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In this study, a deterministic tuberculosis (TB)-hepatitis C (HCV) coinfection mathematical model with no intervention is
analysed purposely to examine the dynamics of TB-HCV coinfection so as to fnd conditions for reducing the transmission of both
TB and HCV. A unique solution to the model exists; it is positive and is bounded.Te analytical and numerical analysis show that
for basic reproduction number, R0 � max RT, RH􏼈 􏼉< 1, the TB and HCV disease-free equilibrium points are stable. Further
analysis shows that when the TB-HCV coinfection basic reproduction number is greater than 1, the endemic equilibrium point is
stable. Sensitivity analysis reveals that interventions to reduce TB or HCV infection need to aim and concentrate on minimizing
the numbers of the efective contact rate with TB- or HCV-infected humans and the rate of progress from latent TB or acute HCV
to infectious TB or chronic HCV stage. Numerical simulations reveal that over time, the number of TB latent humans, acute HCV
humans, and the number of dually infected humans have a linear relationship with the efective contact and the progression rates
for both TB- and HCV-infected humans. We recommend that health education campaigns to communities aimed at reducing the
transmission rates of TB and HCV be conducted. Tese could include screening and isolation, wearing of face masks for TB cases
and screening, sterilization of surgical instruments, and use of condoms for HCV-infected humans.

1. Introduction

As stated by the World Health Organisation (WHO) report
2022, a record of 1.6 million humans died from tuberculosis
(TB) in 2021, out of which 187000 humans had human
immunodefciency virus (HIV). TB is an infectious disease
that is a predominant cause of unhealthiness and among the
primary causes of mortality worldwide. TB has always been
ranked topmost as the major killer from a single infectious
agent well above human immunodefciency virus (HIV), not
including the COVID-19 pandemic [1].

Tuberculosis (TB) is majorly an infection of the lungs. It
is caused byMycobacterium tuberculosis bacteria (Mtb). Te
disease is commonly spread when an infected person
coughs, sneezes, or spits in air. Te infectious tuberculosis

symptoms in the lungs include a cough that lasts more than
three weeks, fever, coughing up blood, night sweats, and loss
of weight [2]. A TB infection does not always mean one will
get sick. Humans infected with latent tuberculosis show no
symptom of TB infection and neither do they transmit it.
However, these humans can have the germs multiply and
hence become sick after a latency period [3]. Parts of the
world with the most TB cases include South East Asia,
Africa, and the West Pacifc.

Across the globe, approximately 328 million humans are
infected with chronic hepatitis C (HCV) or hepatitis B
(HBV) with the predominant part of the humans undetected
and thus not on medication [4]. In 2019, approximately
three million humans contracted chronic HCV and HBV
infections in spite of availableness of intervention to curb
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transmission. In the same year, an estimate of 1.1 million
humans died from HCV/HBV-induced chronic liver disease
and liver cancer [4].

Hepatitis C is a viral infection brought about by hepatitis
C virus that afects the liver. Te virus leads to liver in-
fammation and occasionally, it causes serious liver damage.
HCV is a predominant cause of chronic liver diseases. It is
approximated that 33% of the HCV-infected humans
progress to develop hepatitis cirrhosis (scarring of the liver),
steatosis, and liver cancer [5].

Human population is the source for hepatitis C. Te
transmission of HCV is essentially through blood. At the
moment, drug injection into the bloodstream is regarded as
a major contributor to almost all newly diagnosed HCV
infections. However, transmission through vertical means is
another usual route of transmission. Other uncommon
transmission routes include sexual contact and via blood
transfusion (rarely occurs since donated blood that might
contain antibody to HCV is abandoned) [6].

HCV could be diagnosed by detecting antibodies to
HCV in an enzyme-linked immunosorbent assay (ELISA).
However, no symptoms are shown until several years after
infection. Tus, screening of high-risk humans for HCV
antibodies needs to be done.

HCV is treatable and curable. It is also noted that
currently there is no vaccine for HCV.

A coinfection means simultaneous infection of the same
host with two or multiple pathogen species, leading to co-
existence of the species within the host or at the population
level. Humans infected with TB tend to register more new
cases of HCV chronic infection than the general population
[7] and this increases the risk of the occurrence of drug-
induced hepatotoxicity [8]. HCV chronic infection makes
the earlier complicated administration of multidrug-
resistant TB (MDR-TB) patients even more strenuous. TB
coinfection with HCV activates latent TB and increases the
risk of death and drug-induced liver damage [9].

Te use of mathematical models to capture the causes and
the control of infectious diseases has been studied widely
[10–13]. Mathematical deterministic models have considerably
been applied to comprehend the behaviour of infections both at
population and within host levels including proposing strategic
intervention approaches. Various researchers have analysed
mathematical models for dual infection of a number of in-
fections to ascertain the efect of a given infection on the be-
haviour of the other and contrariwise. For instance, Bhunu et al.
[14] studied the coinfection ofHIV andTB; Bowong andKurths
[15] studied the coinfection of TB andHBV;Mayanja et al. [16],
Carvalho et al. [17], and Bhunu and Mushayabasa [18] studied
the coinfection ofHIV andHCV;Nampala et al. [19] studied the
coinfection of HIV and HBV; Sanga et al. [20] studied the
coinfection of HIV and cervical cancer; and Nannyonga et al.
[21] studied the coinfection of HIV and malaria.

Mayanja et al. [16] developed and analysed a de-
terministic mathematical model of the HIV and HCV
codynamics behaviour without medication. Tey concluded
that HIV and HCV latently infected humans need to pursue
prompt medication so as to curb the advancement of HIV to
AIDS and HCV latent to HCV.

Bhunu and Mushayabasa [18] developed and analysed
a mathematical model of the coinfection of HCV and HIV/
AIDS with the view to rate their infuence on the trans-
mission dynamics of each infection with therapy. Tey
concluded that there is need to reinforce the control of HCV
since it has long term negative impact on the wellbeing of
humans.

Bowong and Kurths [15] considered a mathematical
model of the coinfection of HBV and TB. Using numerical
analysis, they realized that the two infections do cooccur at
any time their efective reproduction number is greater than
one. Tey also observed that the prevalence levels of TB and
hepatitis B were greatly infuenced by the rate of progression
of latent to active TB in dually infected humans and acute
HBV to chronic HBV infection.

Te existing mathematical models for coinfection do not
consider the TB and HCV coinfection, yet the two infections
are a great threat, especially where they are endemic.
Terefore, this study aims at mathematically analysing the
transmission dynamics of TB and HCV coinfection in order
to fnd the conditions for coinfection interruption.

In our study, a deterministic mathematical model is
derived and analysed with an aim of investigating the dy-
namics of TB infection as a result of HCV infection and vice
versa in absence of treatment. Without treatment, the death
rate from TB disease is high (about 50%) [1]. Despite the
availability of antibiotics, TB-infected humans may not be
under medication in the view of the fact that they may not
have been detected or if detected, they could just choose to
delay to start the antibiotics. In some developing countries
like Uganda, and in general, those below the poverty line,
some TB-infected humans may have no access to antibiotics.
Others may decide to drop out since the treatment takes
a long period of time and rather expensive. Comparably,
HCV-infected humans, especially in the chronic stage, may
be undetected and, therefore, cannot quest medication.
Furthermore, screening, detection, and medication of HCV-
infected humans continue to remain a challenge globally
[18]. Terefore, there is a need to investigate the TB-HCV
coinfection dynamics in absence of intervention.Te current
model will inform policymakers of factors that fuel the
transmission of both TB and HCV infections and hence the
measures that can be put to curtail the transmission rate.

2. Model Description

Our model partitions the population of individuals into the
subsequent subgroups as follows: susceptible humans at
a risk of contracting TB or HCV (S(t)), tuberculosis latently
infected but not infectious of TB (IL(t)), infectious TB
humans assumed not under medication (IT(t)), acute HCV
humans without symptoms but infectious of HCV (Ia(t)),
chronic HCV humans with symptoms and infectious of
HCV (IC(t)), coinfected humans with acute HCV in the TB
latent stage non-TB infectious but infectious of HCV
(IaL(t)), coinfected humans with HCV chronic infection in
the TB latent stage infectious of HCV and not TB (ICL(t)),
coinfected humans with HCV acute infection in the TB
infectious stage infectious of both HCV and TB (IaT(t)),
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and coinfected humans with HCV chronic infection in the
TB infectious stage infectious of both HCV and TB (ICT(t)),
all as summarised in Table 1.

It is supposed that humans in the susceptible subgroup
increase at a rate Λ. All humans in diferent subgroups go
through natural death at a constant rate μ. Susceptible
humans contract TB infection after a contact with TB in-
fectious human at a rate λT and acquire HCV infection after
contact with an HCV infectious human at a rate λH.

Te total number of humans at time t is N(t) and is
given by

N(t) � S(t) + IL(t) + IT(t) + Ia(t) + IC(t) + IaL(t)

+ ICL(t) + IaT(t) + ICT(t).
(1)

Te rate at which humans acquire TB infection is given
by

λT(t) �
ξ1q1 IT(t) + a1IaT(t) + a2ICT(t)( 􏼁

N(t)
, (2)

where ξ1 is the efective rate of contact with TB infected
human. q1 is the likelihood of the contact being well efcient
to give rise to a TB infection. a1 and a2 are enhancement
factors for the threat of easily contracting TB from a coin-
fected human in IaT and ICT classes, respectively. Both a1
and a2 represent the fact that coinfected humans easily
spread the infection compared to those that are not dually
infected [18].

Comparably, the incident rate of HCV infection in the
population is as shown in the following equation:

λH(t) �
ξ2q2 ϕIa(t) + IC(t) + b1IaL(t) + b2ICL(t) + b3IaT(t) + b4ICT(t)( 􏼁

N(t)
, (3)

where ξ2 is the efective contact rate with HCV-infected
human. q2 is the likelihood of the contact being well efcient
to give rise to an HCV infection. b1, b2, b3, and b4 are
enhancement factors for the threat of easily contracting
HCV from a coinfected human in IaL, ICL, IaT, and ICT

classes, respectively. We note that b2, b4 > b1, b3 > 1, with the
assumption that an HCV chronically infected human is
more infectious than the HCV acutely infected human.

Susceptible humans, once infected with TB, enter TB
latently infected class IL(t). Some humans in IL(t) subgroup
progress to the infectious class IT(t) at a rate θ while the rest
gain natural recovery at a rate η. Humans in the TB in-
fectious class die from both natural and TB-induced death at
a rate σ.

Conversely, on contracting HCV, susceptible humans
join the acute HCV human class Ia(t). Here, we have some
humans in Ia(t) class who recover from the acute HCV
instinctively at a rate π where as the rest join the chronic
HCV class IC(t) at a rate α. Humans in acute HCV class only
die from natural death with an assumption that acute HCV is
not fatal whereas humans in chronic HCV class die from
both natural death and chronic HCV at a per capita rate of δ.

When humans in classes IL(t) and Ia(t) interact, they
become dually infected with latent TB and acute HCV and
enter a class of the humans coinfected with latent TB and
acute HCV IaL(t). Te humans in IaL(t) class die from
natural death, at a rate μ. Similarly, when humans in class
IL(t) and IC(t) interact, they are projected to become dually
infected with both latent TB and chronic HCV, thus entering
a class of the humans coinfected with latent TB and chronic

HCV ICL(t). Tese humans not only die from natural death
at a rate μ but also die due to the coinfection at a rate δ.

