Research Article

On Implicit Atangana–Baleanu–Caputo Fractional Integro-Differential Equations with Delay and Impulses

Panjaiyan Karthikeyann,1 Sadhasivam Poornima,1 Kulandhaivel Karthikeyan2, Chanon Promsakon,3,4 and Thanin Sitthiwirattham4,5

1Department of Mathematics, Sri Vasavi College, Erode 638 136, India
2Department of Mathematics, KPR Institute of Engineering and Technology, Coimbatore 641407, Tamil Nadu, India
3Department of Mathematics, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand
4Research Group for Fractional Calculus Theory and Applications, Science and Technology Research Institute, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand
5Mathematics Department, Faculty of Science and Technology, Suan Dusit University, Bangkok 10300, Thailand

Correspondence should be addressed to Kulandhaivel Karthikeyan; karthi_pbd2010@yahoo.co.in and Thanin Sitthiwirattham; thanin_sit@dusit.ac.th

Received 9 August 2023; Revised 28 October 2023; Accepted 25 April 2024; Published 17 May 2024

1. Introduction

To analyze the fractional dynamics of the provided model, we use the Atangana–Baleanu fractional operator in the Caputo sense. Because of their nonlocal characteristics, \mathcal{H} fractional derivatives are used. Many authors studied the \mathcal{H} fractional derivative with applications, see for example [1–11]. The prime reason is the theory of fractional calculus’s quick development, which is used extensively in many different fields including biology, mathematics, chemistry, physics, mechanics, medicine, environmental science, control theory, image and signal processing, finance, and others, see reference [12–17].

Numerous phenomena encounter abrupt or sudden changes in their state of motion or rest in real-world issues. Impulsive differential equations are used to model these sudden changes. Regarding ordinary derivatives and integrals, the field that deals with the aforementioned issues has a strong foundation. Researchers have employed fixed point theory and nonlinear analysis techniques to find the results of investigations. The authors have investigated the theory of these differential equations, see reference [18–22]. However, the study of impulsive problems using the theory of fractional calculus has also progressed well. A delay differential equation is a differential equation where the time derivatives at the current time depend on the solution and possibly its derivatives at previous times. These models are used, among other things, in the fields of biology, economics, and mechanics, see [23]. The delay in this differential equation comes from the interval between the beginning of cellular production in the bone marrow and the release of mature cells into the blood. These equations were developed to render models more reasonable because many practices depend on historical data, refer [22, 24, 25]. The fact that these models only consider past states and not past rates is one of their drawbacks.
In [26], Benchohra et al. investigated the existence and stability results for the following fractional differential equations:

\[cD^\zeta_{t_0} \left[\eta(t) - \mathfrak{H}(f, \eta_t) \right] = \mathfrak{W} \left(f, \eta_t, cD_{t_0}^\zeta \eta(t) \right), \]

\[\Delta \eta|_{t=t_0} = \mathfrak{A} \left(\phi_{t_0} \right), \quad \zeta = 1, \ldots, n, \]

\[\eta(t) = \varphi(t), \quad f \in [-\tau, 0], r > 0, \]

where \(cD^\zeta_{t_0} \) is the Caputo fractional derivative, \(\mathfrak{B}: [0, \mathfrak{T}] \times \mathfrak{P} \to \mathfrak{R} \times \mathfrak{R} \to \mathfrak{R} \) and \(\mathfrak{A}: [0, \mathfrak{T}] \times \mathfrak{P} \to \mathfrak{R} \) are given functions with \(\mathfrak{B}(0, \varphi) = 0, \mathfrak{A}(t, \varphi) = 0 \), \(t_0 < t_1 < \ldots < t_n < t_{n+1} = \mathfrak{T} \). \(\Delta \eta|_{t_0} = \eta(t_0^+) - \eta(t_0^-) \), where

\[\eta(t_0^+) = \lim_{h \to 0^+} \eta(t_0 + h) \quad \text{and} \quad \eta(t_0^-) = \lim_{h \to 0^-} \eta(t_0 - h) \]

represent the right and left limits of \(\eta \) at \(f = t_0 \), respectively.

In [6], Gil et al. examined the existence of the following boundary value problems under the \(\mathcal{A}\mathcal{B}\mathcal{C} \) fractional derivative:

\[\mathcal{A}\mathcal{B}\mathcal{C} D_{t_0}^\phi \left[\kappa(t) - \mathfrak{U}(t, \kappa(t)) \right] = \mathfrak{W} \kappa(t), \quad 0 < \phi \leq 1, t \in [0, \mathfrak{T}] = \mathfrak{T}', \]

\[\kappa(0) = \int_0^t \frac{(\phi - \gamma)^{\phi-1}}{\Gamma(\phi)} \mathfrak{U}(\gamma, \kappa(\gamma)) d\gamma, \]

where \(\mathcal{A}\mathcal{B}\mathcal{C} D_{t_0}^\phi \) is the \(\mathcal{A}\mathcal{B}\mathcal{C} \) fractional derivative of order \(\phi \), \(\mathfrak{B}, \mathfrak{U}, \mathfrak{W} : \mathfrak{T}' \times \mathfrak{R} \to \mathfrak{R} \).

In [27], Reunsumrit et al. discussed the existence results for the following problem:

\[\mathcal{A}\mathcal{B}\mathcal{C} D_{t_0}^\phi \left[\kappa(t) - \mathfrak{U}(t, \kappa(t)) \right] = \mathfrak{W}(t, \kappa(t), \mathfrak{U}(\kappa(t))), \quad 0 < \phi \leq 1, t \in [0, \mathfrak{T}] = \mathfrak{T}', \]

\[\Delta \kappa|_{t=t_k} = \mathfrak{A}_k (\kappa(t_k)), \]

\[\kappa(0) = \int_0^t \frac{(\phi - \gamma)^{\phi-1}}{\Gamma(\phi)} \mathfrak{U}(\gamma, \kappa(\gamma)) d\gamma, \]

where \(\mathcal{A}\mathcal{B}\mathcal{C} D_{t_0}^\phi \) is the \(\mathcal{A}\mathcal{B}\mathcal{C} \) fractional derivative of order \(\phi \), \(\mathfrak{U}, \mathfrak{W} : \mathfrak{T}' \times \mathfrak{R} \to \mathfrak{R} \) and \(\mathfrak{U}, g : \mathfrak{T}' \times \mathfrak{R} \to \mathfrak{R} \) is a continuous function. Here, \(\mathfrak{U}(t) = \int_t^\mathfrak{T} g(t, \tau, \phi(t)) d\tau \), and \(\mathfrak{A}_k : \mathfrak{R} \to \mathfrak{R}, k = 1, 2, \ldots, m = 0 = t_0 < t_1 < t_2 \ldots < t_m = \mathfrak{T} \), \(\Delta \kappa|_{t=t_k} = \kappa(t_k^+) - \kappa(t_k^-) \), and \(\kappa(t_k^+) = \lim_{h \to 0^+} \kappa(t_k + h) \) and \(\kappa(t_k^-) = \lim_{h \to 0^-} \kappa(t_k - h) \) indicate the right and left hand limits of \(\kappa \) at \(t = t_k \).

