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In this paper, we propose the notion of the bipolar parametric metric space and prove fixed point theorems. The proved results
generalize and extend some of the well-known results in the literature. An example and application to support our result is

presented.

1. Introduction

Fixed point theory plays a vital role in applications of many
fields of mathematics. Discovering FPs (fixed points) of
generalized contraction maps has become an exciting field of
study in the FP theory. Many researchers have recently
released articles on FP theorems and applications in a variety
of ways. One of the most recent topics in the FP theory is the
presence of FPs in contraction maps in BPMSs (bipolar
metric spaces), which can be thought of as generalizations of
the Banach contraction principle. In 2016, Mutlu and Gurdal
[1] have developed the concepts of BPMS, and they in-
vestigated certain basic FP and coupled FP results for co-
variant and contravariant maps under contractive
conditions; see [1, 2]. In BPMSs, a lot of significant work has
been done (see [3-9]). In 2021, Gaba et al. [10] proved FP

theorems on BPMS. Mani et al. [11] developed the concept
and proved coupled fixed point theorems in €* algebra-
valued bipolar metric spaces (see [12-14]).

The notion of the parametric metric space was in-
troduced in 2014. Rao et al. [15] presented parametric S-
metric spaces and proved common FP theorems. In 2016,
Krishnakumar and Nagaral [16] extended the Banach fixed
point theorem to continuous mappings on complete para-
metric b-metric spaces. Tas and Ozgur [17] introduced
parametric N, -metric spaces, obtained some FP results, and
proved a fixed-circle theorem on a parametric N, -metric
space as an application. Younis and Bahuguna [18] initiated
the concept of controlled graphical metric type spaces, with
integrate-controlled metric type spaces, extended b-metric
type spaces, and graphical type spaces; also, finding a non-
linear model of a rocket’s ascending motion as an
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application. In 2023, Younis et al. [19] developed FP the-
orems in graphical spaces to show a solution to fourth-order
two-point boundary value problem expressing elastic beam
deformations. Smarandache et al. [20] demonstrated the
quadruple neutrosophic theory and its applications. Ahmad
et al. [21] demonstrated FP solutions in graphical bipolar b-
metric spaces, applying covariant and contravariant map-
ping contractions. In this paper, we present the notion of
BPPMS (bipolar parametric metric space) and prove FP
theorems on BPPMS.

2. Preliminaries

In this section, we present some basic definitions. Mutlu and
Gurdal [1] proposed bipolar metric spaces and proved fixed
point theorems.

Definition 1 (see [1]). Let & and A be nonempty sets and
N: &x A — R* be a function s.t. (such that)
(a) If N(0,%) =0, then 0 =4, for all (0,1) € & X A.
(b) If 0 = 1, then X(o,7) =0, for all (o,7) € Ex A
(c) N(o,71) = X(n,0), for all (o,n) € ENA
(d) N(o,1) < R(0,w) + RX(a, w) + RX(a,17), for all
o,a € &and w,n € A.

The triplet (&, A, R) is called a BPMS.
Now, we introduce the notion of BPPMSs.

Definition 2. Let & and A be nonempty sets and N: & x
A x (0,00) — R™* be a function s.t.

(a) If X(o,1,¢) =0 for all ¢>0, then o=1#, for all

(o,m) € ExA.

(b) If =7, then N(o,7,¢)=0, for all ¢>0 and
(o,n) € ExA

(c) N(o,,¢) = X(n,0,¢), for all ¢>0 and
(o,m) € ENA

(d) NX(o,7,¢) < X(0,w,¢) + R(a, w,¢c) + RX(a,1,¢), for
all c>0, 0,0 € &, and w,n € A.

The triplet (&, A, N) is called a BPPMS.

We introduce the notions of covariant mapping, con-
travariant mapping, convergent sequence, Cauchy sequence,
and continuous and contraction mapping as follows.

