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Te main goal of this paper is to introduce an appropriate conjugate gradient class to solve unconstrained optimization problems.
Te presented class enjoys the benefts of having three free parameters, its directions are descent, and it can fulfll the Dai–Liao
conjugacy condition. Global convergence property of the new class is proved under the weak-Wolfe–Powell line search technique.
Numerical efciency of the proposed class is confrmed in three sets of experiments including 210 test problems and 11 disparate
conjugate gradient methods.

1. Introduction

In recent years, many iterative methods are developed to
solve a large-scale unconstrained optimization problem

min
x∈Rn

f(x), (1)

where f: Rn⟶ R is a smooth function with Lipschitz
continuous gradient g(x). Te process of an iterative op-
timization algorithm in iteration point xk is to fnd a descent
direction dk and a step length αk and calculate the next
iteration point as follows:

xk+1 � xk + αkdk. (2)

Usually, step lengths αk are considered if they fulfll the
conditions of an inexact line search technique. A well-
known example of such inexact line search techniques is
the weak-Wolfe–Powell (WWP) technique.

f xk + αkdk( 􏼁≤fk + σ1αkg
T
k dk,

g xk + αkdk( 􏼁
T
dk ≥ σ2g

T
k dk,

⎧⎨

⎩ (3)

where fk � f(xk), gk � g(xk), 0< σ1 < (1/2), and σ1 < σ2
< 1 [1]. Diferent inexact line search techniques are pre-
sented in [1] and three improvements of 3 are proposed by
Bojari and Eslahchi [2], Yuan et al. [3], and Dai and Kou [4].

On the other hand, descent directions dk are obtained by
the Newton-based methods for small problems, the quasi-
Newton-based methods for medium size problems, and the
gradient-based methods for large-scale problems [1].

Conjugate gradient (CG) method is one of the most
popular gradient-based methods, which combines the
negative of the gradient and some other available in-
formation to develop the next descent direction. Generally,
the CG process can be summarized as follows:

d0 � − g0,

dk+1 � − θk+1gk+1 + βk+1dk + ck+1pk, for k � 0, 1, 2, . . . ,

(4)

where θk+1 is the scale parameter, βk+1 and ck+1 are the CG
parameters, and pk is an arbitrary vector related to previous
iterations.
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In classic CG methods such as those of Hestenes–Stiefel
(HS) [5], Fletcher–Reeves (FR) [6], Polak–Ribiére–Polyak
(PRP) [7, 8], Liu–Storey (LS) [9], and Dai–Yuan (DY) [10],
only two parts − gk+1 and dk of direction (4) are considered,
and parameter βk+1 is defned as follows:

βHS
k+1 �

g
T
k+1yk

d
T
k yk

,

βFRk+1 �
gk+1

����
����
2

gk

����
����
2 ,

βPRPk+1 �
g

T
k+1yk

gk

����
����
2 ,

βLSk+1 � −
g

T
k+1yk

d
T
k gk

,

βDYk+1 �
gk+1

����
����
2

d
T
k yk

,

(5)

where yk � gk+1 − gk and parameter θk+1 is determined as
θk+1 � 1. Note that ‖.‖ denotes the Euclidean norm of
vectors.

Over the years, many researchers developed method (5)
and increased their efciency in theoretical and numerical
views. For example, interested readers can see some mod-
ifcations of the HS method in the study by Faramarzi and
Amini [11] and Hu et al. [12], several combinations of the FR
method in the work by Abubakar et al. [13] and Sakai and
Iiduka [14], various developments of the PRP method in the
study by Mishra et al. [15], Wu [16], and Andrei [17], an
extended LS method in [18], and variant improvements of
the DY method in the study by Deepho et al. [19], Zhu et al.
[20], and Jiang and Jian [21]. Furthermore, some researchers
used techniques such as quasi-Newton [22, 23], regulari-
zation [24–26], a combination of above methods [27, 28], or
alternative techniques [29, 30] and introduced appropriate
CG methods to solve optimization problems. To discuss the
CG methods in more detail, the readers can see [31].

In addition to their original authors, the issue of global
convergence of method (5) has also been investigated by
some researchers such as Al-Baali [32] and Gilbert and
Nocedal [33].