Humans in class IaL(t) progress to IaT(t) class at a rate
τ1 and the progress to ICL(t) at a rate β1. Humans in ICL(t)

and IaT(t) classes progress to ICT(t) class at rates τ2 and β2,
respectively. Te humans in classes IaT(t) and ICT(t) die
from both natural death and coinfection induced death at
rates d1 and d2, respectively. We note that d1, d2 > δ because
the disease-induced death rate from the coinfection is ex-
pected to be greater than that of monoinfection.

In the formulation of the TB-HCV coinfection model, it
is assumed that all susceptible humans are equally suscep-
tible to TB and HCV; both TB and HCV are transmitted by
contact (direct or indirect) between an infected human and
a susceptible human. It is also assumed that all the infected
HCV humans frst develop acute HCV and later progress to
chronic form of HCV and both groups are infectious and
humans with the acute form of HCV either progress to the
chronic form or recover naturally [4]. By [1], all the infected
TB humans frst become latently infected before developing
infectious TB. However, TB latently infected humans can
recover without medication and those who are actively
infected cannot naturally recover. Te parameters used in
the explanation of TB-HCV coinfection transmission dy-
namics are summarized in Table 2.

Based on the description of the TB-HCV coinfection
dynamics and assumptions made, Figure 1 presents the
TB-HCV coinfection compartmental diagram. From the
compartmental diagram, in Figure 1, the associated epide-
miological model is as in the following equation system.
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dS(t)

dt
� Λ + πIa(t) + ηIL(t) − λT + λH + μ( 􏼁S(t),

dIL(t)

dt
� λTS(t) − θ + η + μ + λH( 􏼁IL(t),

dIT(t)

dt
� θIL(t) − μ + σ + λH( 􏼁IT(t),

dIa(t)

dt
� λHS(t) − π + α + μ + λT( 􏼁Ia(t),

dIC(t)

dt
� αIa(t) − μ + δ + λT( 􏼁IC(t),

dIaL(t)

dt
� λTIa(t) + λHIL(t) − τ1 + μ + β1( 􏼁IaL(t),

dICL(t)

dt
� β1IaL(t) + λTIC(t) − τ2 + μ + δ( 􏼁ICL(t),

dIaT(t)

dt
� τ1IaL(t) + λHIT(t) − β2 + μ + d1( 􏼁IaT(t),

dICT(t)

dt
� τ2ICL(t) + β2IaT(t) − μ + d2( 􏼁ICT(t),

(4)

where λT and λH are described as in (2) and (3), respectively.
Te starting values of the variables of the model are as
follows:

S(0)> 0, IL(0)≥ 0, IT(0)≥ 0, Ia(0)≥ 0, IC(0)≥ 0, IaL(0)≥ 0, ICL(0)≥ 0, IaT(0)≥ 0 and ICT(0)≥ 0. (5)

Table 1: Variables used in the TB-HCV coinfection dynamics.

Variable Description
S(t) Susceptible humans
IL(t) Tuberculosis latently infected but not infectious humans
IT(t) Infectious TB humans assumed not under medication
Ia(t) Infectious acute HCV humans
IC(t) Infectious chronic HCV humans
IaL(t) Coinfected humans with HCV acute infection in the TB latent stage
ICL(t) Coinfected humans with HCV chronic infection in the TB latent stage
IaT(t) Coinfected humans with HCV acute infection in the TB active stage
ICT(t) Coinfected humans with HCV chronic infection in the TB active stage

Table 2: Parameters used in the TB-HCV coinfection dynamics and their defnition.

Parameter Description
Λ Rate of increase in the natural population
μ Rate at which humans die naturally
σ Death rate for humans with active TB
δ Death rate for humans with the chronic form of HCV
d1 Death rate for humans with acute HCV and active TB dual infection
d2 Death rate for humans with chronic HCV and active TB dual infection
θ Rate of progress from the latent stage to the active stage of TB
α Rate of progress from acute class to chronic HCV
τ1 Rate of progress from IaL class to IaT class
τ2 Rate of progress from ICL class to ICT class
β1 Rate of progress from IaL class to ICL class
β2 Rate of progress from IaT class to ICT class
η Natural recovery rate of TB latent humans
π Natural recovery rate of HCV acute humans
ϕ Transmission coefcient for the HCV acute humans
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3. Analysis of the Model

3.1. Positivity and Boundedness of Solutions. Te model
system (4) defnes the population of humans. Tus, it is
imperative to show that all the variables S(t), IL

(t), IT(t), Ia(t), IC(t), IaL(t), ICL(t), IaT(t) and ICT(t) are
non-negative for all time.

Theorem 1. Positivity of solutions.

Solutions of the model system (4) with non-negative
starting values remain non-negative for all t≥ 0.

Proof. Let the starting values of the model system (4) be
positive. We prove that each solution component of the
system remains positive. Otherwise, we assume the following
contradiction:

that there exists a frst time t1: S(t1) � 0, S′(t1)< 0
and S(t)> 0, IL(t)> 0, IT(t)> 0, Ia(t)> 0, IC(t)> 0, IaL

(t)> 0, ICL(t)> 0, IaT(t)> 0, ICT(t)> 0 for 0< t< t1
or there exists a t2: IL(t2) � 0, IL

′(t2)< 0 and
S(t)> 0, IL(t)> 0, IT(t)> 0, Ia(t)> 0, IC(t)> 0, IaL(t)

> 0, ICL(t)> 0, IaT(t)> 0, ICT(t)> 0 for 0< t< t2

or there exists a t3: IT(t3) � 0, IT
′(t3)< 0 and S(t)> 0,

IL(t)> 0, IT(t)> 0, Ia(t)> 0, IC(t)> 0, IaL(t)>
0, ICL(t) > 0, IaT(t)> 0, ICT(t)> 0 for 0< t< t3

or there exists a t4: Ia(t2) � 0, Ia
′(t4)< 0 and S

(t)> 0, IL(t)> 0, IT(t)> 0, Ia(t)> 0, IC(t)> 0, IaL (t)>
0, ICL(t)> 0, IaT(t)> 0, ICT(t)> 0 for 0< t< t4

or there exists a t5: IC(t5) � 0, IC
′(t5)< 0 and S

(t)> 0, IL(t)> 0, IT(t)> 0, IA(t)> 0, IC(t)> 0,

IAL(t)> 0, ICL(t)> 0, IaT(t)> 0, ICT(t)> 0 for 0< t< t5

or there exists a t6: IaL(t6) � 0, IaL
′(t6)< 0 and S(t)>

0, IL(t)> 0, IT(t)> 0, Ia(t)> 0, IC (t)> 0, IaL(t)> 0,

ICL(t)> 0, IaT(t)> 0, ICT(t)> 0 for 0< t< t6

or there exists a t7: ICL(t7) � 0, ICL
′(t7)< 0 and

S(t)> 0, IL(t)> 0, IT(t)> 0, Ia(t)> 0, IC(t)> 0, IaL(t)

> 0, ICL(t)> 0, IaT(t)> 0, ICT (t)> 0 for 0< t< t7

or there exists a t8: IaT(t8) � 0, IaT
′(t8)< 0 and S

(t)> 0, IL(t)> 0, IT(t)> 0, Ia(t)> 0, IC(t)> 0, IaL (t)>
0, ICL(t)> 0, IaT(t)> 0, ICT(t)> 0 for 0< t< t8

or there exists a t9: ICT(t9) � 0, ICT
′(t9)< 0 and S(t)>

0, IL(t)> 0, IT(t)> 0, Ia(t)> 0, IC(t)> 0, IaL(t)> 0,

ICL(t)> 0, IaT (t)> 0, ICT(t)> 0 for 0< t< t9.

From the frst equation of model system (4), we have

dS t1( 􏼁

dt
� Λ + πIa t1( 􏼁 + ηIL t1( 􏼁 − λT t1( 􏼁( + λH t1( 􏼁

+ μ)S t1( 􏼁,

� Λ + πIa t1( 􏼁 + ηIL t1( 􏼁> 0,

(6)

thus a contradiction, implying that S(t) shall be non-
negative.

From the second equation of model system (4), we have

Λ

η

μ μ

μ

α

β1

β2

τ2
λH

λT

λH λH

λT

λH

τ1

μ

π

θ
S (t) IL (t) IT (t)

Ia (t) IaL (t) IaT (t)

IC (t) ICL (t) ICT (t)

μ + δ
μ+δ

μ + d2

μ + d1

μ+σ

Figure 1: A compartmental diagram for TB-HCV coinfection dynamics.
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dIL t2( 􏼁

dt
� λT t2( 􏼁S t2( 􏼁 − θ + η + μ + λH t2( 􏼁( 􏼁IL t2( 􏼁,

� λT t2( 􏼁S t2( 􏼁> 0,

(7)

thus a contradiction, implying that IL(t) shall be non-
negative.

From the third equation of model system (4), we have

dIT t3( 􏼁

dt
� θIL t3( 􏼁 − μ + σ + λH t3( 􏼁( 􏼁IT t3( 􏼁,

� θIL t3( 􏼁> 0,

(8)

thus a contradiction, implying that IT(t) shall remain non-
negative.

From the fourth equation of model system (4), we have

dIa t4( 􏼁

dt
� λH t4( 􏼁S t4( 􏼁 − π + α + μ + λT t4( 􏼁( 􏼁Ia t4( 􏼁,

� λH t4( 􏼁S t4( 􏼁> 0,

(9)

thus a contradiction, implying that Ia(t) shall be non-
negative.

From the ffth equation of model system (4), we have

dIC t5( 􏼁

dt
� αIa t5( 􏼁 − μ + δ + λT t5( 􏼁( 􏼁IC t5( 􏼁,

� αIA t5( 􏼁> 0,

(10)

thus a contradiction, implying that IC(t) remains non-
negative.

From the sixth equation of model system (4), we have

dIaL t6( 􏼁

dt
� λT t6( 􏼁Ia t6( 􏼁 + λH t6( 􏼁IL t6( 􏼁

− τ1 + μ + β1( 􏼁IaL t6( 􏼁,

� λT t6( 􏼁Ia t6( 􏼁 + λH t6( 􏼁IL t6( 􏼁> 0,

(11)

giving a contradiction, implying that IAL(t) remains non-
negative.

From the seventh equation of model system (4), we have
dICL t7( 􏼁

dt
� β1IaL t7( 􏼁 + λT t7( 􏼁IC t7( 􏼁

− τ2 + μ + δ( 􏼁ICL t7( 􏼁,

� β1IaL t7( 􏼁 + λT t7( 􏼁IC t7( 􏼁> 0,

(12)

giving a contradiction, implying that ICL(t) remains non-
negative.

From the eighth equation of model system (4), we have

dIaT t8( 􏼁

dt
� τ1IaL t8( 􏼁 + λH t8( 􏼁II t8( 􏼁

− β2 + μ + d1( 􏼁IAT t8( 􏼁,

� τ1IaL t8( 􏼁 + λH t8( 􏼁II t8( 􏼁> 0,

(13)

giving a contradiction, implying that IaT(t) remains non-
negative.

From the ninth Equation of model system (4), we have

dICT t9( 􏼁

dt
� τ2ICL t9( 􏼁 + β2IaT t9( 􏼁 − μ + d2( 􏼁ICT t9( 􏼁,

� τ2ICL t9( 􏼁 + β2IaT t9( 􏼁> 0,

(14)

which is a contradiction, meaning that ICT(t) remains
positive.