Motivated by the works, consider the impulsive \(\mathcal{A}\mathcal{B}\mathcal{C} \) fractional integro-differential equations with boundary conditions of the form:
\[\Delta (x)|_{t=t_1} = \mathcal{J}_0 \left(x_{t_1} \right) \]

\[\mathcal{J} : \mathbb{R} \rightarrow \mathbb{R} \] is continuous. Here, \(\mathcal{J}_0 : \mathbb{R} \rightarrow \mathbb{R}, \mathcal{J}_1 = 1, 2, \ldots, n \), and \(0 = t_0 < t_1 < t_2 < \ldots < t_n = T, \Delta y(t) = \frac{y(t) - y(t_1)}{t_2 - t_1}, \) \(y(t_1) = \lim_{t \to t_1} y(t) + r, \) and \(y(t_2) = \lim_{t \to t_2} y(t) + r \) represent the left and right hand limits of \(y(t) \) at \(t = t_1 \). For any \(t \in J \), we represent \(x_t \) by

\[x_t(s) = x(t + s) - x(t) \quad \text{for} \quad -\varepsilon \leq s \leq 0. \]

(5)

\[\Psi C([-\varepsilon, 0], \mathbb{R}) = \{ x : [-\varepsilon, 0] \rightarrow \mathbb{R} : x \in C(t_1, t_1+1, \mathbb{R}), \quad \varepsilon = 0, 1, \ldots, l \} \]

(6)

\[\Psi C([0, T], \mathbb{R}) = \{ x : [0, T] \rightarrow \mathbb{R} : x \in C(t_1, t_1+1, \mathbb{R}), \quad \varepsilon = 0, 1, \ldots, l \} \]

(7)

The contents of this paper are organized as follows. Section 2 provides some fundamental definitions and lemmas. The existence and uniqueness of fractional implicit differential equations are studied in Section 3. In Section 4, the applications are illustrated through an example.

2. Preliminaries

Define

\[\mathcal{M}(0) = M(1) = 1 \quad \text{and} \quad C_{\zeta} = \sum_{\nu=0}^{\infty} \phi_{\nu}/(\zeta + 1) \]

is a Mittag-Leffler function.

\[\mathcal{M}(\zeta) \] is called normalization function satisfying

(10)
Lemma 3 (see [27]). Consider the following problem:

\[D^\alpha_0 f(t) = g(t), \quad f(0) = f_0. \]

(12)

\[f(t) = f_0 + \frac{1 - \zeta}{\Gamma(\zeta)} g(t) + \frac{\zeta}{\Gamma(\zeta)} \int_0^t (t - \ell)^{\zeta-1} g(\ell)d\ell. \]

(14)

Proof. By using Definition 2, we get

Then, the solution is given by

\[f(t) = f_0 + \frac{1 - \zeta}{\Gamma(\zeta)} g(t) + \frac{\zeta}{\Gamma(\zeta)} \int_0^t (t - \ell)^{\zeta-1} g(\ell)d\ell. \]

(13)

Theorem 4 (see [26]). Let \(X \) be a Banach space, and \(\mathbb{N} : X \rightarrow X \) is a completely continuous operator. If the set

\[E = \{ \xi \in X : \xi = \lambda \mathbb{N} \xi, \text{for some } \lambda \in (0, 1) \} \]

is bounded, then \(\mathbb{N} \) has fixed points.

Lemma 5 (see [26]). Let \(\nu : [0, T] \rightarrow (0, \infty) \) be a real function and \(\omega(\cdot) \) be a nonnegative, locally integrable function on \([0, T]\), and suppose there are constants \(a > 0 \) and \(0 < b \leq 1 \) such that

\[\nu(t) \leq \omega(t) + a \int_0^t (t - s)^{-b} \nu(s)ds. \]

(15)

There exists a constant \(K = K(b) \) such that

\[f(t) = \int_0^T \frac{(T - \ell)^{\zeta-1}}{\Gamma(\zeta)} \mathcal{G}(\ell, \nu(\ell))d\ell + \frac{1 - \zeta}{\Gamma(\zeta)} g(t) + \frac{\zeta}{\Gamma(\zeta)} \int_0^t (t - \ell)^{\zeta-1} g(\ell)d\ell. \]

(18)

\[v(t) \leq \omega(t) + K a \int_0^t (t - s)^{-b} \omega(s)ds, \quad \text{for every } t \in [0, T]. \]

(16)

Lemma 6. Consider the boundary value problem with nonlinear integral boundary conditions if \(\zeta \in L(X) \),

\[D^\alpha_0 f(t) = g(t), \quad 0 < \zeta < 1, \quad t \in X, \]

(17)

\[f(0) = \int_0^T \frac{(T - \ell)^{\zeta-1}}{\Gamma(\zeta)} \mathcal{G}(\ell, f(\ell))d\ell, \]

then, the solution \(f \in \mathcal{C}(X) \) is given by

\[f(t) = \int_0^T \frac{(T - \ell)^{\zeta-1}}{\Gamma(\zeta)} \mathcal{G}(\ell, f(\ell))d\ell + \frac{1 - \zeta}{\Gamma(\zeta)} g(t) + \frac{\zeta}{\Gamma(\zeta)} \int_0^t (t - \ell)^{\zeta-1} g(\ell)d\ell. \]

(18)

Lemma 7. Consider the nonlinear integral boundary value problem

\[D^\alpha_0 f(t) = g(t), \quad f(0) = f_T, \quad 0 < \zeta \leq 1, \]

(19)

\[f(t) = \phi(f), \quad f(0) = \phi(f). \]