As we mentioned before, one technique to develop a CG
method is to think of a L − BFGS direction

dk+1 � − gk+1 +
g

T
k+1yk

s
T
k yk

− τk +
yk

����
����
2

s
T
k yk

⎛⎝ ⎞⎠
g

T
k+1sk

s
T
k yk

⎡⎢⎢⎣ ⎤⎥⎥⎦sk +
g

T
k+1sk

s
T
k yk

yk,

(6)

where sk � αkdk � xk+1 − xk and τk ≥ 0 as a three-term CG
direction [22, 23]. Tis point of view usually leads to ap-
propriate behavior in numerical experiments.

Besides, it is known that the PRPmethod has an excellent
global convergence, which means that it generally solves
more problems than other classic methods in equation (5). A

well-known extension of the PRP method is the three-term
CG direction

dk+1 � −
y

T
k sk

gk

����
����
2gk+1 +

y
T
k gk+1

gk

����
����
2 sk −

g
T
k+1sk

gk

����
����
2 yk, (7)

which is introduced by Andrei in [17]. It is established that
direction (7) is descent and satisfes Dai and Liao [34]
conjugacy condition. Also, the method is globally conver-
gent under the WWP line search technique.

It is known that large-scale optimization problems have
wide applications in science, engineering, transport, military,
space technology [1, 35], artifcial intelligence and image
processing [12], risk managing [13, 19], and business and
fnancial management [36, 37]. Furthermore, as we men-
tioned before, the CG methods are usually the best choices to
solve a large-scale optimization problem. For these reasons,
and also because of the excellent theoretical and numerical
performance of methods (6) and (7), in this paper, we
combine them and create a new class of three-term scaled
conjugate gradient methods. We indicate that our class in-
herits all of the superb properties of methods (6) and (7).
Furthermore, we illustrate the advantages of using the new
class by running multitudinous numerical competitions [38].

Te rest of this paper is organized as follows. In the next
section, the new class of scaled three-term CG directions is
introduced. Ten, in Section 3, some properties of the pre-
sented class and the global convergence theorems are proved.
Finally, the numerical results are presented in Section 4.

2. The Algorithm

In this section, we want to know what will happen if we
consider a CG direction with denominators ‖gk‖2, similar to
the PRP method and equation (7), and numerators that
contained parts gT

k+1yk, gT
k+1sk, and ‖yk‖2gT

k+1sk such as
equation (6).Terefore, we frst reckon the following direction:

dk+1 � − gk+1 +
g

T
k+1yk − 1 + yk

����
����
2

􏼒 􏼓g
T
k+1sk

gk

����
����
2 sk −

g
T
k+1sk

gk

����
����
2 yk.

(8)

Ten, as we will show in the following, to confrm that
our method satisfes the Dai–Liao conjugacy condition and
to prove the global convergence theorems, we were forced to
also consider the scaled coefcient sT

k yk/‖gk‖2 of equation
(7). So the structure of our directions became

dk+1 � −
s

T
k yk

gk

����
����
2gk+1 +

g
T
k+1yk − 1 + yk

����
����
2

􏼒 􏼓g
T
k+1sk

gk

����
����
2 sk −

g
T
k+1sk

gk

����
����
2 yk,

(9)

which is actually a modifcation of equation (7).
In the end, to enjoy the benefts of free parameters, such

as the possibility of creating a balance between the com-
ponents of the direction and the possibility of choosing an
appropriate method for diferent problems, we introduced
our new CG class as follows:
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dk+1 � − τ1
s

T
k yk

gk

����
����
2gk+1 +

τ1g
T
k+1yk − τ2 + τ3 yk

����
����
2

􏼒 􏼓g
T
k+1sk

gk

����
����
2 sk

− τ1
g

T
k+1sk

gk

����
����
2 yk,

(10)

where τ1 > 0 and τ2, τ3 ≥ 0 are three arbitrary constants.

In the rest of this article, for simplicity, we call direction
(10) as CG3p class. Te process of CG3p class is described in
Algorithm 1.

One of the interesting features of the CG3p class is that
its members fulfll the conjugacy condition of Dai and Liao
[34] whenever sT

k yk > 0. For example, in Algorithm 1, we use
WWP line search technique (3), so the positiveness of sT

k yk is
guaranteed. Terefore, from the defnition of the CG3p class
in equation (10) and conditions τ1 > 0 and τ2, τ3 ≥ 0, we have

d
T
k+1yk � − τ1

s
T
k yk

gk

����
����
2g

T
k+1yk + τ1

g
T
k+1yk

gk

����
����
2 s

T
k yk −

τ2 + τ3 yk

����
����
2

􏼒 􏼓g
T
k+1sk

gk

����
����
2 s

T
k yk

− τ1
g

T
k+1sk

gk

����
����
2 y

T
k yk � −

τ2 + τ3 yk

����
����
2

􏼒 􏼓s
T
k yk + τ1 yk

����
����
2

gk

����
����
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦g

T
k+1sk

≔ − tkg
T
k+1sk, tk ≥ 0.

