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In this paper, we study the existence and uniqueness of solutions for impulsive Atangana-Baleanu-Caputo (& %%) fractional
integro-differential equations with boundary conditions. Schaefer’s fixed point theorem and Banach contraction principle are
used to prove the existence and uniqueness results. An example is presented to illustrate the results.

1. Introduction

To analyze the fractional dynamics of the provided model,
we use the Atangana-Baleanu fractional operator in the
Caputo sense. Because of their nonlocal characteristics, o/ %
fractional derivatives are used. Many authors studied the
ARBE fractional derivative with applications, see for ex-
ample [1-11]. The prime reason is the theory of fractional
calculus’s quick development, which is used extensively in
many different fields including biology, mathematics,
chemistry, physics, mechanics, medicine, environmental
science, control theory, image and signal processing, finance,
and others, see reference [12-17].

Numerous phenomena encounter abrupt or sudden
changes in their state of motion or rest in real-world issues.
Impulsive differential equations are used to model these
sudden changes. Regarding ordinary derivatives and in-
tegrals, the field that deals with the aforementioned issues

has a strong foundation. Researchers have employed fixed
point theory and nonlinear analysis techniques to find the
results of investigations. The authors have investigated the
theory of these differential equations, see reference [18-22].
However, the study of impulsive problems using the theory
of fractional calculus has also progressed well. A delay
differential equation is a differential equation where the time
derivatives at the current time depend on the solution and
possibly its derivatives at previous times. These models are
used, among other things, in the fields of biology, economics,
and mechanics, see [23]. The delay in this differential
equation comes from the interval between the beginning of
cellular production in the bone marrow and the release of
mature cells into the blood. These equations were developed
to render models more reasonable because many practices
depend on historical data, refer [22, 24, 25]. The fact that
these models only consider past states and not past rates is
one of their drawbacks.
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In [26], Benchohra et al. investigated the existence and
stability results for the following fractional differential
equations:
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“D§ [y () - A (E,v,)] = %(f, nffpgsn(f)), foreacht € [£, 8., ],5=0,1,...n,0<<1,

A(n)|f:fé = 35<¢f;>, 3=1,...n, (1)

() =¢(), ftel[-r0],r>0,
where CD;é is the Caputo fractional derivative,  Yy(f;)=lim;, oy(¥, +h) and y(f;) = lim, ;- y(¥, - h)
B: [0,Z] x PC([-1,0,, R) xR — R,  A: [0,T] xPC  represent the right and left limits of y at ¥ = £, respectively.

([-%,0],R) — R are given functions with 2(0,¢) =0,
3,: PC([-1,0L,R) — R, 9 € PC([-1,0],R), 0=%,<
f<o <, <B =T Ayl =y(£) -y(E), where

In [6], Gul et al. examined the existence of the following
boundary value problems under the o %BE fractional
derivative:

TEEDE [ (t) — Bt, %(t)] = Wt, % (1), 0<p<l,te[0,T]=F,

0 _ -1 (2)
20 = [,
o T(p)
where J#%DY is the o/ BE fractional derivative of order g, In [27], Reunsumrit et al. discussed the existence results

BUB: F x B — R

for the following problem:

SEEDE [ (t) — U (L, %(1)] = B(t, (), Lr(t)), 0<p<l,te[0,T]=F,

A GOy, = Sy (#(8)),

%(0) = JQM

(3)

1
S (v, x(v))dv,

o T(p)

where J#¢DY- is the o/ BE fractional derivative of order g,

UG T xR — R and B,g: § x R — R is a con-
tinuous function. Here, Rfx(t) = jg g(t,7,¢(1))dr, and
S B — R k=12,... m0=t,<t;<t,<...<t, =9,
A}{'t:tk =% () = x(t), and x(t)) = limy,__ . %(t, +h) and

x(t) = limy__ ;- (t, +h) indicates the right and left hand
limits of x(t) at t = t,.

Motivated by the works, consider the impulsive &/ B€
fractional integro-differential equations with boundary
conditions of the form:
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- ARBE
o "D [x(B) -

513(f: c’:f)] =

A (x)'f:f‘s = Sg(;f;):

where § ‘%’gD‘ is the S BE fractional derivative of order ¢,
PB,E: F x R — R and Q: 3 % 9{2 — R is continuous
function.  Here, S;: R—R,3=012..n. 0= £,
<k <t <. <H, —S>A§|f £, —?(er) ¥(E), #(f)=
lim, -z (¥, + 1), and & (f*) = hmt_>0+ (£, + ) represent
the left and right hand limits of g(f)atf =¥, Foranyf € 3,
we represent ¥ by

g(s)=g(f +s)and —r<s<0. (5)

S’BG ( [_r) 0])

(f xf’szfé?}%Dc)

i) =9{), fel[-r0]
(FE-o
f(()) - JO W@ (f, ff)dz,ﬂ,

R) ={e: [-1,0] — R: g e C(E,£,,R), 3=01,..