(19)
then, the solution of the problem (19) is

\[
\begin{align*}
\phi(t), & \quad t \in [-r, 0], \\
\mathcal{P}(t, x_t) + \int_{0}^{t} \frac{(t - \epsilon)^{c-1}}{\Gamma(c)} \mathcal{E}(\epsilon, x_\epsilon) d\epsilon + \frac{(1 - \varsigma)}{\Re(\varsigma)} p^*(t) \\
+ \frac{\varsigma}{\Re(\varsigma) \Gamma(\varsigma)} \int_{0}^{t} (t - \epsilon)^{c-1} \mathcal{P}(\epsilon) d\epsilon, & \quad \text{if } t \in [0, t_1], \\
\mathcal{P}(t, x(t)) + \int_{0}^{t} \frac{(t - \epsilon)^{c-1}}{\Gamma(c)} \mathcal{E}(\epsilon, x_\epsilon) d\epsilon + \frac{(1 - \varsigma)}{\Re(\varsigma)} p^*(t) \\
+ \frac{\varsigma}{\Re(\varsigma) \Gamma(\varsigma)} \int_{0}^{t} (t - \epsilon)^{c-1} \mathcal{P}(\epsilon) d\epsilon + \sum_{i=1}^{k} \mathcal{G}_i(x(t_i)), & \quad \text{if } t \in [t_k, t_{k+1}].
\end{align*}
\]

(20)

Proof. Assume \(t \) satisfies (19). If \(t \in [0, t_1] \), Lemma 6 implies

\[
\mathcal{D}^c_{t_1}[\phi(t) - \mathcal{P}(t, x_t)] = p^*(t). \quad (21)
\]

If \(t \in [t_1, t_2] \), then Lemma 6 implies

\[
\begin{align*}
\mathcal{P}(t, x(t)) + \int_{0}^{t} \frac{(t - \epsilon)^{c-1}}{\Gamma(c)} \mathcal{E}(\epsilon, x_\epsilon) d\epsilon + \frac{(1 - \varsigma)}{\Re(\varsigma)} p^*(t) \\
+ \frac{\varsigma}{\Re(\varsigma) \Gamma(\varsigma)} \int_{0}^{t} (t - \epsilon)^{c-1} \mathcal{P}(\epsilon) d\epsilon + \sum_{i=1}^{k} \mathcal{G}_i(x(t_i)) & \quad \text{if } t \in [t_k, t_{k+1}].
\end{align*}
\]

(22)
\[\begin{align*}
x(t) - \mathcal{P}(t, x_t) &= x(t_1^*) - \mathcal{P}(t_1, x_{t_1}) + \frac{1 - \zeta}{M(t)} p^* (t) + \frac{\zeta}{M(t) \Gamma (t)} \int_{t_1}^{t} (t - \ell)^{c-1} p^* (\ell) d\ell \\
&= \Delta x|_{t=t_1} + x(t_1^*) - \mathcal{P}(t_1, x_{t_1}) + \frac{1 - \zeta}{M(t)} p^* (t) + \frac{\zeta}{M(t) \Gamma (t)} \int_{t_1}^{t} (t - \ell)^{c-1} p^* (\ell) d\ell \\
&= \mathcal{F}_1(x_{t_1}) + \left[\int_0^2 \frac{(\mathcal{F} - \ell)^{c-1}}{\Gamma (\ell)} \mathcal{I} (\ell, \mathcal{Y}) d\ell + (1 - \zeta) \mathcal{P} (t, \mathcal{Y}) \right] + \frac{\zeta}{M(t) \Gamma (t)} \int_{t_1}^{t} (t - \ell)^{c-1} p^* (\ell) d\ell \\
&= \mathcal{F}_1(x_{t_1}) + \left[\int_0^2 \frac{(\mathcal{F} - \ell)^{c-1}}{\Gamma (\ell)} \mathcal{I} (\ell, \mathcal{Y}) d\ell + (1 - \zeta) \mathcal{P} (t, \mathcal{Y}) \right] + \frac{\zeta}{M(t) \Gamma (t)} \int_{t_1}^{t} (t - \ell)^{c-1} p^* (\ell) d\ell. \\
\end{align*} \]

If \(t \in [t_1, t_2] \), then Lemma 6 implies

\[\begin{align*}
x(t) - \mathcal{P}(t, x_t) &= x(t_2^*) - \mathcal{P}(t_2, x_{t_2}) + \frac{1 - \zeta}{M(t)} p^* (t) + \frac{\zeta}{M(t) \Gamma (t)} \int_{t_2}^{t} (t - \ell)^{c-1} p^* (\ell) d\ell \\
&= \Delta x|_{t=t_2} + x(t_2^*) - \mathcal{P}(t_2, x_{t_2}) + \frac{1 - \zeta}{M(t)} p^* (t) + \frac{\zeta}{M(t) \Gamma (t)} \int_{t_2}^{t} (t - \ell)^{c-1} p^* (\ell) d\ell \\
&= \mathcal{F}_2(x_{t_2}) + \left[\int_0^2 \frac{(\mathcal{F} - \ell)^{c-1}}{\Gamma (\ell)} \mathcal{I} (\ell, \mathcal{Y}) d\ell + \mathcal{F}_1(x_{t_1}) + (1 - \zeta) \mathcal{P} (t_2, \mathcal{Y}) \right] + \frac{\zeta}{M(t) \Gamma (t)} \int_{t_2}^{t} (t - \ell)^{c-1} p^* (\ell) d\ell \\
&= \mathcal{F}_2(x_{t_2}) + \left[\int_0^2 \frac{(\mathcal{F} - \ell)^{c-1}}{\Gamma (\ell)} \mathcal{I} (\ell, \mathcal{Y}) d\ell + \mathcal{F}_1(x_{t_1}) + (1 - \zeta) \mathcal{P} (t_2, \mathcal{Y}) \right] + \frac{\zeta}{M(t) \Gamma (t)} \int_{t_2}^{t} (t - \ell)^{c-1} p^* (\ell) d\ell. \\
\end{align*} \]

Repeating this process in these ways, the solution \(x(t) \), for \(t \in [t_1, t_{n+1}] \), where \(g = 1, \ldots, n \) can be written as
The following hypotheses are needed to prove the main results.