Definition 3

(A1) Let (&, A, X) be a BPPMS. Then, the points of the
sets &, A, and & N A are named as left, right, and central
points, respectively, and any sequence, that is consisted
of only left (or right, or central) point is called a left (or
right, or central) sequence on (&, A, R).

(A2) Let (&,,A;, X)) and (&,, A,, X,) be BPPMSs and
Q: & UA, — &,UA, be a function. If Q(&,)< &,
and Q(A,) € A,, then Q is called a covariant map, or a
map from (&, A, R)) to (&, A, N,), and this
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is written as Q: (E,A,,N) 2 (Ep ANy, If
Q: (&,A,N)= (A, &,,R,) is a map, then Q is
called a contravariant map from (&, A,
N;)to (&,,A,,N,) and this is denoted as
Q: (&L, ALN)2 (8,,A,,R,).

Definition 4. Let (&, A, X) be a BPPMS. A left sequence {0, }
converges to a right point # if and only if for every g >0,
there exists an a, € N s.t. N(0,,#,¢) <y for all a>a, and
¢> 0. Similarly, a right seqence {1,} converges to a left point
o if and only if, for every >0 we can find an g, € N,
satisfying whenever a >ag, ¢ >0, X (0, 1,,c) <g.

Definition 5. Let (&, A, N) be a BPPMS.

(i) A sequence ({o,},{n,}) on the set & x A is called
a bisequence on (&, A, R).

(ii) If both {o,} and {5,} are convergent, then the
bisequence (o,,,7,) is called convergent. If {0,} and
{n,} both converge to a same point u € &N A, then
this bisequence is called biconvergent.

(iii) A bisequence ({o,},{n,}) on (& A,R) is called
Cauchy bisequence, if for each g >0, we can find
a number g, € N, satisfying for all positive integers
a,b>ay,¢c>0,R (0,1, ¢) <p.

Definition 6. Let (&, A, X;) and (&,, A,, N,) be BPPMSs.

(i) Amap Q: (&, A, X)) = (&,,A,, R,) is said to be
continuous at a point ¢, € &, if for every p >0, we
can find a § > 0 satisfying whenever 7 € A}, ¢ >0, and
Ny (09, #,¢) <0, R, (Q(0y), Q(1),c) <gp. It is con-
tinuous at a point #, € A, if for every p >0, we can
find a 6> 0 satistying whenever o € &,, ¢>0, and
Ny (0,19,¢) <&, R, (Q(0), Q(np),0)<p. If Q is
continuous at each point 0 € &, and 5 € A,, then it
is called continuous.

(ii) A contravariant map Q: (&}, A}, X|)sS(8,, A, N,)
is continuous iff it is continuous as a covariant map

Q: (&, ALR) = (8,A,,N,).

This definition implies that a contravariant map or
a covariant Q from (&, A}, N;) to (&,,A,,N,) is contin-
uous, if and only if {n,} — ¢ on (&,A,X;) implies
{Q(m,)} — Q(¢) on (&,,A,, N,).

Definition 7. Let (&,,A,,X;) and (&,, A,, X,) be BPPMSs
and A > 0. A covariant map Q: (&}, A}, N) = (&,, A5, N,) st

N(Q(0),Q2(n),c) < AN(0,4,c)forallc>0, o€ &,nel
(1)
or a contravariant map Q: (&}, A, N))S(&,, A, R,) s.t.
N(Q(0),Q2(n),c) < AR(0g,5,c)forallc>0, o€ &,nel
(2)

is called Lipschitz continuous. If A =1, then this covariant or
contravariant map is said to be nonexpansive, and if it is
fulfilled for a A € (0, 1), it is called a contraction.
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3. Main Results

In this section, we prove FP theorems on BPPMS.