£e[0,Z]=G,0<¢<1,

(4)

The contents of this paper are organized as follows.
Section 2 provides some fundamental definitions and
lemmas. The existence and uniqueness of fractional implicit
differential equations are studied in Section 3. In Section 4,
the applications are illustrated through an example.

2. Preliminaries

Define

Land 3 ¢(€;)andg(£]), 5 = 1....Lwithg(t;) =

:(5)h

(6)
PBE ([-x, 0], ii{) is a Banach space with the norm
lellps = s[up [z (P,
fe[-1,0
PE([0,TL,R) ={¢: [0,Z] — R: g e 6(¥,£,,,R), 3=0,1,...Land I ¢(€;)and (¥} ), 5 = 1....Lwith¢(E;) = (€]},
(7)
PCE ([0, Z], 5{) is a Banach space with the norm
lelys, = sup [z (B,
£e[0,2] (8)
E={8 [-1,Z] — R: ¢l € PE([-1,0],R) and ¢l ¢ € PE([0,Z], R},
E is a Banach space with the norm
w(E) = Sﬁ(c) J [M]df (10)
lelz = sup [&(B)l. 9) dar 1-
te[-1,2]

Definition 1 (see [27]). Let ¢ € G!(0,2) with ¢ € [0, 1], the
fractional order A ABE derivative is defined as

where M (¢) is called normalization function satisfying
MO)=M(1)=1 and & =Y F/(ci+1) is a Mit-
tag-Leftler function.



Definition 2 (see [27]). The o BE fractional integral for w is
written as
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Then, the solution is given by

— -1
(g = e[ FO =0 g 580 e [ €0 e
(C) M) Jo T ’ (13)
(11)
where 3¢ is the Riemann-Liouville fractional integral. Proof. By using Definition 2, we get
Lemma 3 (see [27]). Consider the following problem:
IEEDi (8) = 4(¢
#¥ (£) = 3 (F), (12)
£(0) = ¥
JOES R #10)
£ 1 (14)
-0 3 (O)de
= fo+ s D+ e |, E- 078

Theorem 4 (see [26]). Let 3 be a Banach space, and
N: 3 — 3 is a completely continuous operator. If the set
E={x € 3: ¥ = ARg, forsome ) € (0,1)} is bounded, then X
has fixed points.

Lemma 5 (see [26]). Let v: [0,Z] — (0,00) be a real
function and w(.) be a nonnegative, locally integrable
function on [0, Z], and suppose there are constants a >0 and
0<b<1 such that

; O

v()<w(¥) + Ka J (£- s)fbw(s)ds, forevery £ € [0, Z].
0

(16)

Lemma 6. Consider the boundary value problem with
nonlinear integral boundary conditions if 3 € L(),

TECDE(E) = 3(F), o<c<LEeS,

t £(0) = FM@W £(£)dt 7
v(f)Sw(f)+aJ (€ - 5)Pv(s)ds (15) o I ’ ’
0
then, the solution ¥ € AC(J) is given by
There exists a constant K = K (b) such that
T(E-o)"
(0= [ LI —srenie g Ss 0 g S )j (t- )30, (18)

Proof. By Lemma 3, we can get the result (18) directly by
replacing ¥, into the boundary condition. O

TECD e (B) - P (L xp)] =

p" (D),

Lemma 7. Consider the nonlinear integral boundary value
problem

A (x)lt:fs = 85 (gfa’)’

E) =9

£(0) = j:

£e[0,2]=5,0<6<1,
(F), fe[-r0] (19)
@-0"¢
fgCaar
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then, the solution of the problem (19) is

i (P(f)> fe [_r, 0])

(T-0" (1-9) ,
)+ [ Eo P saie+ S

¢ ! ¢—1 _* .
TG ), €07 0ar e o],

-0 (1-9). .