(A1) For the constants $\kappa_n > 0$, we have for any $\xi, \eta \in \mathfrak{Z}$

$$|Q(\xi, q_1(\xi), q_2(\xi)) - Q(\xi, q_1(\xi), q_2(\xi))| \leq \kappa_n\|q_1(\xi) - q_1(\xi)\|_{\mathcal{V}} + \kappa_n\|q_2(\xi) - q_2(\xi)\|_{\mathcal{V}}.$$ \hspace{1cm} (27)

(A2) For constants κ_a, we have for any $\xi_1, \xi_2, \eta_1, \eta_2 \in \mathfrak{Z}$

$$|\Psi(\xi, \xi_1(\xi)) - \Psi(\xi, \xi_2(\xi))| \leq \kappa_a\|\xi_1(\xi) - \xi_2(\xi)\|_{\mathcal{V}}.$$ \hspace{1cm} (26)

(A3) For the constants $\kappa_i > 0$, we have for any $\xi, \eta \in \mathfrak{Z}$

$$|\Omega(\xi, q_1(\xi)) - \Omega(\xi, q_1(\xi))| \leq \kappa_i\|q_1(\xi) - q_1(\xi)\|_{\mathcal{V}}.$$ \hspace{1cm} (28)

(A4) For the constants $\kappa_\mathfrak{A} > 0$, we have for any $\xi, \eta \in \mathfrak{Z}$

$$|\mathcal{C}(\xi, q(\xi)) - \mathcal{C}(\eta, q(\xi))| \leq \kappa_\mathfrak{A}\|\xi - \eta\|_{\mathcal{V}}.$$ \hspace{1cm} (29)

(A5) There exists $p, q, r \in \mathfrak{C}(\mathfrak{Z}, \hat{\mathfrak{A}})$ with $r^* = \sup_{\xi \in \mathfrak{Z}} r(\xi) < 1$ such that

$$|\Omega(\xi, q, \xi)| \leq p(\xi) + q(\xi)\|\xi\|_{\mathcal{V}} + r(\xi)\|\xi\|.$$ \hspace{1cm} (30)

For $\xi \in \mathfrak{Z}$, $\eta \in \mathfrak{C}([-\tau, 0], \hat{\mathfrak{A}})$ and $\eta \in \hat{\mathfrak{A}}$.

(A6) There exist constants $N^\ast, M^\ast > 0$ such that

$$|\mathfrak{G}_\tau(\xi)| \leq N^\ast\|\xi\|_{\mathcal{V}} + M^\ast.$$ \hspace{1cm} (31)

For each $\xi \in \mathfrak{C}([-\tau, 0], \hat{\mathfrak{A}})$, $\mathfrak{Z} = 1, \ldots, n$.

(A7) \mathcal{C} is a completely continuous function, and for each bounded set \mathcal{B}, in \mathfrak{Z}, the set $t \mapsto \mathcal{C}(\xi, q(t)) \in \mathfrak{B}$ is equicontinuous in $\mathfrak{C}(\mathfrak{Z}, \mathfrak{R})$ and there exist two constants $d_1 > 0$, $d_2 > 0$ with $nN^\ast + d_1 < 1$ such that

$$|\mathcal{C}(\xi, q(t))| \leq d_1\|\xi\|_{\mathcal{V}} + d_2.$$ \hspace{1cm} (32)

If $\xi \in \mathfrak{Z}$, $\eta \in \mathfrak{C}([-\tau, 0], \hat{\mathfrak{A}})$.

Theorem 8. Under hypotheses (A1)–(A4), the considered problem (4) has a unique solution if

$$\Theta = \left\{ \kappa_n + \frac{\mathfrak{T}^\ast}{\Gamma(\zeta + 1)} \kappa_a + \left[1 - \frac{\mathfrak{T}^\ast}{\Gamma(\zeta + 1)} + \frac{\mathfrak{T}^\ast}{\Gamma(\zeta + 1)} \right] \left(n + 1 \right) \frac{\kappa_a}{1 - \kappa_a} + n\kappa_i \right\} \leq 1.$$ \hspace{1cm} (33)

Proof. Consider the operator $N: \mathfrak{Z} \rightarrow \mathfrak{Z}$ by
\[\mathcal{N}_f(f) = \begin{cases} \varphi(f); & f \in [-r, 0], \\
\mathcal{P}(f, \xi) + \int_0^2 \frac{(\xi - \xi)\langle \ell, f(\xi) \rangle \, d\ell}{\Gamma(\xi)} + \frac{(1 - \xi)}{\mathcal{N}(\xi)} p^*(f), \\
+ \frac{\xi}{\mathcal{N}(\xi) \Gamma(\xi)} \int_{t_1}^{f} (f - \xi)^{\frac{1}{2}} p^*(\xi) \, d\xi + \sum_{i=1}^{\frac{\xi}{\mathcal{N}(\xi) \Gamma(\xi)}} (f, \xi, \mu(\xi)) \end{cases}, \quad f \in \mathcal{Z}. \] (34)

where \(p^*(f) \in \mathcal{E}(\mathcal{Z}, \mathcal{K}) \) be such that

\[p^*(f) = \mathcal{Q}(f, \xi, a_{l_{1,0}} d_{l_{1,0}} (l_{1,0})). \] (35)

If \(f, \eta \in \mathcal{Z} \). If \(f \in [-r, 0] \), then

\[\| \mathcal{N}(f) - \mathcal{N}(\eta) \|_3 = \max_{f \in \mathcal{Z}} |\mathcal{N}_f(f) - \mathcal{N}_\eta(f)| \]

\[\leq \max_{f \in \mathcal{Z}} \left| \mathcal{P}(f, \xi) + \int_0^2 \frac{(\xi - \xi)\langle \ell, f(\xi) \rangle \, d\ell}{\Gamma(\xi)} + \frac{(1 - \xi)}{\mathcal{N}(\xi)} p^*(f) \right. \\
+ \frac{\xi}{\mathcal{N}(\xi) \Gamma(\xi)} \int_{t_1}^{f} (f - \xi)^{\frac{1}{2}} p^*(\xi) \, d\xi + \sum_{i=1}^{\frac{\xi}{\mathcal{N}(\xi) \Gamma(\xi)}} (f, \xi, \mu(\xi)) \left. - \left\{ \mathcal{P}(f, \eta) + \int_0^2 \frac{(\xi - \xi)\langle \ell, f(\xi) \rangle \, d\ell}{\Gamma(\xi)} + \frac{(1 - \xi)}{\mathcal{N}(\xi)} p^*(f) \right. \\
+ \frac{\xi}{\mathcal{N}(\xi) \Gamma(\xi)} \int_{t_1}^{f} (f - \xi)^{\frac{1}{2}} p^*(\xi) \, d\xi + \sum_{i=1}^{\frac{\xi}{\mathcal{N}(\xi) \Gamma(\xi)}} (f, \xi, \mu(\xi)) \left. \right. \right| \right| \\
\leq \max_{f \in \mathcal{Z}} |\mathcal{P}(f, \xi) - \mathcal{P}(f, \eta)| + \int_0^2 \frac{(\xi - \xi)\langle \ell, f(\xi) \rangle \, d\ell}{\Gamma(\xi)} \left| \mathcal{E}(\ell, f(\xi)) - \mathcal{E}(\ell, f(\eta)) \right| \, d\ell \]
\begin{equation}
\begin{aligned}
&+ \left(1 - \varsigma\right) \frac{M(\varsigma)}{\Gamma(\varsigma)} \left|p^*(t) - \tilde{p}^*(t)\right| + \sum_{i=1}^{\lambda} \left(1 - \varsigma\right) \frac{M(\varsigma)}{\Gamma(\varsigma)} \left|p^*(t_i) - \tilde{p}^*(t_i)\right| \\
&+ \frac{c}{M(\varsigma) \Gamma(\varsigma)} \sum_{i=1}^{\lambda} \left|f(t_i - \ell)\right| \left|p^*(\ell) - \tilde{p}^*(\ell)\right| d\ell \\
&+ \frac{c}{M(\varsigma) \Gamma(\varsigma)} \int_{t_i}^{t} \left|f(t - \ell)\right| \left|p^*(\ell) - \tilde{p}^*(\ell)\right| d\ell + \sum_{i=1}^{\lambda} \left|\mathcal{F}(r(t_i)) - \mathcal{F}(\eta(t_i))\right|
\end{aligned}
\end{equation}