(11)

Remark 1. Direction (7) is a member of the CG3p class,
which can be established by setting τ1 � 1 and τ2 � τ3 � 0.

3. Convergence Theorems

To prove the global convergence of the CG3p class, we need
Zoutendijk lemma [1] as well as the following common
assumption.

Assumption 2

(1) Te level set Ω � x ∈ Rn|f(x) <f(x0)􏼈 􏼉 is bounded
(2) In some neighborhood N of Ω, function f is con-

tinuously diferentiable and its gradient function g is
Lipschitz continuous

Lemma 3. (Zoutendijk lemma) Consider an iterative algo-
rithm of form equation (2) and Assumption 2 and defne θk+1
as the angles between dk+1 and − gk+1, i.e.,

cos θk+1( 􏼁 � −
d

T
k+1gk+1

dk+1
����

���� gk+1
����

����
. (12)

If directions dk are descent and step lengths αk are
obtained from WWP condition (3), then

􏽘
k≥0

cos2 θk+1( 􏼁 gk+1
����

����
2 <∞. (13)

Proof. See Teorem 3.2 in [1].
Eventually, to have the global convergence of Algo-

rithm 1, we will confrm two issues:

(1) Te directions in the CG3p class are descent
(2) limk⟶∞ cos2(θk+1)> 0 □

Theorem  . Suppose that Assumption 2 is true. Under the
WWP line search technique, the directions of the CG3p class
are descent.

Proof. From the defnition of dk+1 in equation (8), we have
the following equation:

d
T
k+1gk+1 � − τ1

s
T
k yk

gk

����
����
2 gk+1
����

����
2

+ τ1
g

T
k+1yk

gk

����
����
2 s

T
k gk+1

− τ2
g

T
k+1sk􏼐 􏼑

2

gk

����
����
2 − τ3

yk

����
����
2

gk

����
����
2 g

T
k+1sk􏼐 􏼑

2

− τ1
g

T
k+1sk

gk

����
����
2 y

T
k gk+1 ≤ − τ1

s
T
k yk

gk

����
����
2 gk+1
����

����
2
.

(14)

Since by the WWP technique, we gain sT
k yk > 0 and also

because τ1 > 0 and τ2, τ3 ≥ 0, the directions of the CG3p class
are descent. □

Theorem 5. Consider Assumption 2. For θk+1 generated by
Algorithm 1, we have the following equation:

lim
k⟶∞

cos2 θk+1( 􏼁> 0. (15)

Proof. We can rewrite the directions of the CG3p class as
follows:
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dk+1 � − Qk+1gk+1, (16) with

Qk+1 ≔
1

gk

����
����
2 τ1 s

T
k yk􏼐 􏼑I − τ1sky

T
k + τ2 + τ3 yk

����
����
2

􏼒 􏼓sks
T
k + τ1yks

T
k􏼔 􏼕

≔
1

gk

����
����
2 ξ1I + ξ2 yks

T
k − sky

T
k􏼐 􏼑 + ξ3sks

T
k􏽨 􏽩,

(17)

where I is the n × n identity matrix. Let us examine the three
parts of matrix Qk+1 separately:

(1) Part ξ1I: since τ1 > 0 and sT
k yk > 0 (from WWP

technique), this part is a positive defnite diagonal
matrix with eigenvalues far from zero

(2) Part ξ2(yksT
k − skyT

k ): this part is a skew-symmetric
matrix, and therefore, its eigenvalues are purely
imaginary or zero. Also, ξ2 � τ1 > 0

(3) Part ξ3sksT
k : here, we have a rank one positive

semidefnite matrix with a nonnegative coefcient
ξ3(τ2, τ3 ≥ 0)

From these three observations, it is obvious that the
condition numbers of matrices Qk+1, i.e., κk+1, are far from
zero and their eigenvalues have positive real parts. On the
other hand, for all 0≠x ∈ Rn, we have the following
equation:

x
T
Qk+1x �

1

gk

����
����
2 ξ1

����x
����
2

+ ξ2 x
T

yk􏼐 􏼑 s
T
k x􏼐 􏼑 − x

T
sk􏼐 􏼑 y

T
k x􏼐 􏼑􏼐 􏼑 + ξ3 x

T
sk

����
����
2

􏼔 􏼕> 0, (18)

which means that the square roots of matrices Qk+1 can be
defned.