£() =
PE (D) + j (et S

Y o Y[ oy o
c)F(c)
¢ j (- (e + 3 5 (5)), e [t 8]
TTOM() £ o tert]
Proof. Assume ¥ satisfies (19). Lemma 6 implies
If £ € [0, 8],
o CDi[x(8) = P(t.xe)] = p7 (B). (21)

£)!
j (2 - (c)) G (¢,8,)de+I 0 Sip” (8)

TE-o7 (1-9)., c .
JO T C(48,)de + Mo’ (f”fm(c)r()J (E-OT p" (0)dr.

£()) - P(Exe)

If £ € [£,,£,], then Lemma 6 implies

(20)

(22)
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2O - P(Ere) =2 (8) - B(Ep ) + u (‘))p*() wt(c)r()J (t-0)"'p" (H)de

_ - (1-9) . S el
- Al £ (6) = B(tme) + S D 0+ o S [ -

O (1)

(-
= sl(gff) +|:J0 ( F(C)) @f(z,”,gf)df
" rl (¢ —f)‘_lp*(f)df] (L=0)e ) 4 r (E— ) p ()de
M(AOT () Jo M (c) (c)F(c) t,
3 T _7 ¢-1 . .
= Sl(ﬁg) + Jo %G(f’ £,)d7 + u (C))P (B + ( C)P (£))

+;r' (t -2)"'p* (O)AE + e J
M () Jo ()F()

(E-0)"'p*(1)de.

If f € [£,,%,], then Lemma 6 implies

t
j (-0 p (O)de

P(Er) = 2(8) - P(Erxe,) + u (C))p*() wz() S

_ -\ (I—C) * S ¢—1 , %
= Atle, + ¥ () = Bt ve) + g 5P (f)+wc)r()j (t- 0" p" ()

T(z-o)"" -9). . 1-
“Sse) | [, a5 (1) - (0) g (8)

(¥) -

I'(¢)
S ¢—1  =* 1%
fm(c)r(c)J (B =) P (a8 v )F(C)J (£:-7) (f)df]

( S) .
mi? O+ fm(c>r()

t
J (E— &) p* (£)de

T (T -p)! -
_ JO ( ) (g(f,gf)df+[51(?f;)+52(xf5)] * (EUZ(CC))

I'(c)
[" @ -ey i rae

P ()

(1
D) ey ()] [W)T()

; K _ -1 = s cl .
“arior ), ) p(f)d”p] ‘e, 0 O

Repeating this process in these ways, the solution # ()
for t € [£,,%,,,], where 3= 1,..., n can be written as

(23)

(24)
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T I _ )% 1 3
(0= prm)+ | Eo e G (R ey’
S X b _ ¢—1, = 9 t _ ¢—=1, *
NTIORG ZIJ GO O oS | , E87 P O (29)

)

+3 S (2 (E)).

i=1

3. Main Results

The following hypotheses are needed to prove the main
results.

(A1) For the constants & , >0, we have forany &,y € 3

IB(E & (0) - PEYE) < K, x(F) -y ()lpe,  (26)

(A2) For constants &,, we
ELELYLY, €Z

have for any

|D (f’ £ (), %, (f)) -Q (f) y, (5,9, (f))| < ﬁn”?ﬁ () -y, (f)"smg + 2n|?2 () -y, (f)| (27)

(A3) For the constants &; >0, we have for any ¢,y € 3
|B,5(0) - Sy ()| < Kils (O -9, Oy (28)
(A4) For the constants &, >0, we have for any ¢,y € 3
IC (£, ¥ (8) - C(Ey (D)< Kslle (V) -y (Bllps.  (29)

(A5) There exists p,qr€GC(S,R,) with r* =
supgeg 7 (¥) <1 such that

IR &) < p(E) +q(Dlzlpe + 7 (E)yl. (30)

For € S, ¥ € PE([-1,0],R) and y eR.
(A6) There exist constants N*, M* >0 such that

|3, ()| < N"llelps + M. (31)

G

For each ¢ € ‘D@([—t,o],ii{), 3=1...,n

(A7) *B is a completely continuous function, and for
each bounded set B,. in E, the set £ — P(I,
¥¢): ¥ € B.. is equicontinuous in PE (F, m) and there
exist two constants d; >0, d,>0 with nN* +d, <1
such that

IB(E )| <dlzlps + da (32)
FeS, 5 e PCE([-1,0],R).