Theorem 8. Let (&, A, R) be a complete BPPMS and given

(&, A,N).  Say M :=N(0yHp¢)+NR(0p,1,¢) and
H =M M1 -] Then, for all a,p € N,

N (Ga’ Ha> C) =N (Q (Ga—l)’ Q (’75{*1)’ C)
<AN(0,_1,1,-15€)

a covariant contraction Q: (&,A, X)) = (&, A, R). Then, the (3)
function Q: EUA — & U A has a UFP (unique fixed point). :
< A*R (0,195 €),
Proof. Leto, € &andy, € A.Foreacha € N, define Q(0,) =
a1 and Q(17,) = fasr- Then, ({0}, {7,}) is a bisequence on ~ and also,
N (aa’ Ha+1> C) =N (‘Q (O‘afl)’ Q (’70)’ C)
< AN (Ga—l’ qa’ C)
< AR (a9, 735 ¢)
N(aa+p’ na’ C) = ( a+p> ﬂa+1’ ) + N aa’ l/la+1’ ) +N (Ua’ I/Ia’ C)
N( a+p> 77a+1’ )+
a 4
< N( a+p> ’7a+2’c) + N Oa+1> ’7(1+2’C) * N( Oat1> r/a+1’c) + AN ( )
N( a+p’ Hav2> € ) +()La+1 + Aa)

< N(aaﬂ,, na+p,c) +(/\a+p_1 +

N

_()t“+"+...

/4

1y Fe

IN

and similarly, R (0, 77,4y, ¢) < #,. Letg >0.Since A € (0, 1),
we can find an a, € N satisfying %, = Ag/1 — A <g/3. Then,
R (0, 1) < N(Ua, qao,c) + N(aao,qan,c) + N(aao, > c)

< 3K, <@
(5)

and ({0,}, {#,})) is a Cauchy bisequence. Since (&, A, R) is
complete, ({o,},{n,}) converges and thus biconverges to
a point m € N A and

{Q(n,)}

guarantees that {Q(#,)} has a unique limit. Since Q is
continuous, Q (17,) — Q (), so Q(n) = 7. Hence, 7 is a FP
of Q. If ¢is any FP of O, then Q (¢) = ¢implies that¢ € ENA
and we have

N(m,¢,c) =

(e} — meENA (6)

N(Q(T[),Q(C),C) < N(ﬂ, G C)) (7)

F A /\“)/%

F A4 )L“)/%

where 0<A<1, which implies N(m,¢c) =0, and so
T=4. O

Example 1. Let & = [0, 1] and A = {0} UN — {1} be equip-
ped with X (o,7,¢c) =clo -yl forallo € &, n € A, and ¢>0.
Then, (&,A,R) is a complete BPPMS. Define Q: U
A= &UA given by

2, ifae (0, 1],
Q(o) = (8)
0, ifoe{0}uN-—{1},
VoeEUA. Let 0 € & and 5 € A, then
N(Qo, Qn,¢) = c‘g— 0'
(9)
< E|(f— |
<3 1l.



Therefore, all the conditions of Theorem 8 are satisfied
and Q has a UFP 0 = 0.

Example 2. Let & = {%,(R): %, (R)be an upper triangular
matricesover R}, A={Z,(R): &, (R) beanupper
triangular matrices over R} and the map X : &x A — R*
defined by

N(@,@,C):Cz 'rlij_aij" (10)
i,j=1

for all ¢>0, P = ()axa € € and @ = (0y)4y, € A. Then,
(&, A, N) is a complete BPPMS. Define Q : EUA=SEUA
given by

for all P = (7;j)axa € %, (R)UZ, (R). Now,

R(Q(2),Q(@10) =% Y

=1

c a
<7 2 | = o
=1 (12)

Mij — 0yj

Cu
ZZZ

ij=1

Nij — Oi;

= AN(GQ, P, ¢),
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forall # = (1})axa € € and @ = (03;) 4y, € A. All the axioms
of Theorem 8 are verified with A = 1/4 and Q has a unique
fixed point (0,,,,0,,) € %, (R)UZ,(R) where 0,,, is the
null matrix.

Theorem 9. Let (&, A, R) be a complete BPPMS and given
a contravariant contraction Q : (&,A, N)s (&, A, R). Then,
the function Q: EUA — EUA has a UFP.