Now, if we set Zk+1 � Q1/2
k+1 gk+1, from Kantorovich in-

equality [1], we obtain the following equation:

cos2 θk+1( 􏼁 � −
d

T
k+1gk+1

dk+1
����

���� gk+1
����

����

�
Zk+1

����
����
4

Z
T
k+1Qk+1Zk+1􏼐 􏼑 Z

T
k+1Q

(1/2)
k+1 Zk+1􏼐 􏼑

≥
4κk+1

1 + κk+1( 􏼁
2.

(19)

Since κk+1 is far from zero, the proof is complete. □

Theorem 6. Under Assumption 2, for gk+1 obtained from
Algorithm 1, we have the following equation:

lim
k⟶∞

gk+1
����

���� � 0. (20)

Proof. From Teorem 4 and inequality (9), we gain the
following equation:

lim
k⟶∞

cos2 θk+1( 􏼁 gk+1
����

����
2

� 0. (21)

Terefore from inequality (15) in Teorem 5, we obtain
the following equation:

Input: An initial point x0 ∈ Rn and some constants 0< σ1 < (1/2), σ1 < σ2 < 1, ε> 0, τ1 > 0, and τ2, τ3 ≥ 0.
(1) Set k � 0.
(2) While ‖gk‖∞> ε do
(3) if k� 0 then
(4) Set dk � − gk.
(5) else
(6) Obtain dk by (10).
(7) end
(8) Calculate αk by (3).
(9) Set xk+1 � xk + αkdk.
(10) Set k � k + 1.
(11) end

Output: Te solution x∗ of problem (1).

ALGORITHM 1: Pseudocode of CG3p class.
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lim
k⟶∞

gk+1
����

����
2

� 0, (22)

which leads us to

lim
k⟶∞

gk+1
����

���� � 0. (23)
□

4. Numerical Results

One important subject for an iterative method is how it
performs numerically. To confrm the efciency of the CG3p

class in the structure of Algorithm 1, we create three sets of
experiments. In all three sets, we perform the following:

(1) Run our codes in MATLAB 9.5 and a computer
(Intel i5-10400F, 2.90GHz, and 8GB memory) with
Windows 10 operating system.

(2) Terminate the algorithms whenever ‖gk‖≤ 10− 5 or
the number of iterations exceed 4000 or the number
of function evaluation exceed 20000. Note that in the
last two cases, we say the algorithm is not successful.

(3) We use theWWP line search technique in a bisection
form similar to Algorithm 2.5.1 of [35], with
σ1 � 10− 4, σ2 � 0.8, and initial step lengths

α00 � 1,

α0k+1 � αk

dk

����
����

dk+1
����

����
, for k � 0, 1, 2, · · ·

(24)

(4) Stop the loops of line search algorithm after 15 tries,
to avoid an uphill search direction.

(5) Select 42 test problems from [39], which are shown
in Table 1, and consider them in fve dimensions
[1000, 5000, 10000, 15000, 20000].

(6) Compare the algorithms in four terms:

(i) k: the number of iterations
(ii) nf: the number of function evaluations
(iii) ng: the number of gradient evaluations
(iv) t: the CPU time in seconds

(7) Apply Dolan and Moré method [40] to compare the
algorithms. In their method, for a threshold τ ≥ 1, the
probability function Pq(τ) represents the percentage
of problems that are solved by solver q within a factor
τ of the best solution. We call the graph of Pq(τ) for
all solvers q a performance profle.

Moreover, for the frst two sets, we test the CG3p class with
25 sets of randomly chosen parameters and consider the best
one with (τ1, τ2, τ3) � (0.7, 0.2, 0.1), as our representative in
the competitions. Tis means that although it is not possible to
choose the optimal set of parameters for a problem, with a high
probability, the users can be sure that any selected set of pa-
rameters will solve their problem with appropriate results.