Theorem 8. Under hypotheses (Al)-(A4), the considered
problem (4) has a unique solution if

aS

~

53 1-
®={§n+ K + LI

I'(c+1) M (¢)

Proof. Consider the operator X: 3 — 3 by

K,
M (oI (c) -2,

(n+ 1) +nK; } (33)
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[((F); te[-r,0]

s ¢-1 .
P(Exe) + .[o % (¢, x,)de + a (c))p (¥),
Ne(¥) =41 C) . s ot . - (34)
Z e ZIJ (8= ) %" (21,
S G—1, % ~
mj (£-2) <f>df+Z«s(x(f ). EeS,
[N (z) - X(p)|| = 0. (36)

where p* (£) € € (S, R) be such that

. For any f € §§ and from (33), we have
P (6) = Q(E 5y 7€ D5). (35) yhed

If g, € 3, If £ € [-1,0], then

IR (%) - R(w)ll5 = rﬁ%XINx(f) - Ry (£)]

BE (D) + j%@(mm)dt’ a (C))p*m

< maX

3

& C) * i ¢—1, %
Zl MO ZJ Ti=t) v (e

=1

j (- (Ol + Y 5 (: ()

(c)F(c) =
{’B(f y(¥) + ni2il lg(f,l](f))df u C)5 (¥)
F(c) M (<)
i C)‘ ij (k-0 (0)de
=t W(C)F(c ~

9 ¢ 1o : -
j E- 5 (Ode+ Y S,0(E))
i=1

M ()T (o) J,

— 61
<maXI‘I3(f ¥(0)-P(E n(f))l+J (~F(c) 1€ (2, £(2) - € (£, y(£)lde
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U9 -5 ®] + pr(E)-P(8)

M (¢) :

], o0
9;)’Z(C)F(C) i=1 fi—l '

+

S (1-¢)
~ M (c)

+

P () -p (O)|ds

S ! —1 ] * —x 3 _ _
E-0) ) - (Ode+ Y |S: (2 (6)) - S: (v (5)))],
T MO LJ )T (@) - ()] +;|~sl<x( D) =S (v ()
where p*>5* € @(3) 9\{) such that BY (AZ), we have

pr() = QL p (D),
P () =6y, P (D).

(38)
[p"(6) -9 (O =|Q(E e p" (H) - Q(E v, b7 (1))
< Kyfl#r — el + Lolp” (O =37 (B)]

PN
[P ) =3 ()] < =g e~ Wil

[X(x) - R(y)ll5 < |le - Uf" + iﬁg”f{ - I)lf" + 1o &"ﬁ - Uf“
3 BT (c+1) BETM) 1-8, »e

l-¢ & T’ [
oo 1o g Vel g T g, I el

o = e — ells + nSKi]|ze — vel
m(C)r(C'Fl)l—Sb t tipe ]| &F tlpe

1-8

g¢ 1= as S
g«] u K o (n+1)— +”@t}"?f—nf”m@-
b

St T e T Mo T M@

(37)

(39)
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Hence, we obtain

1N (&) - R(9)lg<Of& - yll3.

Therefore, N is a contraction and (4) has a unique
solution. O

(40)

¢ (B);

I

fe[-r0],

(T-0"
I'(c)

RG] ZJ (8-

C
im(C)F(c)

G (£,8,)dE +

Il
A

The operator X defined in (33) can be written as
R=PE )+ R, (42)

for each f € .

J (E- ) 1p*(z,”)df+ZJ (£(£)), te

Journal of Mathematics

Theorem 9. Assume the hypotheses (A1)-(A7) hold, then
problem (4) has at least one solution.

Proof. We consider the operator N;: 2 — E defined by

(c)*

p () + c) «

3 (1
2w

(41)
)t (D)de

3

i=1

Step 10. X, is continuous. Let the sequence {g,,} such that
¥, —finE

If £ € [-1,0], then

, [N (1) - R, ()] = (43)
We shall use Schaefer’s fixed point theorem to prove that
N has a fixed point. So, we have to show that X is completely For £ € ¥, we have
continuous. Since B is completely continuous by (A7), we
shall show that N, is completely continuous. O
(-0 R
- < [ EL D6 (k) - Crla v g O 0 - v o)
o TI() M ()
3 ) v e+ J (&= 2) b, () -9 ()]d7 (44)
5 M 1 fm(c)r(c) ' "
S -
-7 ¢ )de S (2 () (y(EN
TG ), O B O -8 @]+ Y5 () - S0 ()

where p*,p* € G (5, R) such that
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P, (6) = Q(E &6 9, (E))s
P () =Q(E . p* (D).

By (A2), we have
P (5 = 9" (O] =|Q(E £e> P, (D) - Q(E 20 97 (D)

P, (B -p"(5)],

(45)

< 5%b "me - ff"gp(g + ’gb

* * R
P () =" (O] 7= et el
(46)

11

Since ¥, — ¥ then we get p,; (f) — p*(f) as
m — oo for each £ € J.

