2-transitive group. Similarly,
Lemma 2(ii) yields v � q(q − 1)/2 � 2(q + 1) + 1. Tus,
q � 6, a contradiction. Again by [9, 12], we reach that G has
no subdegrees 1, v − 1/4, 3(v − 1)/4{ }.

Now we discuss the only remaining circumstance that
rank (G) � 2; then v � 7, 11 or q + 1. We will now examine
these three cases.

Case (1): G � PSL(2, 7) with degree 7.

Here the order of G is 168 and note that its repre-
sentations are

(1, 4)(6, 7),

(1, 3, 2)(4, 7, 5).
(1)

Clearly, G is a doubly transitive group of the point set
P� {1, 2, . . ., 7}.
Let B � 1, 2, 3, 4, 5{ }; then D � (P, BG) is a block-
transitive 2-design such that its block number

b �
7
2  as G is 2-transitive. Easy calculation shows

that the setwise stabilizer GB has three orbits on P as
follows:

2{ }, 6, 7{ }, 1, 3, 4, 5{ }. (2)

Tus, D is impossible to admit PSL(2, 7) as its fag-
transitive automorphism group by Lemma 3.
Case (2): G � PSL(2, 11) with degree 11.
Tere are two inequivalent 2-transitive permutation
representations of PSL(2, 11) which possess degree 11,
namely, G1 and G2. Here we will confne our discussion
to the case G � G1, and another case can be discussed
similarly. Suppose that S is a Sylow 5-subgroup of G;
then S partitions the 10 points into two orbits with size
5 and fxes one point, and we denote them by B1 and B2,
respectively. Now, there is exactly one conjugacy class
of subgroups G isomorphic to alternating group A5
partitioning the 11 points into two orbits of lengths 5
and 6. Let K be the representative of the conjugacy class
such that S≤K. So K partitions the 11 points into two
orbits of length 5 and 6, respectively. It is safe to as-
sume, without losing generality, that B1 is the K-orbit
of length 5.Ten GB1

� K andD1 � (P, BG
1 ) is the fag-

transitive 2-(11, 5, 2) symmetric design by Lemma 3
and the doubly transitivity of G. Note that D1 is
a Hadamard design of order 3. Finally, B2 is properly
contained in the doubly transitive K orbit of length 6;
then GB2

� D10, and hence D2 � (P, BG
2 ) is the fag-

transitive 2-(11, 5, 12) design again by the doubly
transitivity of G and Lemma 3.
Case (3): G � PSL(2, q) with degree q + 1.
If q ≡ 3 (mod 4), from Lemma 5(1), there exist 5-
element subsets E1, E2, and E3 such that
|EG

1 | � q(q2 − 1)/2, |EG
2 | � q(q2 − 1)/6 and |EG

3 | � q

(q2 − 1)/10. Lemma 3 yields that |GE| can be divided by
5, where E ∈B is a block.Tus, we conclude that EG

1 or
EG
2 cannot be the block set of D as |GE1

| � 1 and
|GE2

| � 3. LetD3 � (P, EG
3 ); thenD3 is a 2-design with

b �
q q

2
− 1 

10
and q ≡ 11, 19, 31 or 59(mod 60). (3)

Terefore, Lemma 2 yields that D3 has parameters
(v, λ) � (q + 1, 2(q − 1)). Moreover, GE3

� Z5 acts point-
transitively on E3. Ten by what we have already shown,
PSL(2, q) is a transitive permutation group on the fags.
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Now, let q � 2f. Because of the nontriviality of D, we
should restrict f> 2. Similarly, from Lemma 5(2), there exist
5-element subsets O1, O2, and O3 such that |OG

1 | � q(q2 − 1),
|OG

2 | � q(q2 − 1)/4, and |OG
3 | � q(q2 − 1)/60. By Lemma 3,

we infer that O1 or O2 cannot be a base block of a fag-
transitive design for |GO1

| � 1 and |GO2
| � 4. Set

D4 � (P, OG
3 ), and we conclude that D4 is a 2-design with

b �
q q

2
− 1 

60
andf is an even. (4)

Now the result provided in Lemma 2 shows again that
the 2-design D4 has parameters (v, λ) � (q + 1, (q − 1/3)).
Since |GO3

| � 60, we have that GO3
� PSL(2, 4) acts point-

transitively on O3 by ([13], Lemma 16). Accordingly, G

acting on D4 is fag-transitive [14, 15].
Finally, Teorem 1 can be obtained from

Proposition 8. □
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