where $p^*, \tilde{p}^* \in C(\mathbb{R}, \mathbb{R})$ such that

$$p^*(t) = \mathcal{Q}(t, r, p^*(r)), \quad \tilde{p}^*(t) = \mathcal{Q}(t, \eta, \tilde{p}^*(\eta)).$$

By (A2), we have

$$|p^*(t) - \tilde{p}^*(t)| = |\mathcal{Q}(t, r, p^*(r)) - \mathcal{Q}(t, \eta, \tilde{p}^*(\eta))|$$

$$\leq K_{\mathcal{Q}} \|x_k - y_k\|_{\mathcal{Q}} + L_{\mathcal{Q}} \|p^*(r) - \tilde{p}^*(\eta)\|_{\mathcal{Q}}$$

$$|p^*(t) - \tilde{p}^*(t)| \leq \frac{K_{\mathcal{Q}}}{1 - \lambda} \|x_k - y_k\|_{\mathcal{Q}}$$

$$\|
\begin{aligned}
\mathcal{N}(x) - \mathcal{N}(\eta) \|_{\mathcal{Q}} &\leq \|x_k - y_k\|_{\mathcal{Q}} + \frac{\mathcal{C}}{\Gamma(\varsigma + 1)} K_{\mathcal{Q}} \|x_k - y_k\|_{\mathcal{Q}} + \frac{1 - \varsigma}{M(\varsigma)} \frac{K_{\mathcal{Q}}}{1 - \lambda} \|x_k - y_k\|_{\mathcal{Q}} \\
&+ n \frac{1 - \varsigma}{M(\varsigma) \Gamma(\varsigma + 1)} K_{\mathcal{Q}} \|x_k - y_k\|_{\mathcal{Q}} + \frac{c}{M(\varsigma) \Gamma(\varsigma + 1)} \mathcal{C} \|x_k - y_k\|_{\mathcal{Q}} \\
&+ \frac{c}{M(\varsigma) \Gamma(\varsigma + 1)} \frac{K_{\mathcal{Q}}}{1 - \lambda} \|x_k - y_k\|_{\mathcal{Q}} + n K_{\mathcal{Q}} \|x_k - y_k\|_{\mathcal{Q}}
\end{aligned}
$$

$$\leq \left(K_{\mathcal{Q}} + \frac{\mathcal{C}}{\Gamma(\varsigma + 1)} K_{\mathcal{Q}} + \left[\frac{1 - \varsigma}{M(\varsigma)} + \frac{\mathcal{C}}{M(\varsigma) \Gamma(\varsigma)} \right] (n + 1) \frac{K_{\mathcal{Q}}}{1 - \lambda} + n K_{\mathcal{Q}} \right) \|x_k - y_k\|_{\mathcal{Q}}$$
Hence, we obtain
\[\| N (y) - N (u) \|_3 \leq \Theta \| y - u \|_3. \]
(40)

Therefore, N is a contraction and (4) has a unique solution.

\[N_1 = \begin{cases} \varphi (\bar{t}); & \bar{t} \in [-r, 0], \\ \int_0^2 \frac{\mathcal{G}(\ell, x_r) - \mathcal{G}(\ell, x_r)}{\Gamma (q)} \mathcal{F}(\ell, x_r) \ d\ell + \frac{(1 - c) \mathcal{G}(\ell, x_r)}{\mathcal{M}(c)} \mathcal{F}(\ell, x_r) + \sum_{i=1}^k \frac{(1 - c) \mathcal{G}(\ell, x_r)}{\mathcal{M}(c)} \mathcal{F}(\ell, x_r) \\ + \frac{\mathcal{G}(\ell, x_r)}{\mathcal{M}(c)} \sum_{i=1}^k \int_{t_{i-1}}^{t_i} (t_i - \ell)^{\alpha-1} \mathcal{F}(\ell, x_r) \ d\ell \\ + \frac{\mathcal{G}(\ell, x_r)}{\mathcal{M}(c)} \int_{t_i}^{t_i} (t_i - \ell)^{\alpha-1} \mathcal{F}(\ell, x_r) \ d\ell + \sum_{i=1}^k \mathcal{J}_i (x_r) \end{cases}, \quad \bar{t} \in \mathfrak{F}. \]
(41)

The operator N defined in (33) can be written as
\[N = \mathfrak{P} (f, x (\bar{t})) + N_1, \]
(42)
for each \(\bar{t} \in \mathfrak{F} \).

We shall use Schaefer’s fixed point theorem to prove that N has a fixed point. So, we have to show that N is completely continuous. Since \(\mathfrak{P} \) is completely continuous by (A7), we shall show that \(N_1 \) is completely continuous.

\[|N_1 (y) - N_1 (u)| \leq \int_0^2 \frac{(2 - \ell)^{\alpha-1}}{\Gamma (q)} \left| \mathcal{G}(\ell, x_m) - \mathcal{G}(\ell, x_r) \right| \ d\ell + \frac{(1 - c) \mathcal{G}(\ell, x_r)}{\mathcal{M}(c)} \mathcal{F}(\ell, x_r) + \sum_{i=1}^k \frac{(1 - c) \mathcal{G}(\ell, x_r)}{\mathcal{M}(c)} \mathcal{F}(\ell, x_r) \\ + \frac{\mathcal{G}(\ell, x_r)}{\mathcal{M}(c)} \sum_{i=1}^k \int_{t_{i-1}}^{t_i} (t_i - \ell)^{\alpha-1} \mathcal{F}(\ell, x_r) \ d\ell \\ + \frac{\mathcal{G}(\ell, x_r)}{\mathcal{M}(c)} \int_{t_i}^{t_i} (t_i - \ell)^{\alpha-1} \mathcal{F}(\ell, x_r) \ d\ell + \sum_{i=1}^k \mathcal{J}_i (x_r) \right|, \]
(44)

where \(\mathcal{F}, \mathcal{P} \in \mathcal{C}(\mathfrak{F}, \mathfrak{R}) \) such that

Theorem 9. Assume the hypotheses (A1)–(A7) hold, then problem (4) has at least one solution.