Let 9>0 and for each £ € , we have |p;‘n(f)| <9 and
[p™ (B)] <9.

Then, we have

(€= )"y () = p" (O] < (E= ) [0}, ()] +[p" (B)]]
<29(f -9,

(b - 5)06_1

P () —p (O] < (b —5)"|

(47)
P’ (8]

P, ()] +

< 29(fk - S)“_l.

For each f € G, the functions s — 29(f —s)*! and
s — 29(%, - $)* ! are integrable on [0,f], and then the
Lebesgue Dominated Convergence Theorem and (44) imply
that

N (x,,) (B) = Ry (#) (F)| — asm — oo. (48)

Consequently, X, is continuous.

o T(¢) M (c)

IS 3 3
+zm(c>r<<); 0

J (k- (P)de +

Step 11. X, maps bounded sets into bounded sets in E.
Indeed, it is enough to show that for any 7* > 0, there exists
a positive constant g such that for each ¥ e B, =
{¥ € E: lgllz <7}, we have ||X, (¥)lz <p.

For each f € §, we have

T(x-o)" -9 . L (1-9) .
lej Q(ﬁ(ﬂw)dﬁﬁl C)p (f)+z(1 9 t

i=1

M) P ()
(49)

G J'f G—1, % < o~ -
(-0 "p (O)de + Y S (x(E)),

M ()T () £, i=1
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where p* € 6 (5, R) such that where p* = supg.g p(¥) and q" = supg 5 g (). Then,
pTB) =L p (D) (50)
By (A5) and for each f € §, we have
NS RO)]

L FAT (52)
1-r

Thus, (49) implies

<p(®) +q (O] p (B

<p(®) +q®eeys, +r®p ® G

p(B)|

<p gt 7Pt (B),

(T-0)°" (1-9) . (1-9). .
= G (4r)de £,
NCICHEIN RIS s MUR Zl g (0
S[w-omv i g S [La-omyoars Ssam)
Em(q I'(c) M (T () e, g
(53)
o 1-¢ 1-¢ M n MS* L .
B M M
“Tor el + o)+ Magrg+ n?m(c)+fm(c)F(c)+WZ(C)F(C)+;1< )
qs (n+1)(1-¢) MZ(n+1) - .
7F(C+1) (9" +e)+ M MmO + ML +n(N"9"+M") =R
And if £ € [-1,0], then Step 12. N, maps bounded sets into equicontinuous sets of
%, (#) (B)] < ”(P"‘BG’ CONN Let £, ., € (0,2),f,_; <f,, B.. be a bounded set of &

thus as in Step 11, and let g € B,.. Then,

c<max R Jollye | = (55)

IR ()(¢,) - Ry (€, )|

(1_ ) * & (1 C) % G 3 Ei (St S
- e et )+Z P )+—m(c)r(g)2jf”(f,f) Y (O)de
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13
G t (S
*wlf}%-f) O+ 3 5 (6(1,)
(1-9) . S oL
“w? () 21 () - EDZ(C)T(C)Z,[ (B =) ¥ (e
gm0 e - 3 s s(t0) 6
ML (c) Je, Vo7 & i\¥(t1

. . (n+1)
f £ Pt aared Al 2
mrco P () =¥ (Gl + 2 g I () = ()l g (6 -6
+Z|‘~ Si(x(e))]
E={¢ € E: ¥ =AR,(z) forsomel € (0,1)}, (57)
As f5 — fé,l, the right hand side of the above in-
equality tents to 0. Hence, N, is completely continuous is bounded. Let ¥ € E. Then, ¥ = AR, (g) for some A € (0, 1)
Thus, for each ¥ € §, we have
Step 13. A priori bounds. To prove that the set
(T f)“ A1-9) . o A
=AIB(*, +AJ —C(¢,x,)de + f) +
(58)
ZJ (£, - )7 p* (£)de + As
?D?(C)F(c)

G-1, %
m()r()J (t£-2) (f)df+)tZJ ().

i=1
And for each £ € &

3 and by (A5), we have
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_ |Q (5 p" (f))| For each f € § and by (58), (A6) and (A7), and we have

<p(O) +q () ey + 7 Op (B

<p®+q@ftelye +r®P O] (5

<P +q |eelye + 7P

1 * *
< — (P +q "ff”smg)

2 (C‘z - f)c_l 1- G * *
1=y o+ || (el o2 ) + ey gy (¢ 4 elne)