Proof. Let 0, € &. For each a € N, define Q(0,) =4, and

Q(n,) =0,,,. Then, ({o,},{n,}) is a bisequence on
(&, A, N). Say

f/\‘N(O‘O’ 110,C). (13)

Then, for all a,p € Z*,

R (Oa’ Ha> C) =N (Q (I/Ia—l)’ Q (aa)’ C)

< N (Ua’ 77a—1’ C)

= AR(Q(1-1), (04-1), €)

< AR (041 a5 ©)

< AR (09> 19> €)
—(1- MK,

< H,

R (041 10> €) = R(Q (1), 2(0,), )

< AR(0,5 7145 )

< 'R (04, 795 €)s

N(Gaﬂ:’ Ma> C) < N(Oaﬂv Hav1> C) +N (0u+1’ Hav1> C) +N (0a+1’ Ha> C)
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a+p>"]u+1>c) +(A2“+2 + AZQH)N(O'O, 1’]0,6)

I/\

+

( a+p’ Nav2> C) +N (0a+2’ Hai2> C) +N (0a+2’ Ha+1> C)
(AZLHZ /\2a+1) (0_0) Mo» C)

N( a+p>’1a+2’ ) (A2u+4 +)L2a+3 +/\2a+2 +A2a+l)N (Uo”lo’c)

< R(Oqops farp1o€) +(A2 24

< (A2a+2a—1 +)L2u+2p 2 AZCHZP 3

2a+1

S I_AN(UO’%’C)

A%,

<K,

+ Aza“)N (09> 19> €)

A V)R (0,70 €)

(14)

N(Ua> ’7a+p’ C) <N (Ua’ Ha> C) + N (aa+1> Ha> C) + N(Ga+l> ’7a+p’ C)
< (/12“ + /\2‘”1)N (00> Mg> ) + N(aml, Harp> c)

< (Ala + /\ZQH)N (UO’ o> C) + R (0a+1’ Ma+1> C) + R (0a+2’ Ma+1> C)

+ N(O-a+2’ 77a+p’ C)

< (/12“ ) R L )LZ“+3)N (00, 119r¢) + N(aa+2, Hasps c)

< (/12& +/\2(1+1 +

< (A2

2a

< mN (002 19> €)

=%,

Now, since 0 < A < 1, for any g > 0, we can find an integer
a, satisfying

20+ o
K oy = I_AN(%)WO’C)<§- (15)
Hence,
R (0, 1) < N(aa, Nay> c) + N(Ua0> Hay> c) + N(aan, N> c)
< 3K, <

(16)

and ({0,},{n,}) is a Cauchy bisequence. Since (&, A, R) is
a complete BPPMS, ({o,},{n,}) converges, and as a con-
vergent Cauchy bisequence, in particular, it biconverges. Let

+ /12(1+2P_1)N (O'Orlo, C) + N(Ua+p> ’1a+P’ C)

+ A2a+2p 1 A2a+2p)N (00) Mo» C)

{o,} — m,{n,} — n, where m € EnA. Since the con-
travariant map ( is continuous,

{o,} — m, (17)
which derives that
{na} ={Q(0,)} — Q(m), (18)

and combining this with {r,} — 7 gives Q (1) = 7. Let ¢ be
a FP of Q, then Q(¢) = ¢ implies ¢ € &N A so that

R(m,¢6,¢) = R(Q(m), Q(c),c) (19)
< AN(m,6,¢),
which gives X (7,¢,¢) = 0. Hence, 7 = . O



Example 3. Let €=1{0,1,2,7} and A ={0, (1/4), (1/2),
(7/4), 3} be equipped with X (0, #,c) = clo —y| forall o € &,
n €A, and ¢>0. Then, (&,A,N) is a complete BPPMS.
Define : &UA = & U A given by

o
, ifo € {0, 2, 7},
1 ifo e }
Qo) =
. 117
0, ifoe {—,—,—, 1, 3},
244

(20)

Voe EUA. Let 0 € & and 5 € A, then we can easily get

1
R (Qo, Qn,¢) < EN(O, 1,¢). (21)

Therefore, conditions of Theorem 9 are satisfied and Q
has a UFP ¢ = 0.