Proof. We consider the operator \(N_1 : \mathfrak{F} \rightarrow \mathfrak{F} \) defined by

Step 10. \(N_1 \) is continuous. Let the sequence \(\{ y_m \} \) such that \(y_m \rightarrow y \) in \(\mathfrak{F} \).

If \(\bar{t} \in [-r, 0] \), then
\[|N_1 (y) - N_1 (u)| = 0. \]
(43)

For \(\bar{t} \in \mathfrak{F} \), we have
Since $\xi_m \to \xi$, then we get $p^*_m(f) \to p^*(f)$ as $m \to \infty$ for each $f \in \mathcal{F}$. Let $\delta > 0$ and for each $f \in \mathcal{F}$, we have $|p^*_m(f)| \leq \delta$ and $|p^*(f)| \leq \delta$.

Then, we have

$$(f - s)^{\alpha - 1}|p^*_m(s) - p^*(f)| \leq (f - s)^{\alpha - 1}[|p^*_m(s)| + |p^*(f)|]$$

$$\leq 2\delta(f - s)^{\alpha - 1}.$$

(47)

For each $f \in \mathcal{F}$, the functions $s \to 2\delta(f - s)^{\alpha - 1}$ and $s \to 2\delta(f_k - s)^{\alpha - 1}$ are integrable on $[0, f]$, and then the Lebesgue Dominated Convergence Theorem and (44) imply that

$$|N_1(f_m)(f) - N_1(f)(f)| \to m \to \infty.$$

Consequently, N_1 is continuous.

$$N_1 = \int_0^1 \left(\frac{\gamma - \ell}{\Gamma(\gamma)} \right)^{\alpha - 1} q(\ell, \xi_\gamma) d\ell + \frac{1 - \gamma}{\Gamma(\gamma)} p^*(f) + \sum_{i=1}^\infty \left(\frac{1 - \gamma}{\Gamma(\gamma)} \right) p^*(f_i)$$

$$+ \frac{\gamma}{\Gamma(\gamma) \Gamma(\gamma)} \sum_{i=1}^\infty \int_{f_{i-1}}^{f_i} (f_i - \ell)^{\alpha - 1} p^*(\ell) d\ell + \frac{\gamma}{\Gamma(\gamma) \Gamma(\gamma)} \int_{f_k}^f (f - \ell)^{\alpha - 1} p^*(\ell) d\ell + \sum_{i=1}^\infty \mathcal{F}(f(f_i)).$$

(49)

Step 11. N_1 maps bounded sets into bounded sets in \mathcal{F}. Indeed, it is enough to show that for any $r^* > 0$, there exists a positive constant φ such that for each $f \in B_{r^*} = \{ f \in \mathcal{F} : \| f \| \leq r^* \}$, we have $\| N_1(f) \| \leq \varphi$.

For each $f \in \mathcal{F}$, we have
where $p^* \in C(\mathcal{F}, R)$ such that
\[
p^*(t) = \mathcal{Q}(t, p^*, (t)).
\]
By (A5) and for each $t \in \mathcal{F}$, we have
\[
|p^*(t)| = |\mathcal{Q}(t, p^*, (t))| \leq p(t) + q(t)\|x_t\|_{\mathcal{P}^*} + r(t)|p^*(t)|
\leq p(t) + q(t)\|x_t\|_{\mathcal{P}^*} + r(t)|p^*(t)|
\leq p(t) + q(t)\tau^* + r(t)|p^*(t)|
\leq p^* + q^*\tau^* + r^*|p^*(t)|.
\]

Step 12. \(N_1\) maps bounded sets into equicontinuous sets of \(\Xi\).

Let \(t_{s-1}, t_s \in (0, \mathcal{T})\), \(t_s < t_{s-1}, B_s\) be a bounded set of \(\Xi\) as in Step 11, and let \(x \in B_s\). Then,
\[
|N_1(\mathcal{F}) - N_1(\mathcal{F}_{s-1})| = \left| \left(\frac{1 - \varsigma}{\mathcal{M}(\varsigma)} \right)p^*(t_s) + \sum_{i=1}^{s} \left(\frac{1 - \varsigma}{\mathcal{M}(\varsigma)} \right)p^*(t_s) + \frac{\varsigma}{\mathcal{M}(\varsigma)\Gamma(\varsigma)} \sum_{i=1}^{s} \int_{t_{s-1}}^{t_i} (t_i - \ell)^{\varsigma-1}p^*(\ell)d\ell \right|
\]

\[
\leq \frac{2\varsigma}{\Gamma(\varsigma+1)} (e_1\|\| + e_2) + M \frac{1 - \varsigma}{\mathcal{M}(\varsigma)} + Mn \frac{1 - \varsigma}{\mathcal{M}(\varsigma)\Gamma(\varsigma)} + M\frac{\mathcal{M}(\varsigma)\Gamma(\varsigma)}{\mathcal{M}(\varsigma)\Gamma(\varsigma)} + n(\lim\|\| + M^*) = R.
\]