Tus, in all cases, S(t), IL(t), IT(t), Ia(t), IC(t), IaL(t),

ICL(t), IaT(t), ICT(t) remain positive for t≥ 0.

Theorem 2. Invariant region.

Te region

Ω � S(t), IL(t), IT(t), Ia(t), IC(t), IaL(t), ICL(t), IaT(t),􏼈

ICT(t) ∈ R9
+: 0≤N(t)≤

Λ
μ

􏼩

(15)
is positively invariant and all solutions starting in Ω ap-
proach, enter, or stay in Ω.

Proof. Let

S(t), IL(t), IT(t), Ia(t), IC(t), IaL(t), ICL(t),(

IaT(t), ICT(t) ∈ R9
+􏼑

(16)

be any solution of the model system (4), with non-negative
initial condition given by

S(0), IL(0), IT(0), Ia(0), IC(0), IaL(0), ICL(0), IaT(0), ICT(0).

(17)

Te total population is given by N(t).
Adding all the diferential equations in the model system

(4), we have

dN(t)

dt
� Λ − μN − σIT − δ IC + ICL( 􏼁

− d1IaT − d2ICT.

(18)

Since all parameter values are greater than zero and

IT(t)> 0, Ia(t)> 0, IaL(t)> 0, ICL(t)> 0, ICT(t)> 0,

IC(t)> 0 and IaT(t)> 0 for all t≥ 0,
(19)

then equation (18) yields the inequality

dN(t)

dt
+ μN(t)≤Λ. (20)

On solving the above inequality by integrating factor
method with initial conditions N(0) � N0, we have
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0≤N(t)≤
Λ
μ

+ N0 −
Λ
μ

􏼠 􏼡e
− μt

, (21)

so that as t⟶∞,

0≤N(t)≤
Λ
μ

. (22)

Consequently, all possible feasible solutions of the model
system (4) that begin in the region

Ω � S(t), IL(t), IT(t), Ia(t), IC(t), IaL(t), ICL(t),􏼈

IaT(t), ICT(t) ∈ R9
+: 0≤N(t)≤

Λ
μ

􏼩,

(23)

remain in the region for all values of t. Tus, the region Ω is
positively invariant, that is, for all values of t, the solution is
well-posed and biologically meaningful.

3.2. Analysis of the TB-Only Submodel. Te TB-only sub-
model is obtained by equating all the variables concerning
HCV in the model system (24) to zero, that is,

Ia(t) � IC(t) � IaL(t) � ICL(t) � IaT(t)

� ICT(t) � λH � 0.
(24)

Hence, the TB-only submodel is as in the following
equation.

dS

dt
� Λ + ηIL − λT + μ( 􏼁S,

dIL

dt
� λTS − (θ + η + μ)IL,

dIT

dt
� θIL − (μ + σ)IT,

(25)

with

S(0) � S0 ≥ 0, IL(0) � IL0 ≥ 0, IT(0) � IT0 ≥ 0 (26)

as the starting values,

λT �
ξ1q1IT(t)

NT(t)
(27)

is the force of infection and the total population is given by

NT(t) � S(t) + IL(t) + IT(t). (28)

Based on biological considerations, the submodel system
(24) shall be studied in the following region:

ΩT � S, IL, IT( 􏼁 ∈ R3
+: 0≤NT ≤

Λ
μ

􏼨 􏼩. (29)

Clearly, the solutions S, IL, IT of the submodel system
(24) are non-negative for t≥ 0 and the regionΩT is positively
invariant and solutions starting in ΩT approach, enter, or
stay in ΩT.

3.2.1. Te TB-Free Equilibrium Point and Reproduction
Number for the TB-Only Submodel. To determine the TB-
free equilibrium for the TB-only submodel, we suppose that
there is no TB infection in the community. Now, equating
submodel system (24) to zero gives the TB-free equilibrium
point for the TB-only submodel as

E
0
T � S

0
, I

0
L, I

0
T􏼐 􏼑 �
Λ
μ

, 0, 0􏼠 􏼡. (30)

In this instance, we shall defne the basic reproduction
number RT as the number of new TB cases given rise to by an
infectious TB human during their entire infectious period
[22]. Now, the next generation matrix method suggested in
[23] is applied to establish the basic reproduction numberRT

of system (24).
Let F represent the matrix of components of new in-

fection andV the matrix of the rest of transfer components
in system (24).

Te infected compartments are IL and IT. Tus, we have

F �
λTS

0
􏼢 􏼣, (31)

V �
(θ + η + μ)IL

− θIL +(μ + σ)IT

􏼢 􏼣. (32)

Te Jacobian matrices of expressions (31) and (32) are
computed at the disease-free equilibrium E0

T, thus yielding
matrices FT and VT, respectively, as

FT �
0 ξ1q1
0 0

􏼢 􏼣 (33)

and

VT �
(θ + η + μ) 0

− θ (μ + σ)
􏼢 􏼣. (34)

Tus, the TB-induced basic reproduction number, RT, is
computed as

RT �
ξ1q1θ

(θ + η + μ)(μ + σ)
. (35)

Te decrease of the infection in a human population is
infuenced by the parameters that will reduce the value of the
reproduction number to less than unity. Clearly, it can be
observed that when the efective contact rate, ξ1, with
tuberculosis-infected human, the likelihood, q1, of the
contact being well efcient to give rise to a tuberculosis
infection and the rate of progression, θ, of latent TB humans
to the active TB class become large; this leads to an increase
in the TB secondary infections.

Tus, intervention measures to mitigate TB infection
should mainly target decreasing ξ1, q1, and θ while in-
creasing the natural recovery rate, η, of TB latent humans.

3.2.2. Local Stability of the TB-Only Submodel Disease-Free
Equilibrium Point. Using Teorem 2 from [23], the sub-
sequent result is proved.
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Lemma  . Te local and asymptotic stability of the disease-
free equilibrium point, E0

T, of TB-only submodel exists if
RT < 1.

Proof. To establish the local and asymptotic stability of the
TB infection-free equilibrium point E0

T, we use the eigen-
value technique. Te approach requires that all the eigen-
values of the Jacobian matrix J(ET) at E0

T have negative real
parts as used in [12,16].

Te Jacobian matrix, J(ET), of the TB-only submodel
(24) is obtained as follows:

J ET( 􏼁 �

−
ξ1q1IT

NT

+ μ􏼠 􏼡 η
− ξ1q1S

NT

ξ1q1IT

NT

− k1
ξ1q1S
NT

0 θ − k2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (36)

where

k1 � θ + η + μ and k2 � μ + σ. (37)

Evaluating equation (36) at E0
T leads to

J E
0
T􏼐 􏼑 �

− μ η − ξ1q1
0 − k1 ξ1q1
0 θ − k2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (38)

Te characteristic polynomial of the Jacobianmatrix (38)
is

P(λ) � (− μ + − λ) λ2 + k1 + k2( 􏼁λ − θξ1q1􏼐 􏼑 � 0. (39)

Tus, the eigenvalues of the Jacobian matrix J(E0
T) are

λ1 � − μ, λ2 �
− k1 + k2( 􏼁 −

����������������

k1 + k2( 􏼁
2

+ 4θξ1q1
􏽱

2
and

λ3 �
− k1 + k2( 􏼁 +

����������������

k1 + k2( 􏼁
2

+ 4θξ1q1
􏽱

2
.

(40)

Now, eigenvalues λ1 and λ2 have negative real parts.
However, for

λ3 �
− k1 + k2( 􏼁 +

����������������

k1 + k2( 􏼁
2

+ 4θξ1q1
􏽱

2
(41)

to have negative real part, the term with a square root should
be less than zero, that is,

����������������

k1 + k2( 􏼁
2

+ 4θξ1q1
􏽱

2
< 0, (42)

from which

k1 + k2( 􏼁
2

+ 4θξ1q1 < 0. (43)

But from the expression of the basic reproduction
number, RT,

θξ1q1 � k1k2RT. (44)

Tis implies

RT <
− k1 + k2( 􏼁

2

4k1k2
< 1. (45)

Tus, E0
T is locally asymptotically stable only if RT < 1.

A local and asymptotic stability of E0
T implies that in case

some few TB infected humans are introduced into the
population, then over time, the system returns to TB-free
equilibrium. □

3.2.3. Global and Asymptotic Stability of the TB-Free Equi-
librium Point for the TB-Only Submodel. To investigate the
global and asymptotic stability of the system of diferential
equation (24), the approach suggested in [24] and also
applied in [12,16] is used.

Te TB-only system 6 is rewritten in the following form:

dXT

dt
� F XT, ZT( 􏼁,

dZT

dt
� G XT, ZT( 􏼁, G XT, 0( 􏼁 � 0.

(46)

where XT � (S) and ZT � (IL, IT), with XT ∈ R+ indicating
the number of uninfected humans and ZT ∈ R2

+ showing the
number of humans infected with TB. Let the TB-free
equilibrium of this system be denoted by
E0

T � (X0
T, 0) � (Λ/μ, 0).

It is necessary to ensure that the following conditions are
met to guarantee global asymptotic stability.

(H1): For
dXT

dt
� F XT, 0( 􏼁, X

0
T is globally asymptotically stable,

(H2): G XT, ZT( 􏼁 � MZT − 􏽢G XT, ZT( 􏼁, 􏽢G XT, ZT( 􏼁≥ 0,

(47)
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for (XT, ZT) ∈ ΩT, where M � DZG(X0
T, 0) is an Metzler

matrix (the of diagonal elements of M are no-negative) and
ΩT is the region where the model makes biological meaning.

Tus, when system (46) satisfes conditions (H1) and
(H2), we have the following theorem satisfed.

Theorem 4. Te equilibrium point E0
T � (X0

T, 0) is globally
asymptotically stable point of system (46) provided RT < 1 and
that conditions (H1) and (H2) are satisfed.

Proof. By Lemma 3, if RT < 1, then E0
T is locally asymp-

totically stable.
For the frst condition (H1), that is, the global as-

ymptotic stability of XT, we have

dXT

dt
� F XT, 0( 􏼁 � Λ − μS, (48)

which is a linear diferential equation. Solving it, we get

S(t) �
Λ
μ

1 − e
− μt

􏼐 􏼑 + S(0)e
− μt

. (49)

Now, as t⟶∞, S⟶Λ/μ regardless of the value of
S(0). Tus, XT is globally asymptotically stable.

For the second condition (H2), consider

G XT, ZT( 􏼁 �
λTS − k1IL

θIL − k2IT

⎡⎢⎣ ⎤⎥⎦

�

ξ1q1IT

S

NT

− k1IL

θIL − k2IT

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(50)

Ten,

M � DZG X
0
T, 0􏼐 􏼑 �

− k1 ξ1q1
S

NT

θ − k2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (51)

At E0
T,

M �
− k1 ξ1q1
θ − k2

􏼢 􏼣. (52)

Terefore,

􏽢G XT, ZT( 􏼁 � MZT − G XT, ZT( 􏼁 �

ξ1q1IT 1 −
S

NT

􏼠 􏼡

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (53)

Since 0≤ S≤NT, then 􏽢G(XT, ZT)≥ 0. We also notice
that the matrix M is actually a Metzler matrix since both
of its of diagonal elements are positive. Tus, it clearly
implies that condition (H2) is satisfed. Hence, the
TB-free equilibrium point E0

T is globally asymptotically
stable for RT < 1.