Finally, we express a theorem based of Kannan’s FP
result [22].

Theorem 10. Let Q: (&, A, R)s (&, A, R), where (&, A, X)
is a complete BPPMS and let « € (0,1/2) satisfies

N(Q#y,Qo,¢) < a(R(0,Q0,¢) + X(Qn, 4,¢)), (22)

which holds for all ¢ >0, 0 € &, and 5 € A. Then, the function
Q: 8UA — EUA has a UFP.

Proof. Leto, € &, for each non-negative integer a, we define
#, =Qo, and o,,, = Q,. Then,
N (Ua’ Na> C) =N (Qﬂa—l’ Qaa’ C)
< OC(N (O'a, Qaa’ C) +N (eru—l’ Ha-1> C))

= (X (0, 15 €) + R (04 1a_15€))s
(23)
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for all integers a > 1. Then,
o
l1-«

R (0, 1,5€) < R (04 15-15€)5 (24)

and
R (04> flg-1:€) = R(U,1, Q04 5¢)
<o (N (qul’ Qaa—l’ C) +N (era—l’ Ha-1> C))
= a(R (0,15 1g-1,€) + (04 1,-1€));
(25)

so that
o

N(oa’ 1’]a_1,C) < N(Ua—l’ 1’]a_1,C). (26)

1-«a

If we say A:=a/l —a, then we have A € (0, 1) since
a € (0, 1/2). Now,

R (0 €) < AR (00,1, ), (27)
27
R (s fla15€) < AR (00, 75 €),s
and for all b,a € N,

R (0a> Mp> C) <N (Ua’ Ma> C) +N (Um-l’ fla> C) +N (0a+1’ My> C)
< (Aza + AZQH)N (00: 119> €) + R (015 11> €)

< (Aza + /12a+1 ..+ Azb)N(GO) ’707 C))
(28)

if b>a, and

R (Oa’ Mp€) < R (Ubw My €) + R (0415 ’7b+1»C) +N (Uu> ’7b+1>c)
< (P 4+ 2R (0 M ©) + R (00 Moy

< (A2b+l +A«2b+2 + ..

<()\2b+1 F A2,

if b<a. Since A € (0, 1). Therefore, ({o,},{n,,}) is a Cauchy
bisequence. Since (&,A,N) is complete. Then,
{o,} — m,{n,} — mand m € EUA. Since

{Qo,} ={n,} — m,R(Qn, Qa,,¢c) — N(Qm, 7,¢).
(30)

On the other hand,

R(Qm, Qo,,¢) < a(R(0,,Q0,,¢) + R(Qm, 7, ¢))

(31)
= a(R (0,1, ¢) + R(Qm,m,0));,

(29)

-t AZQ)N (00> 119> €) + R (05 7145 )
+ )LZ“H)N (09> 19> €)>

which in turn implies that N(Qm,7,¢) < aX(Qm,7,¢).
Hence, QO = 7. If ¢is any FP of Q, then Q¢ = ¢ implies that ¢
is in &N A. Then,

R(m, ¢ c) = R(Qm Q¢ c) < a(R(m, Qm,c) + R(Q¢, ¢ ¢))
=a(X(m,mc) + X(v,¢c)) =0.
(32)
Consequently, 7 = ¢.

We conclude by establishing a theorem based on the
Reich-type FP theorem [23]. O



Journal of Mathematics

Theorem 11. Let (&, A, R) be a complete BPPMS. Consider ~ for all n € A and o € &, where a,p,v>0 s.t. a +p+v<1.

the mapping Q : (&€,A,N)s(&,A,R) s.t. Then, the function Q: EUA — EUA has a UFP.