And if \(t \in [-\tau, 0]\), then
\[
|N_1(\mathcal{F})| \leq \|\|_{\mathcal{P}^*},
\]

\[
\|N_1(\mathcal{F})\|_{\Xi} \leq \max \left\{ R, \|\|_{\mathcal{P}^*} \right\} = \phi.
\]
\[
+ \frac{\varsigma}{\mathcal{M}(\varsigma)} \int_{t_{i}}^{t} (t_{j} - \ell^{-1} p_{*}(\ell))d\ell + \sum_{i=1}^{\delta} \mathcal{R}(x(t_{i} - 1))
- \frac{(1 - c)}{\mathcal{M}(\varsigma)} p_{*}(t_{j} - 1) - \sum_{i=1}^{\delta} \frac{(1 - c)}{\mathcal{M}(\varsigma)} p_{*}(t_{j} - 1) - \frac{\varsigma}{\mathcal{M}(\varsigma)} \Gamma(\varsigma) \sum_{i=1}^{\delta} \mathcal{R}(x(t_{j} - 1))
\]
\[
\leq \frac{(1 - c)}{\mathcal{M}(\varsigma)} |p_{*}(t_{j}) - p_{*}(t_{j} - 1)| + \sum_{i=1}^{\delta} \frac{(1 - c)}{\mathcal{M}(\varsigma)} |p_{*}(t_{j}) - p_{*}(t_{j} - 1)| + \frac{(n + 1)}{\mathcal{M}(\varsigma)} (t_{j} - t_{j - 1})
+ \sum_{i=1}^{\delta} \mathcal{R}(x(t_{j} - 1)) - \mathcal{R}(x(t_{j} - 1))
\] (56)

As \(t_{j} \rightarrow t_{j - 1} \), the right hand side of the above inequality tends to 0. Hence, \(N_{1} \) is completely continuous.

Step 13. A priori bounds. To prove that the set
\[
E = \{ x \in \Xi: x = \lambda N_{1}(x) \text{ for some } \lambda \in (0, 1) \}
\] is bounded. Let \(x \in E \). Then, \(x = \lambda N_{1}(x) \) for some \(\lambda \in (0, 1) \). Thus, for each \(t \in \mathfrak{H} \), we have

\[
\mathfrak{H} = \lambda |\mathfrak{M}(t, x_{1})| + \lambda \int_{0}^{t} \frac{(x - t^{-1} p_{*}(t^{-1} p_{*}(t))d\ell} + \frac{\lambda (1 - c)}{\mathcal{M}(\varsigma)} p_{*}(t) + \sum_{i=1}^{\delta} \frac{\lambda (1 - c)}{\mathcal{M}(\varsigma)} p_{*}(t_{i})
+ \frac{\lambda c}{\mathcal{M}(\varsigma)} \Gamma(\varsigma) \sum_{i=1}^{\delta} \mathcal{R}(x(t_{i} - 1))
\] (58)

And for each \(f \in \mathfrak{H} \) and by (A5), we have
\[|p^*(f)| = |\Omega(f, x_0, p^*(f))| \]
\[\leq p(f) + q(f)\|x_0\|_{\psi e} + r(f)\|p^*(f)| \]
\[\leq p(f) + q(f)\|x_0\|_{\psi e} + r(f)\|p^*(f)| \]
\[\leq p^* + q^*\|x_0\|_{\psi e} + r^*\|p^*(f)| \]
\[|p^*(f)| \leq \frac{1}{1-r^*}\left(p^* + q^*\|x_0\|_{\psi e}\right) \] \hspace{1cm} (59)

\[|x| \leq d_i\|x_0\|_{\psi e} + d_2 + \int_{0}^{2} \frac{(\mathcal{E} - \ell)^{i-1}}{\Gamma(\ell)} \left(c_1\|x_0\|_{\psi e} + c_2\right) d\ell + \frac{1 - \zeta}{1 - r^*}\left(p^* + q^*\|x_0\|_{\psi e}\right) \]
\[+ \frac{n(1 - \zeta)}{1 - r^*}\left(p^* + q^*\|x_0\|_{\psi e}\right) + \frac{\zeta}{(1 - r^*)\mathcal{M}(\ell)\Gamma(\ell)} \sum_{i=1}^{\infty} \int_{t_i}^{t_{i+1}} (\mathcal{E} - \ell)^{i-1}\left(p^* + q^*\|x_0\|_{\psi e}\right)d\ell \]
\[+ \frac{\zeta}{(1 - r^*)\mathcal{M}(\ell)\Gamma(\ell)} \int_{t_i}^{\infty} (\mathcal{E} - \ell)^{i-1}\left(p^* + q^*\|x_0\|_{\psi e}\right)d\ell + n\left(N^*\|x_0\|_{\psi e} + M^*\right). \] \hspace{1cm} (60)

Define \(v\) by
\[v(f) = \sup\{|x(s)|: s \in [-\varrho, \varrho], f \in [0, \varrho]\}. \] \hspace{1cm} (61)
Then, there exists \(f^* \in [-\varrho, \varrho]\) such that \(v(f) = |x(f^*)|\).
If \(f \in [0, \varrho]\), then by the previous inequality, we have for \(f \in \mathfrak{F}\)
\[v(f) \leq d_1v(f) + d_2 + \int_{0}^{2} \frac{(\mathcal{E} - \ell)^{i-1}}{\Gamma(\ell)} \left(c_1v(\ell) + c_2\right) d\ell + \frac{(n + 1)(1 - \zeta)}{1 - r^*}\left(p^* + q^*v(f)\right) \]
\[+ \frac{\zeta}{(1 - r^*)\mathcal{M}(\ell)\Gamma(\ell)} \sum_{i=1}^{\infty} \int_{t_i}^{t_{i+1}} (\mathcal{E} - \ell)^{i-1}\left(p^* + q^*v(\ell)\right)d\ell \]
\[+ \frac{\zeta}{(1 - r^*)\mathcal{M}(\ell)\Gamma(\ell)} \int_{t_i}^{\infty} (\mathcal{E} - \ell)^{i-1}\left(p^* + q^*v(\ell)\right)d\ell + n\left(N^*v(f) + M^*\right) \]
\[\leq \left(d_1 + \frac{(n + 1)(1 - \zeta)}{1 - r^*}\mathcal{M}(\ell)\|x_0\|_{\psi e} + nN^*\right)v(f) + \left(d_2 + \frac{(n + 1)(1 - \zeta)}{1 - r^*}\mathcal{M}(\ell)p^* + nM^*\right) + \frac{np^*}{\mathcal{M}(\ell)\|x_0\|_{\psi e}}\mathcal{M}(\ell)\|x_0\|_{\psi e}. \]
\[
+ \frac{\zeta}{(1-r^*) \mathcal{M}(\varsigma)} \sum_{i=1}^{\lambda} (f_i - \ell)^{-1} q^* v(\ell) d\ell + \frac{p^*}{\mathcal{N}(\varsigma) \Gamma(\gamma) (1-r^*)^{\zeta}}
\]

\[
+ \frac{\zeta}{(1-r^*) \mathcal{M}(\varsigma) \Gamma(\gamma)} \int_{t_0}^{t} (f - \ell)^{-1} q^* v(\ell) d\ell
\]

\[
\leq \frac{1}{1 - (d_1 + (n+1)(1-c)/(1-r^*)) \mathcal{M}(\varsigma) q^* + nN^*) \left(d_2 + (n+1)(1-c)/(1-r^*) \mathcal{M}(\varsigma) p^* + nM^* + (n+1) \mathcal{M}(\varsigma) \Gamma(\gamma) (1-r^*)^{\zeta} \right)
\]

\[
\leq \frac{1}{1 - (d_1 + nN^* + (n+1)(1-c)/(1-r^*) \mathcal{M}(\varsigma) q^*)} \mathcal{M}(\varsigma)(1-r^*) \Gamma(\gamma) \int_{0}^{t} (f - \ell)^{-1} v(\ell) d\ell.
\]