Tis implies that no matter the number of TB cases that
are brought into the population, TB infection shall not
persist in the population.

3.2.4. Endemic Equilibrium Point of the TB-Only Submodel.
Here, we consider the persistence of TB in the population
and determine the TB-endemic equilibrium point. By setting
the derivatives of equation (24) of the TB-only submodel to
zero, we have the TB-endemic equilibrium point E∗T as

E
∗
T �

k1k2N
∗
T

θξ1q1
,
Λξ1q1 + μk1k2

ξ1q1 k1 − η( 􏼁
,
θ Λξ1q1 + μk1k2( 􏼁

ξ1q1k2 k1 − η( 􏼁
􏼠 􏼡, (54)

where

k1 � θ + η + μ and k2 � μ + σ. (55)

Lemma 5. Te TB-only submodel (24) has a unique endemic
equilibrium point if RT > 1.

Proof. If the infection is consistently present in the pop-
ulation, then dIL/dt> 0 and dIT/dt> 0 as used in [12], that
is,

ξ1q1ITS

NT

− k1IL > 0, (56)

θIL − k2IT > 0. (57)

From inequality (56), we have

k1IL < ξ1q1IT

S

NT

. (58)

Using the fact that S/NT ≤ 1, [18] becomes

IL <
ξ1q1IT

k1
. (59)

From inequality (57), we have

IT <
θIL

k2
. (60)

Substituting (58) into (59), we get

IL <
θξ1q1IL

k1k2
, (61)

1<
θξ1q1
k1k2

� RT. (62)

Terefore, an endemic equilibrium point E∗T which is
distinctive does exists when RT > 1. □

3.2.5. Local Stability of the TB-Endemic Equilibrium for the
TB-Only Submodel

Lemma 6. Te local and asymptotic stability of the
TB-endemic equilibrium, E∗T, exists if RT > 1.

Proof. Te local and asymptotic stability of E∗T is established
using the trace and determinant method. Te approach
requires that the trace of the Jacobian matrix J(E∗T) is less
than zero and the determinant of the Jacobian matrix J(E∗T)

is greater than zero.
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Te Jacobian matrix J(ET) of the TB-only submodel is
given by

J ET( 􏼁 �

− λT + μ( 􏼁 η − ξ1q1
S

NT

λT − k1 ξ1q1
S

NT

0 θ − k2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (63)

Evaluating the Jacobian matrix (63) at E∗T gives

J E
∗
T( 􏼁 �

− λ∗T + μ( 􏼁 η
− ξ1q1

RT

λ∗T − k1
ξ1q1
RT

0 θ − k2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(64)

Now,

tr J E
∗
T( 􏼁( 􏼁 � − λ∗ + μ + k1 + k2( 􏼁< 0. (65)

Ten,

det J E
∗
T( 􏼁( 􏼁 � 2

λ∗Tq1θξ1
RT

+
μq1θξ1

RT

+ ηk2λ
∗
T − k1k2λ

∗
T − k1k2μ

�
q1θξ1

RT

2λ∗T + μ( 􏼁 + ηk2λ
∗
T − k1k2 λ∗T + μ( 􏼁

� k1k2 RT − 1( 􏼁 λ∗T + μ( 􏼁 + λ∗T
q1θξ1

RT

+ ηk2􏼠 􏼡.

(66)

Since

tr J E
∗
T( 􏼁( 􏼁 � − λ∗ + μ + k1 + k2( 􏼁< 0 (67)

and the determinant is positive when RT > 1, then the TB-
endemic equilibrium, E∗T, is locally asymptotically stable.

3.2.6. Global Stability of the TB-Endemic Equilibrium Point
for the TB-Only Submodel. To investigate the global stability
of E∗T, we proceed with the same approach used in [12].

Lemma 7. If RT > 1, then the TB-endemic equilibrium E∗T of
TB-only submodel is globally asymptotically stable.

Proof. Te global and asymptotic stability of TB-endemic
equilibrium E∗T is analysed using the following constructed
Lyapunov function by Cai et al. [25].

Let the Lyapunov function be

L S
∗
, I
∗
L, I
∗
T( 􏼁 � L1 S − S

∗
− S
∗
In

S
∗

S
􏼠 􏼡􏼠 􏼡

+ L2 IL − I
∗
L − I
∗
LIn

I
∗
L

IL

􏼠 􏼡􏼠 􏼡

+ L3 IT − I
∗
T − I
∗
TIn

I
∗
T

IT

􏼠 􏼡􏼠 􏼡.

(68)

Taking derivative of the Lyapunov function L with re-
spect to time along the positive solution of the above
equation, we obtain

dL

dt
� L1 1 −

S
∗

S
􏼠 􏼡

dS

dt
+ L2 1 −

I
∗
L

IL

􏼠 􏼡
dIL

dt
+ L3 1 −

I
∗
T

IT

􏼠 􏼡
dIT

dt
,

� L1 1 −
S
∗

S
􏼠 􏼡 Λ + ηIL −

ξ1q1ITS

NT

− μS􏼠 􏼡

+ L2 1 −
I
∗
L

IL

􏼠 􏼡
ξ1q1ITS

NT

− k1IL􏼠 􏼡

+ L3 1 −
I
∗
T

IT

􏼠 􏼡 θIL − k2IT( 􏼁.

(69)

At the TB-endemic equilibrium, we have

Λ �
ξ1q1I
∗
LS
∗

N
∗
T

+ μS
∗

− ηI
∗
L, (70)

k1 �
ξ1q1I
∗
TS
∗

N
∗
TI
∗
L

, (71)

k2 �
θI
∗
L

I
∗
T

. (72)

Substituting (70)–(72) into (69), we get

dL

dt
� L1 1 −

S
∗

S
􏼠 􏼡

ξ1q1I
∗
LS
∗

N
∗
T

+ μS
∗

− ηI
∗
L􏼠

+ ηIL −
ξ1q1ITS

NT

− μS􏼡

+ L2 1 −
I
∗
L

IL

􏼠 􏼡
ξ1q1ITS

NT

−
ξ1q1I
∗
TS
∗

N
∗
TI
∗
L

IL􏼠 􏼡

+ L3 1 −
I
∗
T

IT

􏼠 􏼡 θIL −
θI
∗
L

I
∗
T

IT􏼠 􏼡.

(73)

Expanding and putting together terms of similar signs in
equation (73), we have
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dL

dt
�
ξ1q1I
∗
TS
∗
L1

N
∗
T

+ μS
∗
L1 + ηILL1 −

ξ1q1I
∗
TS
∗2

L1

NTS

−
μS
∗2

L1

S
−
ηILS
∗
L1

S
+
ξ1q1ITSL2

NT

−
ξ1q1ITSI

∗
LL2

ILNT

+ θILL3 −
θILI
∗
TL3

IT

− L1ηI
∗
L

−
ξ1q1ITSL1

NT

− μSL1 +
ηS
∗
I
∗
LL1

S
+
ξ1q1ITS

∗
L1

NT

+ μS
∗
L1 −

ξ1q1I
∗
TS
∗

N
∗
TI
∗
L

ILL2+

ξ1q1I
∗
TS
∗

N
∗
T

L2 −
θI
∗
L

I
∗
T

ITL3 + θI
∗
LL3.

dL

dt
� A − B,

(74)

where

A �
ξ1q1I
∗
TS
∗
L1

N
∗
T

+ μS
∗
L1 + ηILL1 +

ξ1q1ITSL2

NT

+ θILL3 +
ηS
∗
I
∗
LL1

S
+
ξ1q1ITS

∗
L1

NT

+ μS
∗
L1

+
ξ1q1I
∗
TS
∗

N
∗
T

L2 + θI
∗
LL3,

(75)

and

B �
ξ1q1I
∗
TS
∗2

L1

NTS
+
μS
∗2

L1

S
+
ηILS
∗
L1

S
+
ξ1q1ITSI

∗
LL2

ILNT

+
θILI
∗
TL3

IT

+ L1ηI
∗
L +

ξ1q1ITSL1

NT

+ μSL1

+
ξ1q1I
∗
TS
∗

N
∗
TI
∗
L

ILL2 +
θI
∗
L

I
∗
T

ITL3.

(76)

Tus, if A<B, then we obtain that dL/ dt≤ 0, noting that
dL/ dt � 0 if and only if S � S∗, IL � I∗L, IT � I∗T.

Terefore, the largest compact invariant set in
(S∗, I∗L, I∗T) ∈ ΩT: dL/ dt � 0􏼈 􏼉 is singleton E∗T􏼈 􏼉 where E∗T is
the endemic equilibrium point of the system (24). Tus, by
Lasalle’s invariance principle [26], it implies that E∗T is
globally asymptotically stable in ΩT if A<B.

3.3. Analysis of the HCV-Only Submodel. By setting all the
variables concerning TB infection in model system (4) to
zero, we obtain the HCV-only submodel.

Let

IL � IT � IaL � IaT � ICL � ICT � λT � 0. (77)

Ten, the HCV-only submodel is given in the following
equation.

dS

dt
� Λ + πIa − λH + μ( 􏼁S,

dIa

dt
� λHS − (π + α + μ)Ia,

dIC

dt
� αIa − (μ + δ)IC,

(78)

with

S(0) � S0 ≥ 0, Ia(0) � Ia0 ≥ 0, IC(0) � IC0 ≥ 0, (79)

as the initial conditions

NH � S + Ia + IC as the total population (80)

and

λH �
ξ2q2 ϕIa + IC( 􏼁

NH

as the force of infection. (81)

Based on biological considerations, the submodel system
(78) shall be studied in the following region:

Ω � S, Ia, IC( 􏼁 ∈ R3
+: 0≤NH ≤

Λ
μ

􏼨 􏼩. (82)

It can easily be shown that the solutions S, Ia, IC of the
submodel system (78) are positive for t≥ 0 and that the
region ΩH is positively invariant and solutions starting in
ΩH approach, enter, or stay in ΩH.

3.3.1. Te Disease-Free Equilibrium Point and Reproduction
Number for the HCV-Only Submodel. To determine the
HCV-free equilibrium point, we assume that there is no
HCV infection in the community. Now, by equating system
(78) to zero, the HCV-free equilibrium for the HCV-only
submodel is determined as

E
0
H � S

0
, I

0
a, I

0
C􏼐 􏼑 �
Λ
μ

, 0, 0􏼠 􏼡. (83)

Te basic reproduction number, RH, for the submodel
system (78) is defned as the number of secondary HCV
cases produced by one HCV positive human during their
entire life.

Applying the method of the next generation matrix for
calculating the basic reproduction number as proposed in
[23], the matrices for the rate of emergence of new infections
in compartment i, Fi, and for the rate of movement into and
out of compartment i by all other ways, Vi, for the HCV-only
submodel in (78) are obtained as follows.