N(Qo,Qn,¢) < al(y,0,¢) + pR (1, Qn, ¢) + ¥R (Qo, 0, ¢),

(33) Proof. Let 1, € A. Define o, = Qy, and 7,,, = Qo, for all

a € N. Then, we have

N (na’ Oa> C) =N (Qaa—l’ era’ C)
< aR (’7:1’ O0g-1> C) + pN (’7:1’ eru’ C) + 7R (Qo-aﬂ’ O0g-1> C)
= (@ + N1 0415 €) + PR (7, 045 €),

for all integers a > 1. Now,

o+

1-p

R (s 00 ) < ( )N(na,o“,c), and

R (’/Ia’ Oa-1> C) =N (Qaufl’ eru—l’ C)
< AR (M4o15 0415 €) + PR (1o, Q15 €) + VR(Q0, 1, 0,15 €)
= (0( + p)N (ﬂa—l’ Oa—l’c) + IR (”a’ Oa—l’c)’

R (1> 045€) < g**R (119, 05 ),
R (1 0415€) < PR (110, 05 ).

SO

a+p
1-v»

N(rlwau—l’c) < < )N(r]a—l’o-a—l’c)' (36)

For all natural numbers a < b, we have

If we say p:=a+ p/l1 —v and g = a+v/1 — p, then we
have p, g € (0, 1). Now,

R (140> €) € R(#> 0> €) + R (111 0> €) + R (7115 03 )
< R(#as 04> €) + (g1 00) + R(ar1 a1 €) + R (1125 0a115€)
+o ot R (g5 0315 €) + R, 051, €) + R(17, 0, €)
< g "R (19, 00, €) + p**' R (110, 09, €) + g™ R (179, 0, €) + p**R (15, 0, €)
Tt QZb_zN (M0 00> €) + I’Zh_IN (M0 00>¢) + QZbN (110> 00> )

2a+1 2a+3

=(g+ g+ + G )R (g, 00,) +(p2 + P+ -+ pP IR (7, 00 €)

1 1
< gza(l ~ gz)N (110 95€) + P2a+l (_—PZ)N (119> 00> €)-

1

For all natural numbers b < a, we have

(34)

(35)

(37)

(38)
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R (15 04> €) < R(Apy1> 0> €) + R (M1 Oy €) + R (g 0y €)

< N (77h+1’ Op> C) +N (ﬂb+l’ Op+1> C) +N (I/Ib+2’ Op+1> C) +N (’1b+2’ Op+2> C)

oo 4 R(#mp 0o €) + R0 0415 €) + R (175 04 €)

< PR (19, 00,€) + g R (119, 005 €) + PR (110, 00 €) + g R (110, 00, €)

(39)

+oot R (19, 00, €) + PR (19, 0, €) + 7R (15, 0, €)

2b+2 2a+4
=(g""%+g

b 1 b
<g +2<2)N(’70’00>C) +p2! (1

l-g

Therefore, ({#,},{0,,}) is a Cauchy bisequence. Since
(&, A, R) is complete BPPMS, {1,} — ¢,{0,} — e, where
e € EUA. Since

o+ g VR (g, 09, ¢) +(p2 4 p

2b+1 2b+3

Tt Pzail)N (10> 05 €)

1

Jetwae

{On,} ={o,} — ¢, N(Qe, Qn,,c) — N(Qe,e,0).  (40)

On the other hand,

R (Qe, Qn,,¢) < al(n, e,c¢) + PR (1, U, ¢) + ¥R (Qe, e, ¢)

(41)
= aN (1, e,¢) + PN (7,,0,,¢) + YR (Qe, ¢,¢).
Therefore, X (Qe, e,c) < vR(Qe,e,c). Hence, Qe =e. If
v is any FP of ), then Qu = v, implies that v € &N A. Then,
N(e,v,¢c) = X(Qe, Qu,¢) < al(v,e,¢) + pN(e, Qe,c) + YN (Qu, v,¢)
=aN(v,e,c) (42)
<N(e,v,c0).
Consequently, e = v. U 4, Application to Fractional

Example 4. Let & = [0, 1] and A = [1, 2] be equipped with
N(o,n,¢) =clo—n| for all 0 € &, y € A, and ¢>0. Then,
(&, A, N) is a complete BPPMS. Define Q: EUA=EUA
given by

R (43)
Voe EUA. Let 0 € & and 7 € A, then
R(Q0, 01,) = =0 1]
V2
=%|11—0|§ %N(q,a,c) (44)
= aN(n,0,c).