”(1—C) * * ¢-1
+m(l’ +q" lelgpe) + a r)im(g)l“(c)z,[ (& =) (p" +q lelys )de (60)

e (07 (7 g ey (e g ),

Define v by Then, there exists £* € [-1, ¥] such that v(¥) = |z (£")].
o . ) .
v(E) =supf{lg(s)]: se [-r,¥]},Ee[0,Z] (61) ;fefg [0, 2], then by the previous inequality, we have for
(-0 (n+1)(1-¢)

v(f)sdlv([‘)+d2+] (e,v(£) + &,)d¢ + (p* +q"v(B)
0

I'(c) (1=r) (M (o))

S : fi -1 * *
+(1-r*)im(c)F(c);JfH E=O7(p" +q'v(£))de

C
TA=)MOr(Q)

(n+1)(1-¢) . (n+1)(1-g) . . np” ¢
S(dl‘l'mq +1’1N >V(f)+( ml) +nM >+ﬂn(g)r(g)(l—r*)z

J (E= ) (p* +q"v(£))dC +n(N"v(E) + M")
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*

_ C 1 * p aS
£, v(f)df+m(c)r(c)(1 T

a=r )mt(c)nc)zj (&

9 -1 _*
£-2)° £)de
Ta-r )fm(c)F(c)j E=0 g vid)
(62)
1 (n+1)(1-9) , ) (n+1)p" <>
= * * * d AT YRY M * s
S0-d,+ i+ D(A-9/(1-r )M +nN ))( Yo mmeel T Tmora-r)
1 q (n+1) 1
e + T t-7¢ £)dz.
@ N v+ D=9l (1-r)M(g") M(1 - ) ()T ( )J (=)
Applying Lemma 5, we get
1 (n+1)(1-g9) . . (n+1)p° ¢
f = * * * d * M * T
YOS @ T D= IR (g + N ))[ Yo mmel T Tmorea-r)
(63)
i d(n+1)Tq°¢
(1=r)MT ()|
where 8 = 8¢ isa constant. If £* € [—r, 0], then v(f) = ||<p||m, 4. Example
thus for any £ € J, |z]ls < v(£), we get
Consider the following problem:
lgllz < max {1y, A} (64)
Hence, the set E is bounded. By Theorem 4, the fixed
point of N is a solution of problem (4).
( -1 3. _f ABE U2, g
?@%Dé/z[g(f)_tan O] _Fsink(t)] et k oo 52( ) el
35 45 1 +ef 1+]77 D (p)|
£(1/27)
Ag(¥) = ——F—,
10 1/2
+(1/27) (65)
t(H)=¢(), fel[-r0],r>0
( (1-2"' 1
£(0) = ‘([ T ECXP(—?(f))df,
where
tan” [ ()| _Pasing® e’y 1
Ble®) =—7""QExy = T Tl Tl (5 #(£)) = S exp (- (). (66)

AsT=1land¢=1/2,let g,y e 3



16

Journal of Mathematics

ltan”' ¢ ()] tan”" Iy (B)]|

I*B (£, & (F)) = P (£, y (£))] —| 35

1
<—|x(B) -
35IzE()

€ +sinjg ()] € +sm|t)(f)||

35|

y(H);

CLRL B

|Q(f>§»fl)—ﬁ(f,§>ﬁ)| :| 45

@H(f)

Y

45 |11+ef|1+|xll+ln||
(67)
(f)|+@|x(f) y(B)]
-yl |_

|, - ukn<f>| ‘|10+x

and

10+x_

(10+5)(10+19)| "1 7'* vl

1 1 1
€ (£, & (F) - C(ty(F) = ‘geXp(—x(f)) — 55X (9 ()] <& () ~y (D).

Thus, we have &, = 1/35, &, = &, = 19/180, &, =
and choose n=1,T =1, &; = 1/10.

1/25

1-g¢

TC

Now, examine the conditions of the theorems (40) and
attain

s(
®={§“+F(c+1)§§+[9ﬁ(q)+

Therefore, problem (65) has a unique solution.

5. Concluding Remarks

This work has successfully investigated the existence and
uniqueness results for the fractional implicit differential
equation and integral boundary conditions. These types of
problems have numerous applications in mathematical
modeling of human diseases and dynamical problems. Based
on the Banach fixed point theorem and Schaefer’s fixed point
theorem, we have established the adequate results for at least
one solution. The derived results have been justified by
proving a suitable problem. In future, we extend our work
with numerical results [28].