Te infected compartments are Ia and IC. Tus, we have

Fi �
λHS

0
􏼢 􏼣 (84)

and

Journal of Mathematics 11



Vi �
(π + α + μ)Ia

− αIa +(μ + δ)IC

􏼢 􏼣. (85)

Te matrix of linearization of the new HCV infections,
FH, computed at E0

H is

FH �
ξ2q2ϕ ξ2q2
0 0

􏼢 􏼣, (86)

and that for the rate of movement into and out of the
compartment i by all other ways VH at E0

H is

VH �
(π + α + μ) 0

− α (μ + δ)
􏼢 􏼣. (87)

Tus, the basic reproduction number for the HCV-only
submodel, RH, is given as

RH �
ξ2q2(ϕ(μ + δ) + α)

(π + α + μ)(μ + δ)
. (88)

Terefore, it can be deduced that an increase in HCV
transmission probability q2 and the average number of
HCV contact persons, ξ2, per year, leads to an increase in
the HCV secondary infections. An increase in the average
period a human remains latently infected with HCV
increases the number of secondary HCV infections. In-
crease in the natural recovery of acute HCV humans, π,
leads to reduced number of secondary HCV infections.
Tus, intervention measures should target reducing both
the average number of HCV contact persons, ξ2, and
HCV transmission probability, q2, while increasing the
natural recovery rate of HCV acute humans, π. Tis
conclusion is in agreement with [16].

3.3.2. Local Stability of the HCV-Free Equilibrium Point.
Using Teorem 2 from [23], the subsequent result is
proved.

Lemma 8. Te local and asymptotic stability of HCV
infection-free equilibrium point E0

H exists if RH < 1.

Proof. Te local and asymptotic stability of HCV infection-
free equilibrium exists if and only if all the eigenvalues of the
Jacobian matrix at E0

H have negative real parts. Te Jacobian
matrix J(EH) of the HCV-only submodel (78) at E0

H is given
by

J E
0
H􏼐 􏼑 �

− μ π − ξ2q2ϕ − ξ2q2
0 ξ2q2ϕ − k3 ξ2q2
0 α − k4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (89)

where

k3 � π + α + μ and k4 � μ + δ. (90)

Te eigenvalues of the characteristic equation are given
by

λ1 � − μ, λ2 �
− k4 − ξ2q2ϕ − k3( 􏼁( 􏼁 −

��
Q

√

2

and λ3 �
− k4 − ξ2q2ϕ − k3( 􏼁( 􏼁 +

��
Q

√

2
,

(91)

where
Q � (k4 − (ξ2q2ϕ − k3))

2 + 4((ξ2q2ϕ − k3)k4 + αξ2q2).
Clearly, λ1 and λ2 have negative real parts. However, the real
part of λ3 is negative when

����������������������������������������

k4 − ξ2q2ϕ − k3( 􏼁( 􏼁
2

+ 4 ξ2q2ϕ − k3( 􏼁k4 + αξ2q2( 􏼁

􏽱

2
< 0.

(92)

On simplifying the above inequality, we have

ξ2q2 ϕk4 + α( 􏼁 − k3k< −
k3 + k4 − ξ2q2ϕ( 􏼁

2

4
(93)

But

ξ2q2 ϕk4 + α( 􏼁 � RHk3k4. (94)

Terefore,

RH < 1 −
k3k4 − ξ2q2ϕ( 􏼁

2

4k3k4
􏼠 􏼡< 1. (95)

Hence, E0
H is locally asymptotically stable if and only if

RH < 1.

3.3.3. Global Stability of HCV Infection-Free Equilibrium for
the HCV-Only Submodel

Lemma 9. Te HCV-free equilibrium point E0
H of the model

(78) is globally asymptotically stable if RH ≤ 1.

Proof. Let L2 � Q1Ia + Q2IC be the Lyapunov function that
contains humans who participate in proliferation of the
HCV infection in the community, with Q1 and Q2 being
random positive constants. Te derivative of the Lyapunov
function with respect to time is computed as

dL2

dt
� Q1 λHS − k3Ia( 􏼁 + Q2 αIa − k4Ic( 􏼁

� Q1 ξ2q2 ϕIa + IC( 􏼁
S

N
− k3Ia􏼒 􏼓 + Q2 αIa − k4IC( 􏼁.

(96)

Since S/N≤ 1,
dL2

dt
≤ ξ2q2ϕ − k3( 􏼁 + αQ2( 􏼁Ia + ξ2q2Q1 − k4Q2( 􏼁IC.

(97)

Since constants Q1 and Q2 are arbitrarily chosen and are
positive, we can let Q2 � ξ2q2Q1/k4. Tus, inequality (97)
becomes
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dL2

dt
≤

Q1Ia

k4
ξ2q2 ϕk4 + α( 􏼁 − k3k4( 􏼁. (98)

But

ξ2q2 ϕk4 + α( 􏼁 � k3k4RH. (99)

Tus, inequality (98) simplifes to

dL2

dt
≤Q1k3Ia RH − 1( 􏼁. (100)

Terefore, dL2/dt≤ 0 whenever RH ≤ 1. In addition,
dL2/dt � 0 if either Ia � IC � 0 or RH � 1.

In both cases, the greatest compact invariant set ofΩH �

(S(t), Ia(t), IC(t) ∈ R3
+): dL2/dt � 0􏼈 􏼉 is the singleton E0

H.
Tus, Lasalle’s invariance principle suggests that provided
RH ≤ 1, E0

H is globally asymptotically stable.

3.3.4. Te Endemic Equilibrium Point for the HCV-Only
Submodel. By considering the persistence of HCV infection
in the population, we determine the HCV-endemic equi-
librium point E∗H � (S∗, I∗a , I∗C). Equating the derivatives of
sub model system (78) to zero, we get

Λ + πI
∗
a − λ∗H + μ( 􏼁S

∗
� 0, (101)

λ∗HS
∗

− (π + α + μ)I
∗
a � 0, (102)

αI
∗
a − (μ + δ)I

∗
C � 0, (103)

with

λ∗H �
ξ2q2 ϕI

∗
a + I
∗
C( 􏼁

N
∗
H

(104)

and

N
∗
H � S

∗
+ I
∗
a + I
∗
C. (105)

Tus, the endemic equilibrium point for the HCV-only
submodel is given by

E
∗
H �

N
∗
k3k4

ξ2q2 ϕk4 + α( 􏼁
,
μN
∗
k3k4 − Λξ2q2 ϕk4 + α( 􏼁

ξ2q2 ϕk4 + α( 􏼁 π − k3( 􏼁
,􏼠

αμN
∗
k3k4 − αΛξ2q2 ϕk4 + α( 􏼁

ξ2q2k4 ϕk4 + α( 􏼁 π − k3( 􏼁
􏼡.

(106)

Lemma 10. Whenever RH > 1, then HCV-only submodel
(78) has a distinctive endemic equilibrium point.

Proof. If the infection stays in the population for some time,
then

dIa

dt
> 0 and

dIC

dt
> 0, (107)

as done in Lemma 5, that is,

ξ2q2 ϕIa + IC( 􏼁S

NH

− k3Ia > 0, (108)

and

αIa − k4IC > 0. (109)

From inequality (108), we have

k3Ia < ξ2q2 ϕIa + IC( 􏼁
S

NH

. (110)

Using the fact that S/NH ≤ 1,

Ia <
ξ2q2 ϕIa + IC( 􏼁

k3
. (111)

From inequality (109), we have

IC <
αIa

k4
. (112)

Substituting (112) into (111) and simplifying, we get

1<
αξ2q2

k3k4 − k4ξ2q2ϕ
. (113)

Tus,

RH > 1. (114)

Tus, whenever RH > 1, a distinctive endemic equilib-
rium E∗H exists.

3.3.5. Local Stability of HCV-Endemic Equilibrium for the
HCV-Only Submodel

Lemma 11. If RH > 1, then the endemic equilibrium E∗H of
the system (78) is locally asymptotically stable in ΩH.

Proof. In order to determine the local and asymptotic sta-
bility of E∗H, the Jacobian matrix of HCV-only submodel at
E∗H should have a negative trace and a positive determinant.
Evaluating the Jacobian matrix J(EH) of the HCV submodel
(78) at the endemic equilibrium gives

J E
∗
H( 􏼁 �

− λ∗H + μ( 􏼁 π −
ξ2q2ϕ
RH

􏼠 􏼡 −
ξ2q2
RH

λ∗H
ξ2q2ϕ
RH

− k3􏼠 􏼡
ξ2q2
RH

0 α − k4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (115)

where λ∗H is defned as the rate at which susceptible humans
acquire HCV infection, evaluated at the endemic
equilibrium point.
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Now,

tr J E
∗
H( 􏼁( 􏼁 �

ξ2q2ϕ
RH

− λ∗H + μ + k3 + k4( 􏼁. (116)

For negative trace,

ξ2q2ϕ
RH

− λ∗H + μ + k3 + k4( 􏼁< 0. (117)

From the above inequality, we have

RH λ∗H + μ + k3 + k4( 􏼁

ξ2q2ϕ
> 1 (118)

Next, we consider

det J E
∗
H( 􏼁( 􏼁 �

αμξ2q2
RH

+
k4μξ2q2ϕ

RH

+ k4πλ
∗
H − k3k4 λ∗H + μ( 􏼁.

(119)

Tus, det(J(E∗H))> 0 when

αμξ2q2 + k4μξ2q2ϕ + k + 4πλ∗HRH

ξ2q2 ϕk4 + α( 􏼁 λ∗H + μ( 􏼁
> 1. (120)

However, inequalities (118) and (120) hold when RH > 1.
Hence, the HCV endemic equilibrium, E∗H, is locally

asymptotically stable whenever RH > 1 and unstable
otherwise.

3.3.6. Global and Asymptotic Stability of HCV Endemic
Equilibrium for the HCV-Only Submodel. To establish the
global and asymptotic stability of the HCV-endemic equi-
librium point E∗H, we use the same approach as in Lemma 7.

Lemma 12. If RH > 1, then the global and asymptotic sta-
bility of the HCV endemic equilibrium E∗H of submodel system
(78) exists.

Proof. Let the Lyapunov function U � U(S, Ia, IC) be de-
fned as

U � U1 S − S
∗

− S
∗
In

S
∗

S
􏼠 􏼡􏼠 􏼡

+ U2 Ia − I
∗
a − I
∗
aIn

I
∗
a

Ia

􏼠 􏼡􏼠 􏼡

+ U3 IC − I
∗
C − I
∗
CIn

I
∗
C

IC

􏼠 􏼡􏼠 􏼡.

(121)

Taking derivative of the Lyapunov function U with re-
spect to time along the positive solution of the above system,
we obtain

dU

dt
� U1 1 −

S
∗

S
􏼠 􏼡

dS

dt
+ U2 1 −

I
∗
a

Ia

􏼠 􏼡
dIa

dt

+ U3 1 −
I
∗
C

IC

􏼠 􏼡
dIC

dt
,

� U1 1 −
S
∗

S
􏼠 􏼡 Λ + πIa +

ξ2q2 ϕIa + IC( 􏼁S

NH

− μS􏼠 􏼡

+ U2 1 −
I
∗
a

Ia

􏼠 􏼡
ξ2q2 ϕIa + IC( 􏼁S

NH

− k3Ia􏼠 􏼡

+ U3 1 −
I
∗
C

IC

􏼠 􏼡 αIa − k + 4IC( 􏼁.

(122)
At the HCV endemic equilibrium, we have

Λ � − πI
∗
a +

ξ2q2 ϕI
∗
a + I
∗
C( 􏼁S
∗

N
∗
H

+ μS
∗
,

k3 �
ξ2q2 ϕI

∗
a + I
∗
C( 􏼁S
∗

N
∗
HI
∗
a

,

k4 � α
I
∗
a

I
∗
C

.