All the axioms of Theorem 11 are verified with o = 1/2,
p =7 =0, and Q has a unique fixed point ¢ = 1.

Differential Equations

We recall many important definitions from the fractional
calculus theory. For a function # € ([0, 1], the Reim-
ann-Liouville fractional derivative of the order § > 0 is given
by

1 d* (¢ n(x)dx
I'(a-0) da” Jo (a-x)"*

= 2°4(a), (45)

provided that the right hand side is pointwise defined on
[0, 1], where [6] is the integer part of the number &, T is the
Euler gamma function.

Consider the following fractional differential equation:

*27n(a) + g(a,n(a)) =0,
n(0) =n(1) =0,

1<a<0,2<0>1;

(46)

where g: [0, 1] xR — R is a continuous function and
*P represents the Caputo fractional derivative of order o
and it is defined by



Journal of Mathematics

* g 1 J‘ 7® (x)dx

] Rt (47)

Let &= (C[0, 1], (0,00]) = {g: [0, 1] — (0,00] bea
continuous function}. Let A = (([0, 1], (-00,0]) = {g:
[0, 1] — (-00,0] Dbeacontinuous function}. Define N:
& x A —> R" is given by

cln(a)-n'(@)| =c|n(a) -w(a) - o(a) + w(a) + o(a) - 4’ (a)]

Taking the supremum on both sides, we get
R(n,7n',¢) < R(n, w,¢) + R(0, w,¢) + X(a,7',¢), (50)

for all ¢>0, 0,n7€ &, and w,n' € A. Then, (&, A, N) is
a complete BPPMS.

Theorem 12. Assume the nonlinear fractional differential

R(1,7',¢) = csupyefo|n(a) — 7' (a)], (48)

for all (11,1') € & x A and ¢ > 0. Obviously, axioms (a), (b),
and (c) are satisfied. Now, we prove the axiom (d). For this,

, (49)
< cln(a) —w(a)| +clo(a) - w(a)| + c|0(a) -7 (a)|.
1
1@ = | (@ ng(anxax (51)
where
[a(1-x)]"" —(a—x)”‘l’ 0cxca<l
I'(0)
€ (a,x) =

[a(l-x)]""

equation (46). Suppose that the following conditions are
satisfied:

(i) There exists a € [0, 1], A € (0, 1), and (n,1') € & x
A stt. Ig(a,ln) -g(a,n)l < Aln(a) -4 (a)l;
(ii) sup,cro) [, 1€ (a,x)| dg < 1.

Then, equation (46) has a unique solution in & U A.

Proof. The given equation (46) is equivalent to the suc-
ceeding integral equation

c|Qn(a) - Qn' (a)| = ¢

1 1
<cf 1B @nidr | lgne) - g (o ()]ax

< Aclq(a) - 17' (a)|.

Taking the supremum on both sides, we get
R(Qn, Qn',c) < AR(n,71',¢). (55)

Hence, all the hypothesis of Theorem 8 are satisfied and
consequently, equation (46) has a unique solution. O

5. Conclusion

The idea of BPPMS was introduced in this article and FP
theorems were demonstrated. An illustrative example is

1 1
Jo Z(a,x)g(q,n(x))dx - J % (a,x)g(q, 1 (x))dx

, 0<a<x<l1
(o) a<x
(52)

Define the covariant mapping Q: EUA — EUA de-
fined by

1
Q#(a) = jo & (a,x)g(q,n(x))dx. (53)

Now,

(54)

provided that show the validity of the hypothesis and the
degree of usefulness of our findings.
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