Applying Lemma 5, we get

\[
v(\ell) \leq \frac{1}{1 - (d_1 + (n+1)(1-c)/(1-r^*) \mathcal{M}(\varsigma) q^* + nN^*)} \left[d_2 + (n+1)(1-c)/(1-r^*) \mathcal{M}(\varsigma) p^* + nM^* + (n+1) \mathcal{M}(\varsigma) \Gamma(\gamma) (1-r^*)^{\zeta} \right]
\]

\[
\times \left[1 + \frac{\delta(n+1)2q^* c}{(1-r^*) \mathcal{M}(\varsigma) \Gamma(\gamma)} \right],
\]

where \(\delta = \delta \varsigma \) is a constant. If \(f^* \in [-\tau, 0] \), then \(v(\ell) = \| \phi \|_{\mathcal{N}^*} \), thus for any \(f \in \mathcal{F} \), \(\| f \|_{\mathcal{F}} \leq v(\ell) \), we get

\[
\| f \|_{\mathcal{F}} \leq \max \left\{ \| f \|_{\mathcal{N}^*}, A \right\}.
\]

4. Example

Consider the following problem:

\[
\begin{align*}
\phi(t) & = \frac{\tan^{-1}|\phi(t)|}{35} = \frac{\phi^3 + \sin|\phi(t)|}{45} - \frac{e^{-t}}{11 + e^{-t} + 1 + \phi(t)} \left| \mathcal{D}^{1/2}_t \phi(t) \right|, \\
\Delta \phi(t) & = \frac{\phi(1/2)}{10 + \phi(1/2)}, \\
\phi(t) & = \phi(0), \quad t \in [-\tau, 0], \tau > 0 \\
\phi(0) & = \frac{1}{\Gamma(\gamma)} \left(1 - \ell \right)^{-1/2} \frac{1}{25} \exp \left(-\phi(\ell) \right) d\ell,
\end{align*}
\]

where

\[
\mathcal{P} (f, \phi(t)) = \frac{\tan^{-1}|\phi(t)|}{35}, \quad \mathcal{Q} (f, \phi, \eta) = \frac{\phi^3 + \sin|\phi(t)|}{45} - \frac{e^{-t}}{11 + e^{-t} + 1 + |\eta|} \left| \mathcal{D}^{1/2}_t \phi(t) \right|, \\
\mathcal{E} (f, \phi(t)) = \frac{1}{25} \exp \left(-\phi(t) \right).
\]

As \(\mathcal{F} = 1 \) and \(\varsigma = 1/2 \), let \(\phi, \eta \in \mathcal{F} \).
\[|\mathbf{P}(f, \eta(f)) - \mathbf{P}(f, \eta(f))| = \left| \tan^{-1}|f| - \tan^{-1}|\eta| \right| \]
\[\leq \frac{1}{35} |f - \eta|, \]
\[|\mathcal{Q}(f, \eta) - \mathcal{Q}(f, \bar{\eta})| = \left| \frac{t^3 + \sin|f|}{45} - \frac{t^3 + \sin|\eta|}{45} + \frac{e^{-t}}{11 + e^t} \frac{\|f\|}{1 + \|f\|} \right| \]
\[\leq \frac{19}{180} |f - \eta| + \frac{19}{180} |\bar{f} - \bar{\eta}| \]
\[|\mathcal{H}_0 \eta - \mathcal{H}_0 \eta| = \left| \frac{f}{10 + f} - \frac{\eta}{10 + \eta} = \frac{10|f - \eta|}{(10 + f)(10 + \eta)} \right| \leq \frac{1}{10} |f - \eta| \]
and
\[|\mathcal{E}(f, \eta(f)) - \mathcal{E}(f, \eta(f))| = \frac{1}{25} \exp(-|f|) - \frac{1}{25} \exp(-|\eta|) \leq \frac{1}{25} |f - \eta|. \]

Thus, we have \(\mathcal{R}_n = 1/35, \mathcal{R}_n = \mathcal{Q}_n = 19/180, \mathcal{R}_n = 1/25 \) and choose \(n = 1, \mathcal{I} = 1, \mathcal{R}_1 = 1/10. \)

Now, examine the conditions of the theorems (40) and attain

\[\Theta = \left\{ \mathcal{R}_n + \frac{\mathcal{Q}_n}{\Gamma(\zeta + 1)} + \left[\frac{1 - \zeta}{\mathcal{R}_n(\zeta + 1)} + \frac{\zeta}{\mathcal{Q}_n(1 + \zeta)} \right] (n + 1) \right\} = 0.29745 < 1. \]

Therefore, problem (65) has a unique solution.

5. Concluding Remarks
This work has successfully investigated the existence and uniqueness results for the fractional implicit differential equation and integral boundary conditions. These types of problems have numerous applications in mathematical modeling of human diseases and dynamical problems. Based on the Banach fixed point theorem and Schaefer’s fixed point theorem, we have established the adequate results for at least one solution. The derived results have been justified by proving a suitable problem. In future, we extend our work with numerical results [28].

Data Availability
No data were used to support the findings of this study.

Conflicts of Interest
The authors declare that they have no conflicts of interest.

Authors’ Contributions
Panjaiyan Karthikeyann, Sadhasivam Poornima, Kulandhaivel Karthikeyan, Chanon Promsakon, and Thanin Sithiwiwatratn contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Panjaiyan Karthikeyann, Kulandhaivel Karthikeyan, Chanon Promsakon, and Thanin Sithiwiwatratn contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Panjaiyan Karthikeyann, Kulandhaivel Karthikeyan, Chanon Promsakon, and Thanin Sithiwiwatratn confirmed that all authors meet the ICMJE criteria.

Acknowledgments
This research was funded by National Science, Research and Innovation Fund (NSRF) and King Mongkut’s University of Technology North Bangkok with contract no. KMUTNB-FF-66-54.

References