(123)

Now, substituting for Λ, k3, and k4, we have

dU

dt
� U1 1 −

S
∗

S
􏼠 􏼡 − πI

∗
a +

ξ2q2 ϕI
∗
a + I
∗
C( 􏼁S
∗

N
∗
H

+ μS
∗

􏼠

+ πIa +
ξ2q2 ϕIa + IC( 􏼁S

NH

− μS􏼡

+ U2 1 −
I
∗
a

IA

􏼠 􏼡
ξ2q2 ϕIa + IC( 􏼁S

NH

−
ξ2q2 ϕI

∗
a + I
∗
C( 􏼁S
∗

N
∗
HI
∗
a

Ia􏼠 􏼡

+ U3 1 −
I
∗
C

IC

􏼠 􏼡 αIa − α
I
∗
a

I
∗
C

IC􏼠 􏼡.

(124)

Expanding and collecting the positive terms together and
the negative terms together, we have

dU

dt
� C − D, (125)

where
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C �
ξ2q2 ϕI

∗
a + I
∗
C( 􏼁S
∗
U1

N
∗
H

+ μS
∗
U1 + πIaU1 +

πI
∗
aS
∗
U1

S

+
ξ2q2 ϕIa + IC( 􏼁S

∗
U1

SNH

+ μS
∗
U1 +

ξ2q2 ϕIa + IC( 􏼁SU2

NH

+
ξ2q2 ϕI

∗
a + I
∗
C( 􏼁S
∗
U2

N
∗
H

+ αIaU3 + αI
∗
aU3,

(126)

and

D � πI
∗
aU1 +

ξ2q2 ϕIa + IC( 􏼁U1

NH

+ μSU1

+
ξ2q2 ϕI

∗
a + I
∗
C( 􏼁S
∗
U1

SN
∗
H

+
μS
∗2

U1

S
+
πIaS
∗
U1

S

+
ξ2q2 ϕI

∗
a + I
∗
C( 􏼁S
∗
IaU2

N
∗
HI
∗
a

+
ξ2q2 ϕIa + IC( 􏼁S

∗
I
∗
aU2

NHIa

+
αI
∗
aICU3

I
∗
C

+
αIaI
∗
CU3

IC

.

(127)

Hence, if C<D, then we obtain that dU/ dt≤ 0, with
dU/ dt � 0 if and only if S � S∗, Ia � I∗a , IC � I∗C.

Terefore, the largest compact invariant set in
(S∗, I∗a , I∗C) ∈ ΩH: dU/ dt � 0􏼈 􏼉 is singleton E∗H􏼈 􏼉, where E∗H
is the endemic equilibrium point of the system (78). Hence,
Lasalle’s invariance principle (Lasalle J, 1976) suggests that
E∗H is globally and asymptotically stable in ΩH if C<D.

3.3.7. Analysis of the TB-HCV Coinfection Model. We then
calculate the disease-free equilibrium point E0 for the
TB-HCV coinfection model system (4).

Te disease-free equilibrium point, E0, for the TB-HCV
coinfection model is given by

E
0

� S
0
, I

0
L, I

0
T, I

0
a, I

0
C, I

0
aL, I

0
CL, I

0
aT, I

0
CT􏼐 􏼑

�
Λ
μ

, 0, 0, 0, 0, 0, 0, 0, 0􏼠 􏼡.

(128)

Next, we consider determining the basic reproduction
number R0 for the TB-HCV coinfection model.

Lemma 1 . Te basic reproduction number R0 for TB-HCV
coinfection model is given by:

R0 � max RT, RH􏼈 􏼉 (129)

Proof. Te basic reproduction number is calculated using
the method of the next generation matrix proposed by [23]
for model system (4). By determining the matrix, Fi, for the
rate of emergence of new cases in component i and the
matrix, Vi, for the rate of movement into and out of
component i by all other means, we get the following:

Fi �

λTS

0

λHS

0

λTIa + λHIL

λTIC

λHIT

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(130)

and

Vi �

θ + η + μ + λH( 􏼁IL

− θIL + μ + σ + λH( 􏼁IT

π + α + μ + λT( 􏼁Ia

− αIa + μ + δ + λT( 􏼁IC

τ1 + μ + β1( 􏼁IaL

− β1IaL + τ2 + μ + δ( 􏼁ICL

− τ1IaL + β2 + μ + d1( 􏼁IaT

− τ2ICL − β2IaT + μ + d2( 􏼁ICT

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (131)

Now, the Jacobian matrix, F, of the new cases at the
disease-free equilibrium, E0, is determined as

F E
0

􏼐 􏼑 �

0 ξ1q1 0 0 0 0 ξ1q1a1 ξ1q1a2

0 0 0 0 0 0 0 0

0 0 ξ2q2ϕ ξ2q2 ξ2q2b1 ξ2q2b2 ξ2q2b3 ξ2q2b4
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(132)

Ten, the Jacobian matrix, V, for the rate of movement
from one compartment to another at disease-free equilib-
rium point, E0, is determined as
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V E
0

􏼐 􏼑 �

(θ + η + μ) 0 0 0 0 0 0 0

− θ (μ + σ) 0 0 0 0 0 0

0 0 (π + α + μ) 0 0 0 0 0

0 0 − α (μ + δ) 0 0 0 0

0 0 0 0 τ1 + μ + β1( 􏼁 0 0 0

0 0 0 0 − β τ2 + μ + δ( 􏼁 0 0

0 0 0 0 − τ1 0 β2 + μ + d1( 􏼁 0

0 0 0 0 0 − τ2 − β2 μ + d2( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (133)

Ten,

FV
− 1

�

ξ1q1θ
(θ + η + μ) μ + σ1( 􏼁

ξ1q1
(μ + σ)

0 0 K
ξ1q1a2τ2

τ2 + μ + δ( 􏼁 μ + d2( 􏼁

ξ1q1 a1 μ + d2( 􏼁 + a2β2( 􏼁

η2 + μ + d1( 􏼁 μ + d2( 􏼁

ξ1q1a2

μ + d2( 􏼁

0 0 0 0 0 0 0 0

0 0
ξ2q2(ϕ(μ + δ) + α)

(π + α + μ)(μ + δ)

ξ2q2
(μ + δ)

T
ξ2q2 b2 μ + d2( 􏼁 + b4τ2( 􏼁

τ2 + μ + δ( 􏼁 μ + d2( 􏼁

ξ2q2 b3 μ + d2( 􏼁 + b4β2( 􏼁

β2 + μ + d1( 􏼁 μ + d2( 􏼁

ξ2q2b4
μ + d2( 􏼁

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(134)

where K � τ1ξ1q1a1(τ2 + μ + δ)(μ+ d2) + ξ1q1a2(β2τ1(τ2 +

μ + δ) + β1τ2(β2 + μ + d1))/(τ1 + μ + β1)(τ2 + μ + δ) (β2 +

μ+ d1)(μ + d2), and

T �
ξ2q2 β2 + μ + d1( 􏼁 μ + d1( 􏼁 b1 τ2 + μ + δ( 􏼁 + b2β1( 􏼁 + ξ2q2 b3τ1 τ2 + μ + δ( 􏼁 μ + d2( 􏼁 + b4 β2τ1 β2τ1 τ2 + μ + δ( 􏼁 + β1τ2 β2 + μ + d1( 􏼁( 􏼁( 􏼁( 􏼁

τ1 + μ + β1( 􏼁 τ2 + μ + δ( 􏼁 β2 + μ + d2( 􏼁 μ + d2( 􏼁

(135)

On solving for the eigenvalues, the dominant eigenvalues
for the matrix FV− 1 are

λ1 �
ξ1q1θ

(μ + σ)(θ + η + μ)
and λ2 �

ξ2q2(ϕ(μ + δ) + α)

(π + α + μ)(μ + δ)
.

(136)

However, these correspond to the reproduction numbers
for the TB infection submodel andHCV infection submodel,
respectively. Tus, the basic reproduction number, R0, for
the TB-HCV coinfection model is given by

R0 � max RT, RH􏼈 􏼉. (137)

Tis implies that if RT >RH, then the dynamics of the
coinfection is dependent on TB and vice versa. It is noted
that in absence of TB, R0 � RH and in absence of HCV,
R0 � RT.

Using Teorem 2 from [23], the subsequent result is
proved.

Lemma 14. Te local and asymptotic stability of the disease-
free equilibrium point, E0, of model system (4) exists if R0 < 1.
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Proof. Te local and asymptotic stability of the disease-free
equilibrium, E0, is determined by computing the Jacobian
matrix of the TB-HCV coinfection model system (4) and
establishing the signs of the eigenvalues of its submatrices, in
the upper left corner, J11, the inner submatrix, J22, and the
lower right hand corner submatrix, J33.

Te local and asymptotically stability exists if and only if
all the eigenvalues of J11, J22, and J33 have negative real parts
[16, 27].

Te Jacobian matrix of the TB-HCV coinfection model
at E0 is given by

J E
0

􏼐 􏼑 �

− μ η ξ1q1 π − ξ2q2ϕ( 􏼁 − ξ2q2 − ξ2q2b1 − ξ2q2b2 − ξ1q1a1 + ξ2q2b3( 􏼁 − ξ1q1a2 + ξ2q2b4( 􏼁

0 − (θ + η + μ) ξ1q1 0 0 0 0 ξ1q1a1 ξ1q1a2

0 θ − (μ + σ) 0 0 0 0 0 0

0 0 0 x1 ξ2q2 ξ2q2b1 ξ2q2b2 ξ2q2b3 ξ2q2b4
0 0 0 α − (μ + δ) 0 0 0 0

0 0 0 0 0 − x2 0 0 0

0 0 0 0 0 β1 − τ2 + μ + δ( 􏼁 0 0

0 0 0 0 0 τ1 0 − β2 + μ + d1( 􏼁 0

0 0 0 0 0 0 τ2 β2 − μ + d2( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(138)

where

x1 � ξ2q2ϕ − (π + α + μ)( 􏼁 and x2 � τ1 + μ + β1( 􏼁. (139)

We now rewrite the Jacobian matrix, J, at E0 as

J E
0

􏼐 􏼑 �

J11 J12 J13

J21 J22 J23

J31 J32 J33,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (140)

where

J11 �

− μ η ξ1q1
0 − (θ + η + μ) ξ1q1
0 θ − (μ + σ)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

J12 �

π − ξ2q2ϕ( 􏼁 − ξ2q2 − ξ2q2b1
0 0 0

0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

J13 �

− ξ2q2b2 − ξ1q1a1 + ξ2q2b3( 􏼁 − ξ1q1a2 + ξ2q2b4( 􏼁

0 ξ1q1a1 ξ1q1a2

0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

J21 �

0 0 0

0 0 0

0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

J22 �

κ ξ2q2 ξ2q2b1
α − (μ + δ) 0

0 0 τ1 + μ + β1( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

J23 �

ξ2q2b2 ξ2q2b3 ξ2q2b4
0 0 0

0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(141)

where κ � (ξ2q2ϕ − (π + α + μ)) and
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J31 �

0 0 0

0 0 0

0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, J32 �

(0 0 β1
0 0 τ1
0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

J33 �

− τ2 + μ + δ( 􏼁 0 0

0 − β2 + μ + d1( 􏼁 0

τ2 τ2 − μ + d2( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(142)

Ten, we continue to determine the eigenvalues of the
submatrices J11, J22, and J33 to establish their signs.