In the frst set of experiments, we compare our chosen
candidate of the CG3p class, which is attained by setting
(τ1, τ2, τ3) � (0.7, 0.2, 0.1), with classic methods (5). Pq(1)

of this competition and the percent of problems that are
solved by each algorithm are presented in Tables 2 and 3,
respectively. In addition, the performance profles of this
competition are displayed in Figures 1 to 4. As we predicted,
the PRP method solved more problems than other classic
methods, but its results are not good. Hence, in Figures 1 to
4, PRP is usually the worst method at the beginning (for
τ � 1) but gradually becomes the best one among the classic
methods as the value of τ increases. On the other hand, DY
method is the best one among the fve classic methods (5).
From Tables 2 and 3 and Figures 1 to 4, it is clear that our
candidate of the CG3p class is the best method in this
competition. Tus, we reach our goal of creating a method
with excellent global convergence of PRP and distinguished
behavior of L − BFGS-like methods.

Table 1: Te test problems.

No. Name
1 Extended Rosenbrock function
2 Extended withe Holst function
3 Extended penalty function
4 Raydan 2 function
5 Diagonal 2 function
6 Hager function
7 Generalized tridiagonal 1 function
8 Extended tridiagonal 1 function
9 Extended TET function
10 Generalized tridiagonal 2 function
11 Diagonal 5 function
12 Extended Himmelblau function
13 Generalized PSC1 function
14 Extended PSC1 function
15 Extended Powell function
16 Extended BD1 function
17 Extended Maratos function
18 Extended Clif function
19 Perturbed quadratic diagonal function
20 Extended Wood function
21 Extended quadratic penalty QP2 function
22 Extended quadratic exponential EP1 function
23 Extended tridiagonal 2 function
24 ARGLINB function (CUTE)
25 NONDQUAR function (CUTE)
26 Broyden tridiagonal function
27 LIARWHD function (CUTE)
28 EDENSCH function (CUTE)
29 BDEXP function (CUTE)
30 NONSCOMP function (CUTE)
31 VARDIM function (CUTE)
32 QUARTC function (CUTE)
33 SINQUAD function (CUTE)
34 Extended DENSCHNB function (CUTE)
35 Extended DENSCHNF function (CUTE)
36 LIARWHD function (CUTE)
37 COSINE function (CUTE)
38 Generalized quadratic function
39 Diagonal 7 function
40 Diagonal 8 function
41 Full Hessian FH3 function
42 SINCOS function

Journal of Mathematics 5



Table 3: Te percent of problems that are solved by each algorithm in the frst set of experiments.

HS FR PRP LS DY CG3p

Percent 67.7619 81.4286 89.0476 75.2381 79.5238 91.4286

43.532.521.51
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P q (
)

HS
FR
PRP

LS
DY
CG3p

Figure 1: Te performance profles of frst competition in term k.

P q (
)

43.532.521.51
0
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FR
PRP

LS
DY
CG3p

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2: Te performance profles of frst competition in term nf.

Table 2: Pq(1) of all methods in the frst set of experiments.

HS FR PRP LS DY CG3p

k 0.2000 0.2667 0.0905 0.1190 0.3238 0.4857
nf 0.1190 0.2286 0.0429 0.1286 0.4524 0.5095
ng 0.1238 0.2333 0.0571 0.1238 0.4143 0.5238
t 0.0905 0.1333 0.0333 0.0095 0.3048 0.3714
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Remark 7. Since the three-term CG directions sometimes
are more sensitive to round-of error than the two-term
ones, in this set of experiments, we consider ‖g(x∗)‖∞ as
a criterion to compare the round-of error of the classic
method (5) with our chosen candidate of the CG3p class.
Te performance profle of the frst set of experiments in
term ‖g(x∗)‖∞ is presented in Figure 5. From Tables 2 and 3
and Figure 5, it is clear that our method solved more
problems with less number of iterations and reached more
accurate answers. So it seems that the CG3p class can control
the round-of error properly.

For the second set of experiments, we consider seven
newly developed CG methods in Table 4.