Data Availability

No data were used to support the findings of this study.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Authors’ Contributions

Panjaiyan Karthikeyann, Sadhasivam Poornima, Kuland-
haivel Karthikeyan, Chanon Promsakon, and Thanin Sit-
thiwirattham contributed to the study conception and
design. Material preparation, data collection, and analysis
were performed by Panjaiyan Karthikeyann, Kulandhaivel

M (I (c)

](n+ 1)&+n$§i} — 0.29745< 1. (68)
-

Karthikeyan, Chanon Promsakon, and Thanin Sitthiwirat-
tham. The first draft of the manuscript was written by
Sadhasivam Poornima, Chanon Promsakon. All authors
commented on previous versions of the manuscript. All the
authors read and approved the final manuscript. Panjaiyan
Karthikeyann, Sadhasivam Poornima, Kulandhaivel Kar-
thikeyan, Chanon Promsakon, and Thanin Sitthiwirattham
confirm that all authors meet the ICMJE criteria.

Acknowledgments

This research was funded by National Science, Research and
Innovation Fund (NSRF) and King Mongkut’s University of
Technology North Bangkok with contract no. KMUTNB-
FF-66-54.

References

[1] O. Algahtani, “Comparing the Atangana-Baleanu and
Caputo-Fabrizio derivative with fractional order Allen Cahn

model,” Chaos, Solitons & Fractals, vol. 89, no. 23, pp. 552-
559, 2016.

[2] A.S. Alnahdi, M. B. Jeelani, M. S. Abdo, S. M. Ali, and S. Saleh,
“On a nonlocal implicit problem under Atangana-Baleanu-
Caputo fractional derivative,” Boundary Value Problems,
vol. 104, p. 18, 2021.

[3] S.S. Asma, K. Shah, and T. Abdeljawad, “Stability analysis for

a class of implicit fractional differential equations involving
Atangana-Baleanu fractional derivative,” Advances in Dif-
ference Equations, vol. 395, p. 16, 2021.



Journal of Mathematics

(4]

[5

[6

(8]

(10]

(11]

(12]

[13

[14

(15

(16

(17

(18]

(19]

A.Din, Y. Li, F. M. Khan, Z. U. Khan, and P. Liu, “On analysis
of fractional order mathematical model of Hepatitis B using
Atangana-Baleanu Caputo (ABC) derivative,” Fractals,
vol. 30, no. 01, p. 18, 2022.

S. A. Gulalai, S. Ahmad, F. A. Rihan, A. Ullah, Q. M. Al-
Mdallal, and A. Akgiil, “Nonlinear analysis of a nonlinear
modified KdV equation under Atangana Baleanu Caputo
derivative,” AIMS Mathematics, vol. 7, no. 5, pp. 7847-7865,
2022.

R. Gul, K. Shah, Z. A. Khan, and F. Jarad, “On a class of
boundary value problems under ABC fractional derivative,”
Advances in Difference Equations, vol. 2021, no. 1, p. 437, 2021.
F. Jarad, T. Abdeljawad, and Z. Hammouch, “On a class of
ordinary differential equations in the frame of Atangana-
Baleanu fractional derivative,” Chaos, Solitons ¢ Fractals,
vol. 117, pp. 16-20, 2018.

F. S. Khan, M. Khalid, O. Bazighifan, and A. El-Mesady,
“Euler’s numerical method on fractional DSEK model under
ABC derivative,” Complexity, vol. 2022, Article ID 4475491,
12 pages, 2022.

S. K. Panda, T. Abdeljawad, and C. Ravichandran, “Novel
fixed point approach to Atangana-Baleanu fractional and Lp-
Fredholm integral equations,” Alexandria Engineering Jour-
nal, vol. 59, no. 4, pp. 1959-1970, 2020.

D. Prathumwan, I. Chaiya, and K. Trachoo, “Study of
transmission dynamics of Streptococcus suis infection
mathematical model between pig and human under ABC
fractional order derivative,” Symmetry, vol. 14, no. 10, p. 2112,
2022.

Q. Tul Ain, T. Sathiyaraj, S. Karim, M. Nadeem, and
P. Kandege Mwanakatwe, “ABC fractional derivative for the
alcohol drinking model using two-scale fractal dimension,”
Complexity, vol. 2022, Article ID 8531858, 11 pages, 2022.
A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and
Applications of Fractional Differential Equations, Elsevier,
Amsterdam, Netherlands, 2006.