For J33, the corresponding eigenvalues are

− τ2 + μ + δ( 􏼁, − β2 + μ + d1( 􏼁 and − μ + d2( 􏼁. (143)

We observe that all the eigenvalues of J33 are negative.
For J22, the eigenvalues are

ξ2q2ϕ − (π + α + μ), − (μ + δ) and − τ1 + μ + β1( 􏼁. (144)

We observe that the eigenvalues of J22 are all negative
when

ξ2q2ϕ<(π + α + μ) (145)

From which,

ξ2q2ϕ
(π + α + μ)

�
(μ + δ)RH

ϕ(μ + δ) + α
< 1 (146)

since

(π + α + μ) �
ξ2q2(ϕ(μ + δ) + α)

RH(μ + δ)
. (147)

However, inequality (146) is satisfed only if RH < 1.
Finally, the corresponding eigenvalues of J11 are

− μ,
− y1 + y2( 􏼁 −

������������������������

y1 + y2( 􏼁
2

− 4 y1y2 − ξ1q1θ( 􏼁

􏽱

2
and

− y1 + y2( 􏼁 +

������������������������

y1 + y2( 􏼁
2

− 4 y1y2 − ξ1q1θ( 􏼁

􏽱

2
,

(148)

where

y1 � (θ + η + μ) andy2 � (μ + σ). (149)

Te third eigenvalue is a negative when
������������������������

y1 + y2( 􏼁
2

− 4 y1y2 − ξ1q1θ( 􏼁

􏽱

< 0

4ξ1q1θ< 2y1y2 − y
2
1 + y

2
2􏼐 􏼑.

(150)

But

ξ1q1θ � y1y2RT. (151)

Tus,

RT <
− y1 − y2( 􏼁

2

4y1y2
< 1. (152)

Terefore, if inequalities (146) and (152) are satisfed,
then R0 < 1 and hence the disease-free equilibrium point E0

for model system (4) is locally asymptotically stable.

3.3.8. Global Stability of the Disease-Free Equilibrium Point
for TB-HCV Coinfection. To understand the global behav-
iour of the system (4), we deploy an approach used by [24].

Our model system (4) is now expressed in the form

dX

dt
� F(X, Y),

dY

dt
� G(X, Y), G(X, 0) � 0,

(153)

where X � (S) with X ∈ R+ denoting the number of un-
infected humans and Y � (IL, IT, Ia, IC, IaL, ICL, IaT, ICT)

with Y ∈ R8
+ whose components denote the number of

humans infected with TB-only or HCV-only or both TB
and HCV.

Let the disease-free equilibrium of our system (4) be
denoted by E0 � (X0, 0) � (Λ/μ, 0).

We have to establish that the subsequent conditions are
fulflled to guarantee global asymptotic stability.

(C1): For
dX

dt
� F(X, 0), X

0 is globally asymptotically stable,

(C2): G(X, Y) � AY − 􏽢G(X, Y), 􏽢G(X, Y)≥ 0, for (X, Y) ∈ Ω,

(154)
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where A � DYG(X0, 0) is a Metzler matrix (the of diagonal
elements of Metzler are non-negative) and Ω is the region
where the model makes biological meaning.

Tus, when system (153) satisfes conditions (C1) and
(C2), we have the following theorem satisfed.

Theorem 15. Te equilibrium point E0 � (X0, 0) is globally
asymptotically stable point of system (153) provided R0 < 1
and that conditions (C1) and (C2) are satisfed.

Proof. From Lemma 14, E0 is locally asymptotically stable if
R0 < 1.

For the frst condition (C1), that is, the global asymptotic
stability of X0, we have

F(X, Y) � Λ + πIa + ηIL − λT + λH + μ( 􏼁S􏼂 􏼃 (155)

and
dX

dt
� F(X, 0) � Λ − μS, (156)

which is a linear diferential equation. Solving it, we get

S(t) �
Λ
μ

−
Λ
μ

e
− μt

+ S(0)e
− μt

. (157)

Now, as t⟶∞, S⟶Λ/μ regardless of the value of
S(0). Tus, there is convergence in Ω implying that
(C1) holds.

For the second condition (C2), consider

G(X, Y) �

λTS − θ + η + μ + λH( 􏼁IL

θIL − μ + σ + λH( 􏼁IT

λHS − π + α + μ + λT( 􏼁Ia

αIa − μ + δ + λT( 􏼁IC

λTIa + λHIL − τ1 + μ + β1( 􏼁IaL

β1IaL + λTIC − τ2 + μ + δ( 􏼁ICL

τ1IaL + λHIT − β2 + μ + d1( 􏼁IaT

τ2ICL + β2IaT − μ + d2( 􏼁ICT

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (158)

and

A �

− (θ + η + μ) ξ1q1 0 0 0 0 0 0

θ − (μ + σ) 0 0 0 0 0 0

0 0 ξ2q2ϕ − (π + α + μ)( 􏼁 ξ2q2 ξ2q2b1 ξ2q2b2 ξ2q2b3 ξ2q2b4
0 0 α − (μ + δ) 0 0 0 0

0 0 0 0 − τ1 + μ + β1( 􏼁 0 0 0

0 0 0 0 β1 − τ2 + μ + δ( 􏼁 0 0

0 0 0 0 τ1 0 − β2 + μ + d1( 􏼁 0

0 0 0 0 0 τ2 β2 − μ + d2( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(159)

Now,
􏽢G(X, Y) � AY − G(X, Y). (160)

Terefore,

􏽢G(X, Y) �

ξ1q1IT − λTS + λHIL

λHIT

ξ2q2 ϕIa + IC + IaL + ICL + b3IaT + b4ICT( 􏼁 − λHS + λTIa

λTIC

− λTIa − λHIL

− λTIC

− λHIT

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (161)

Since 􏽢G5(X, Y)< 0, 􏽢G6(X, Y)< 0 and 􏽢G7(X, Y)< 0, then
􏽢G(X, Y)≯ 0. Tis implies that condition C2 is not satisfed.
Terefore, the disease-free equilibrium, E0 � (X0, 0), may

not be globally asymptotically stable for R0 < 1. Tis in-
dicates that a backward bifurcation will occur at R0 � 1 as
proved by Feng et al. [28]. Backward bifurcation in biological
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sense implies that a stable endemic equilibrium point shall
exist at the same time with a stable infection-free equilib-
rium point whenever the basic reproduction number is less
than one. Furthermore, when backward bifurcation exists, it
explains a phenomenon due to the disease cannot be
completely exterminated by merely decreasing the basic
reproduction number to less than unity.

3.4. Existence of TB-HCV Coinfection Endemic Equilibrium.
Te endemic equilibrium point for TB-HCV coinfection
model (4) does exist if RT > 1 and RH > 1, that is,
R0 � max RT, RH􏼈 􏼉> 1. However, the explicit computation
of the endemic equilibrium for the TB-HCV coinfection in
terms of the model parameters is analytically clumsy. Tus,
the existence and stability are investigated through nu-
merical simulations.

Te starting values of the variables
S, IL, IT, Ia, IC, IaL, ICL, IaT, and ICT are changed to establish
whether they settle to the same values greater than zero with
time, regardless of the dissimilar starting values of the
variables. In the numerical analysis, the values of the pa-
rameters used are shown in Table 3.

In Figures 2–4, the starting values of humans who are at
a risk of contracting TB and HCV infections, S(0); TB la-
tently infected humans, IL(0); infectious TB humans, IT(0);
acute HCV infectious humans, Ia(0); chronic HCV in-
fectious humans, IC(0); TB latent and acute HCV coinfected
humans, IaL(0); TB latent and chronic HCV coinfected
humans, ICL(0); TB infectious and acute HCV dually in-
fected humans, IaT(0); and TB infectious and chronic HCV
dually infected humans, ICT(0), are changed for each var-
iable at a time while maintaining starting values of the other
variables.

Figure 2 shows that over time, regardless of the starting
value of humans at a risk of contracting TB and HCV in-
fections, the number of humans that remain likely to
contract TB and HCV infections is identical. Similarly, in
Figures 3 and 4, initial values of each of the respective in-
fected and coinfected variables are changed while main-
taining values of other state variables. Over time, it is
revealed that the number of humans left infected and
coinfected is the same. Tis can be concluded that there is
a globally stable endemic equilibrium for the TB-HCV
coinfection model.

4. Sensitivity and Numerical Analysis

4.1. Sensitivity Analysis. With the aim of establishing how to
decrease human death and morbidity rates due to TB in-
fection, HCV infection, and their coinfection, it is imper-
ative to be aware of the signifcance of the given parameters
in the dynamics of the infection. Tis helps us to know the
suitable intervention plan of action that can be taken to curb
the infection. Here, we compute the sensitivity indices of the
basic reproduction number, R0 � max RT, RH􏼈 􏼉, with re-
spect to the parameters in TB-HCV coinfection model (4).
Tis is done using the normalized forward sensitivity index
method (Chitnis et al. [29]).

Defnition 16. Te normalized forward sensitivity index of
a variable, V, that depends diferentiably on a parameter, p,
is defned as a ratio of relative change in V to the relative
change in parameter, p, that is,

i
V
p �

zV

zp
×

p

V
. (162)

Now, since R0 � max RT, RH􏼈 􏼉, the sensitivity analysis of
R0 with respect to each of the parameters is analysed by way
of the sensitivity indices of RT and RH. Tus, implicitly, the
decisive parameters shall entirely be dependent on the
predominant infection.

4.1.1. Sensitivity Indices of RT and RH. Tese are computed
with parameter values from Table 3 using the formula

i
RT

p �
zRT

zp
×

p

RT

and i
RH

p �
zRH

zp
×

p

RH

. (163)

For example, the sensitivity index of RT and RH with
respect to ξ1 and ξ2 are calculated as follows:

i
RT

ξ1
�

zRT

zξ1
×
ξ1
RT

�
q1θ

μ + σ1( 􏼁(θ + η + μ)
×
ξ1
RT

� 1,

i
RH

ξ2
�

zRH

zξ2
×

ξ2
RH

�
q2 ϕ μ + δ2( 􏼁 + α( 􏼁

π + α + μ + δ1( 􏼁 μ + δ2( 􏼁
×

ξ2
RH

� 1.

(164)

Other sensitivity indices for both RT and RH with respect
to the particular parameter are calculated in a similar
manner. Sensitivity indices for bothRT andRH are presented
in Table 4 where the parameters are arranged from the most
sensitive to the least ones.

4.1.2. Sensitivity Indices and Teir Interpretation. From
Table 4, for a parameter with a positive index, it signifes that
the corresponding basic reproduction number decreases (or

Table 3: Te TB-HCV coinfection model parameter values.

Parameter Value Source
μ 0.02 yr− 1 [51]
σ 0.0575 yr− 1 [51]
δ 0.82 yr− 1 [59]
d1 0.6 yr− 1 Assumed
d2 0.8 yr− 1 Assumed
θ 0.25 yr− 1 [60]
α 2 yr− 1 [56]
τ1 0.00013 yr− 1 Assumed
τ2 0.00015 yr− 1 Assumed
β1 0.00014 yr− 1 Assumed
β2 0.00016 yr− 1 Assumed
η 0.4405 yr− 1 [61]
π 0.27 yr− 1 [56]
ϕ 0.20 yr− 1 Assumed
ξ1, ξ2 4, 2 people yr− 1 [60], [59]
q1, q2 0.08, 0.07 yr− 1 [60]
a1, a2 1.002, 1.003 yr− 1 Assumed
b1, b2, b3 and b4 1.001, 1.003, 1.002, 1.005 yr− 1 Assumed
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Figure 2: A graph of susceptible humans against time with only values of susceptible varied.
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Figure 3: A graph of infected humans against time with only values of respective infectives varied.
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increases) with decrease (or increase) in that parameter,
while keeping other parameters unchanged. For example,
i
RT

ξ1
� 1 means that decreasing (or increasing) the value of

efective contact rate with TB-infected humans, ξ1 by say,
10%, while keeping the other parameter values constant,
decreases (or increases) the value of RT by 10%. Similarly,
i
RT

θ � 0.3219 means that increasing (or decreasing) of θ by
10% increases (or decreases) RT by 3.219%.