(1) HZ: a descent two-termmember of Dai and Liao family
(2) AABL: a scaled three-term CG method
(3) W: a three-term modifcation of the PRP method
(4) LFZ: a three-term CG method
(5) ZZW: a two-term modifcation of the DY method
(6) DAMA: a hybrid two-term modifcation of the DY

method
(7) CG3p: Algorithm 1 with our selected candidate of

CG3p class

Te results of this competition are demonstrated in
Tables 5 and 6 and Figures 6–9.
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Figure 3: Te performance profles of frst competition in term ng.
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Figure 4: Te performance profles of frst competition in term t.
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Table 5 exhibits that in the structure of Algorithm 1,
the representative of the CG3p class has solved 51.43,
41.43, and 45.71 percent of problems with the least
number of algorithm iterations, function evaluations, and
gradient evaluations, respectively. Te method with the
shortest CPU time is also CG3p. Figures 6–9 show that the
CG3p method has behaved acceptably even in the cases
where it was not the best method. Table 6indicates that our
chosen member of the CG3p class has solved the largest
number of problems (91.4286 percent which is about 31
percent more than the worst result) among the

participating methods in this set of experiments. So, all the
outcomes of the second set of experiments can easily show
the advantages of CG3p class and therefore confrm its
superiority.

Although Andrei has shown that fnding the best CG
method is one of the open problems in optimization [42], in
our third set of experiments, we try to numerically in-
vestigate the efects of the parameters (τ2, τ3), or namely,
parts − gT

k+1sk and − ‖yk‖2gT
k+1sk, in local and global con-

vergence of Algorithm 1. To this aim, we consider three
members of the CG3p class with (τ1, τ2, τ3) � (0.1, 0, 0),
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Figure 5: Te performance profles of frst competition in term ‖g(x∗)‖∞.

Table 4: Te methods which participate in the second set of experiments.

Name Direction Reference
HZ dk+1 � − gk+1 + (gT

k+1yk − tkgT
k+1dk)/(dT

k yk)dk, tk � 2‖yk‖2/dT
k yk

[41]

AABL dk+1 � − (‖sk‖2/sT
k yk −

�����������������������

(‖sk‖2/sT
k yk)2 − ‖sk‖2/‖yk‖2

􏽱

)(gk+1 + gT
k+1yk/‖yk‖2yk) −

(gT
k+1sk)/(sT

k yk)sk

[27]

W
dk+1 � − gk+1 + (gT

k+1yk)/2‖gk‖2 + 5‖dk‖‖yk‖ + 3‖dk‖‖gk‖dk − (gT
k+1yk)/2‖gk‖2 +

5‖dk‖‖yk‖ + 3‖dk‖‖gk‖yk

[16]

LFZ dk+1 � − gk+1 + gT
k+1yk/‖dk‖2dk − gT

k+1dk/‖dk‖2yk
[30]

ZZW
dk+1 � − gk+1 + βkdk,

βk �
(g

T
k+1(gk+1 − g

T
k+1dk/‖dk‖

2
dk))/(d

T
k yk + 1.01g

T
k+1dk), g

T
k+1dk ≥ 0,

0, otherwise.
􏼨

[20]

DAMA dk+1 � − (1 + tkg
T
k+1dk/wk)gk+1 + (‖gk+1‖

2/wk − ‖gk+1‖
2
g

T
k+1dk/w

2
k)dk,

tk � min 0.02, max 0, g
T
k+1(yk − sk)/‖gk+1‖

2
􏽮 􏽯􏽮 􏽯, wk � max 0.02‖dk‖‖gk+1‖, − d

T
k gk, d

T
k yk􏽮 􏽯

[19]

CG3p
dk+1 � − 0.7sT

k yk/‖gk‖2gk+1 + 0.7gT
k+1yk − (0.2 + 0.1‖yk‖2)gT

k+1sk/‖gk‖2sk −

0.7gT
k+1sk/‖gk‖2yk

(8)
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Figure 6: Te performance profles of second competition in term k.
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Figure 7: Te performance profles of second competition in term nf.

Table 5: Pq(1) of all methods in the second set of experiments.

HZ AABL W LFZ ZZW DAMA CG3p

k 0.1952 0.2857 0.2143 0.2762 0.3048 0.3095 0.5143
nf 0.2095 0.3143 0.2190 0.3238 0.3095 0.3286 0.4143
ng 0.2095 0.2905 0.2143 0.3000 0.3095 0.3190 0.4571
t 0.1048 0.0952 0.0333 0.1524 0.1905 0.0667 0.2905

Table 6: Te percent of problems that are solved by each algorithm in the second set of experiments.

HZ AABL W LFZ ZZW DAMA CG3p

Percent 63.3810 69.0476 59.5233 83.3333 63.8095 71.4286 91.4286

Journal of Mathematics 9



(τ1, τ2, τ3) � (0.1, 0.1, 0), and (τ1, τ2, τ3) � (0.1, 0, 0.1)

and call them CG3p1, CG3p2, and CG3p3, respectively.
Please note that the directions of CG3p1 are actually di-
rection (7) multiplied in 0.1.