I. Podlubny, “Fractional differential equations: an in-
troduction to fractional derivatives,” Fractional Differential
Equations, to Methods of Their Solution and Some of Their
Applications, Academic Press, New York, NY, USA, 1998.
C. Ravichandran, K. Logeswari, and F. Jarad, “New results on
existence in the framework of Atangana-Baleanu derivative
for fractional integro differential equations,” Chaos, Solitons
& Fractals, vol. 125, pp. 194-200, 2019.

C. C. Tisdell, “Basic existence and a priori bound results for
solutions to systems of boundary value problems for fractional
differential equations,” The Electronic Journal of Differential
Equations, vol. 2016, no. 84, pp. 1-9, 2016.

P. Bedi, A. Kumar, T. Abdeljawad, and A. Khan, “Study of
Hilfer fractional evolution equations by the properties of
controllability and stability,” Alexandria Engineering Journal,
vol. 60, no. 4, pp. 3741-3749, 2021.

P. Bedi, A. Kumar, T. Abdeljawad, Z. A. Khan, and A. Khan,
“Existence and approximate controllability of Hilfer fractional
evolution equations with almost sectorial operators,” Ad-
vances in Dzﬁerence Equations, vol. 615, 2021.

K. Balachandran, S. Kiruthika, and J. Trujillo, “Existence
results for fractional impulsive integrodifferential equations in
Banach spaces,” Communications in Nonlinear Science and
Numerical Simulation, vol. 16, no. 4, pp. 1970-1977, 2011.
K. Karthikeyan, J. Reunsumrit, P. Karthikeyan, S. Poornima,
D. Tamizharasan, and T. Sitthiwirattham, “Existence results
for impulsive fractional integrodifferential equations in-
volving integral boundary conditions,” Mathematical

(20]

(21]

(22]

(23]

(24]

(25]

[26]

(27]

(28]

17

Problems in Engineering, vol. 2022, Article ID 6599849,
12 pages, 2022.

A. Ali, K. J. Ansari, H. Alrabaiah, A. Aloqaily, and N. Mlaiki,
“Coupled system of fractional impulsive problem involving
power-law kernel with piecewise order,” Fractal and Frac-
tional, vol. 7, no. 6, p. 436, 2023.

C. Xu, S. Tahir, K. J. Ansari, M. Ur Rahman, and F. S. Al-
Duais, “ON systems of fractional-order differential equations
for order 1 < 9 < 2,” Fractals, vol. 31, no. 10, 2023.

M. Izadi, S. Yiuzbasi, and K. J. Ansari, “Application of Vie-
ta—Lucas series to solve a class of Multi-Pantograph delay
differential equations with singularity,” Symmetry, vol. 13,
no. 12, p. 2370, 2021.

V. Wattanakejorn, P. Karthikeyann, S. Poornima,
K. Karthikeyan, and T. Sitthiwirattham, “Existence solutions
for implicit fractional relaxation differential equations with
impulsive delay boundary conditions,” Axioms, vol. 11, no. 11,
p. 611, 2022.

S.Yao, Y. Sughra, M. Inc, M. Inc, and K. J. Ansari, “Qualitative
analysis of implicit delay Mittag-Leffler-Type fractional dif-
ferential equations,” Fractals, vol. 30, no. 08, 2022.

K. Shah, G. Alj, K. J. Ansari, T. Abdeljawad, M. Meganathan,
and B. Abdalla, “On qualitative analysis of boundary value
problem of variable order fractional delay differential equa-
tions,” Boundary Value Problems, vol. 2023, no. 1, p. 55, 2023.
M. Benchohra, S. Bouriah, and J. Henderson, “Existence and
stability results for nonlinear implicit neutral fractional dif-
ferential equations with finite delay and impulses,” Com-
munications on Applied Nonlinear Analysis, vol. 22, no. 1,
pp. 46-67, 2015.

J. Reunsumrit, P. Karthikeyann, S. Poornima, K. Karthikeyan,
and T. Sitthiwirattham, “Analysis of existence and stability
results for impulsive fractional integro-differential equations
involving the atangana-baleanu-caputo derivative under
integral boundary conditions,” Mathematical Problems in
Engineering, vol. 2022, Article ID 5449680, 18 pages, 2022.
T. Sitthiwirattham, R. Gul, K. Shah, I. Mabhariq,
J. Soontharanon, and K. J. Ansari, “Study of implicit-
impulsive differential equations involving Caputo-Fabrizio
fractional derivative,” AIMS mathematics, vol. 7, no. 3,
pp. 4017-4037, 2022.