On the other hand, the negative sign of the sensitivity
index of say RT with respect to σ, η, and μ means an inverse
relationship between the parameters and RT. For instance,
a 20% decrease (or increase) in the value of the natural
recovery rate of TB latent humans, η, while maintaining the
value of the other parameters increases (or decreases) the
value of RT by about 12.4%.

It is noted that the spread of TB infection rises when the
values of ξ1, q1, and θ are increased and the ones of
σ, η, and μ are decreased. Te most sensitive parameters in
TB infection are the efective contact rate with TB-infected
human ξ1 and the likelihood of the contact being well ef-
fcient to give rise to a TB infection, q1 followed by the
disease induced death rate, σ, for humans infected with
active TB. Terefore, the interventions need to target and
aim at reducing the values of ξ1, q1, and the rate of pro-
gression, θ, from latent to infectious TB stage.

It is also noted that the endemicity of HCV infection
increases when the values of the efective contact rate with
HCV-infected human, ξ2, the likelihood of the contact being
well efcient to give rise to HCV infection, q2, and the
progression rate, α, from acute HCV to chronic stage are
increased and those of δ, π, and μ are decreased.

Te most sensitive parameters in HCV infection are ξ2
and q2, followed by α. Tus, interventions to reduce HCV
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Figure 4: A graph of coinfected humans against time with only values of respective coinfectives varied.

Table 4: Numerical values for the sensitivity indices of RT and RH

with respect to parameters.

Basic reproduction number Parameter Sensitivity index

RT

ξ1 +1.0000
q1 +1.0000
σ − 0.7877
η − 0.6239
θ +0.3219
μ − 0.0949

RH

ξ2 +1.0000
q2 +1.0000
δ − 0.7568
α +0.1640
π − 0.0973
ϕ +0.0771
μ − 0.0227
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infection should aim and concentrate on decreasing values
of ξ2, q2, and α.

Terefore, strategies for TB and HCV control should
target behaviours that reduce the contact rates for both
diseases. Such strategies include screening and isolation,
wearing of face masks for TB-infected humans and
screening, sterilization of surgical instruments, and use of
condoms for HCV cases.

Now, substituting for the parameter values in Table 3
into RT and RH, we have RT � 3.816 and RH � 1.378. We
observe that the basic reproduction number R0 of the
TB-HCV coinfection model is concluded as

R0 � max RT, RH􏼈 􏼉 � max 3.816, 1.378{ } � 3.816. (165)

Tus, the dynamics of TB-HCV coinfection is majorly
infuenced by TB.

4.2. Numerical Simulations. In the above sections, we have
discussed the analytical behaviours of the TB-HCV
coinfection model as well as the submodels. Here, we carry
out numerical simulations to support the analytical so-
lutions by studying the TB-HCV coinfection dynamics
without intervention. We assume initial values of the state
variables to be S(0) � 10000, IL(0) � 200, IT(0) � 500,

Ia(0) � 150, IC(0) � 400, IaL(0) � 100, ICL(0) � 100, IaT

(0) � 100 and ICT(0) � 100 and parameter values as de-
scribed in Table 3; the model was simulated using ODE 45
solver coded in MATLAB computer software. Both

situations for R0 > 1 and R0 < 1 are considered with pa-
rameter modifcations.

5. Discussion

It is noted from sensitivity analysis that the efective contact
rate with TB- or HCV-infected humans together with the
likelihood of a contact is well efcient to give rise to TB or
HCV infection are equally likely to increase TB or HCV
infection. Besides, their increase leads to increase in almost
all other parameters.

Terefore, eforts such as screening and isolation,
wearing face masks by TB-infected persons, and avoiding
sharing surgical instruments during blood transfusion
should be undertaken. Also, early treatment needs to be
sought by the latent TB humans and acute HCV humans to
avoid progression to infectious TB and chronic HCV stages,
respectively. In Figure 5, we note that the local stability of the
endemic equilibrium of the TB-HCV coinfection model
does exist since the system goes to equilibria after about
10 years. Tis happens for RT � 3.816> 1 and
RH � 1.378> 1.

In Figure 6, we realize that without treatment for both
TB and HCV, the number of humans susceptible to TB and
HCV decrease asymptotically to the low level in about
5 years. Tis is because more humans continue contracting
TB and HCV with no intervention.

In Figure 7, the number of humans infected with latent
TB, IL, starts increasing and over time decline to a steady
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state at a low level.Tis is due to progression to infectious TB
and natural recovery to susceptible class. Te number of
infectious TB humans, IT, starts by increasing and in the
process decline to a steady state at a low level. Tis is due to
progression to dually infected classes.

Te number of acute HCV humans, Ia, is seen to in-
crease at the start and over time reduce to the steady state.
Due to progression of acute HCV humans to chronic HCV

class, the number of chronic HCV humans, IC, increase at
frst and later on reduce to the steady state.

From Figure 8, the number of humans coinfected with
latent TB and acute HCV begins to rise and later on reduce
asymptotically to a slightly low steady level. Similarly, the
number of infected humans from the dually infected classes
ICL, IaT, and ICT increases in the beginning and over time
reduce asymptotically to slightly lower steady levels.
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ξ1=5
ξ1=7
ξ1=10

4000
3500
3000

2000
2500

1000
500

1500

0

TB
 L

at
en

t H
um

an
s

0 5 10 15 20 25 30
Time (in years)

ξ2=2
ξ2=3
ξ2=5

600

500

400

200

300

100

0

H
CV

 A
cu

te
 H

um
an

s

0 5 10 15 20 25 30
Time (in years)

q1=0.35
q1=0.55
q1=0.7

4000
3500
3000

2000
2500

1000
500

1500

0

TB
 L

at
en

t H
um

an
s

0 5 10 15 20 25 30
Time (in years)

q2=0.1
q2=0.3
q2=0.5

600

500

400

200

300

100

0

H
CV

 A
cu

te
 H

um
an

s

0 5 10 15 20 25 30
Time (in years)

Figure 9: Simulation results showing TB latent humans and HCV acute humans against time with ξ1, ξ2, q1, and q2, respectively, varied.
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From Figures 7 and 8, it is observed that

(1) Coinfected classes, IaL, ICL, IaT and ICT, over time
decline asymptotically to attain stability to levels
higher than those at which monoinfected classes
IL, IT, Ia, and IC attain stability.

(2) Coinfected classes over time take longer to attain
steady state compared to monoinfected classes.
Whereas monoinfected classes take about 5 years, the
dually infected classes take about 10 years to attain
stability.

Figure 9 explains the efect of efective contact rate with
TB- or HCV-infected human on the number of TB latent or
HCV acute humans. It shows that an increase in the efective
contact rate with TB- or HCV-infected humans leads to the
increase in the number of TB latent or HCV acute humans
and vice versa. Relatedly, an increase in the likelihood of the
contact being well efcient to cause a TB or HCV infection
leads to increase in the rate of transmission of TB-HCV
infection and vice versa.

Figure 10 shows the dynamics of humans coinfected with
chronic HCV and latent TB, ICL, chronic HCV and active TB,
ICT, acuteHCV and active TB IaT, and chronicHCV and active
TB, ICT, with changing values of β1, β2, τ1, and τ2, respectively.

Generally, the graphs indicate that an increase in the
rates of progression, say β1, β2, τ1 or τ2 from one coinfected

class leads to increase in the number of coinfected humans in
another class. Tis leads to escalation of the disease among
the humans. However, as time passes by, all the graphs begin
to fy horizontally regardless of the dissimilar values of the
individual parameters. Tus, there is dire need to introduce
the dually infected humans to some interventions, say
treatment.

6. Conclusion

In our study, a TB-HCV coinfection model with no in-
tervention was developed and analysed. Te positivity and
boundedness properties of the model solutions in a bi-
ologically feasible region were verifed. Te steady states of
the submodels and their stability with respect to the basic
reproduction numbers were analysed.

In both submodels, the disease-free equilibrium points
are found to be locally asymptotically stable provided their
respective reproduction numbers are less than unity. Te
unique endemic equilibrium points, ET for the TB submodel
and EH for the HCV submodel, exist whenever their cor-
responding reproduction numbers RT and RH are greater
than unity.

Te disease-free equilibrium, E0 � (X0, 0), may not be
globally asymptotically stable for R0 < 1, indicating a back-
ward bifurcation will occur at R0 � 1 as proved in Feng et al.
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Figure 10: Graphs of humans coinfected with chronic HCV and latent TB, ICL, chronic HCV and active TB, ICT, acute HCV and active TB,
IaT, and chronic HCV and active TB, ICT, against time when β1, β2, τ1, and τ2 are, respectively, varied.
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[28]. However, the equilibrium points, E0 and E∗, for the
TB-HCV coinfection model are both locally asymptotically
stable.

From numerical simulations, the number of TB latent
humans and HCV acute humans and the number of dually
infected humans have a linear relationship with the efective
contact rate of TB or HCV infected humans. Te number is
also proportional to the likelihood of the contact being well
efcient to give rise to TB or HCV infection and the pro-
gression rate from TB latent or HCV acute to TB active or
HCV chronic stage.Terefore, it is necessary to mitigate and
eradicate the infections.

From sensitivity analysis, decreasing the rate of contact
between TB or HCV infected and susceptible humans is the
major efective way to manage the spread of TB or HCV
infection. Hence, strategies such as health education cam-
paigns to communities targeting reducing the transmission
rates of TB and HCV could help to reduce the progression of
latent TB and acute HCV humans to infectious TB and
chronic HCV humans, respectively. Tese could include
screening and isolation, wearing of face masks for TB cases
and screening, sterilization of surgical instruments, and use
of condoms for HCV-infected humans.

Te current model comes with limitations in accessing
real data since there are no mathematical studies that deeply
explore the coinfection burden of TB and HCV. Including
intervention strategies against both TB and HCV infections
in the current model could further improve our un-
derstanding of the control dynamics of both diseases.
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Te data used to support the fndings of this study are in-
cluded within the article.

Conflicts of Interest

Te authors declare that they have no conficts of interest.

References

[1] World Health Organization, “Global tuberculosis report
2022,” Global tuberculosis report 2022, vol. 12, 2022.

[2] J. Jumbo, D. O. Obaseki, and P. O. Ikuabe, “Tuberculosis and
gender parity in a TB referral centre, south–south Nigeria,”
Greener Journal of Medical Sciences, vol. 3, no. 7, pp. 270–275,
2013.

[3] R. Pan, M. T. R. Silva, T. L. N. Fidelis, L. S. Vilela,
C. A. Silveira-Monteiro, and L. C. Nascimento, “Con-
hecimento de profssionais de saúde acerca do atendimento
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