Te results of the third set of experiments, which are
displayed in Table 7, suggest that both parts − gT

k+1sk and
− ‖yk‖2gT

k+1sk have improved local convergence and reduced
the costs. In addition, it seems that part − gT

k+1sk had more
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Figure 8: Te performance profles of second competition in term ng.
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Figure 9: Te performance profles of second competition in term t.

Table 7: Te results of the third set of experiments.

CG3p1 CG3p2 CG3p3
Pq(1) in term k 0.3762 0.5381 0.4000
Pq(1) in term nf 0.3571 0.5286 0.4571
Pq(1) in term ng 0.3429 0.5429 0.4286
Pq(1) in term t 0.1571 0.4143 0.3714
Te percent of problems that each algorithm solved 88.5714 86.1905 90.0000
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efect in improving local convergence, and part − ‖yk‖2gT
k+1sk

had more efect in improving global convergence.

Remark 8. It seems that the wonderful numerical results of the
selected member of CG3p are due to the following reasons:

(1) Te coefcient sT
k yk/‖gk‖2 which is known as scaling

coefcient. Tis element controls the frst part of
a CG direction (part − gk+1).

(2) Te coefcient (1 + ‖yk‖)gT
k+1sk in the second part of

the directions (part sk). Tis element is inherited
from equation (6), and it is one of the reasons for the
appropriate behavior of L − BFGS-like CG directions
in numerical experiments.

(3) Te denominator ‖gk‖2.Tis element usually leads to
a global convergence for general functions. So, the
algorithm presumably solves more problems.

(4) Te three free parameters τ1, τ2, and τ3. Tese pa-
rameters create a balance between the components of
the direction.

5. Conclusion

In this paper, we developed the new CG class CG3p by
considering both PRP and L − BFGS methods. In order to
encourage the readers to use the CG3p class, we displayed that

(1) Te directions of the CG3p class satisfy the Dai–Liao
conjugacy condition. So, it is indeed a CG method.

(2) Its directions fulfll inequality dT
k+1gk+1 ≤ − τ1sT

k yk

/‖gk‖2‖gk+1‖
2. Tis means that under any line search

technique which can guarantee sT
k yk > 0, they are

descent. In addition, if τ1sT
k yk/‖gk‖2 ≤ 1, then the

directions of the CG3p class could be considered as
sufcient descent.

(3) Under WWP line search, the method is globally
convergent, without any assumption (such as con-
vexity) on f(x).

(4) Due to the presence of three free parameters, the
CG3p class contains an infnite number of di-
rections. Tus, the users can select an appropriate
CG method according to their problems.

(5) Te method yields amazing results in numerical
experiments because of its structure.

Data Availability

Data sharing is not applicable to this article as no datasets
were generated or analyzed during the current study.

Disclosure

A preprint has previously been published (Bojari et al. in
Research Square (2023)).

Conflicts of Interest

Te authors declare that they have no conficts of interest.

Authors’ Contributions

All the authors contributed equally to this work.

References

[1] J. Nocedal and S. J. Wright, Numerical Optimization, Springer
Series in Operations Research, Springer, New York, NY, USA,
2nd edition, 2006.

[2] S. Bojari and M. R. Eslahchi, “Global convergence of a family
of modifed BFGS methods under a modifed weak-Wolfe-
Powell line search for nonconvex functions,” International
Journal of Operational Research, vol. 18, no. 2, pp. 219–244,
2020.

[3] G. Yuan, Z. Wei, and X. Lu, “Global convergence of BFGS and
PRP methods under a modifed weak Wolfe-Powell line
search,” Applied Mathematical Modelling, vol. 47, no. 1,
pp. 811–825, 2017.

[4] Y. H. Dai and C. X. Kou, “A nonlinear conjugate gradient
algorithm with an optimal property and an improved Wolfe
line search,” SIAM Journal on Optimization, vol. 23, no. 1,
pp. 296–320, 2013.

[5] M. R. Hestenes and E. Stiefel, “Methods of conjugate gradients
for solving linear systems,” Journal of Research of the National
Bureau of Standards, vol. 49, no. 6, pp. 409–435, 1952.

[6] R. Fletcher and C. Reeves, “Function minimization by con-
jugate gradients,” Te Computer Journal, vol. 7, no. 2,
pp. 149–154, 1964.
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