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Neutrosophic graphs are used to model inconsistent information and imprecise data about any real-life problem. It is regarded as
a generalization of intuitionistic fuzzy graphs. Since interval-valued neutrosophic sets are more accurate, compatible, and fexible
than single neutrosophic sets, interval-valued neutrosophic graphs (IVNGs) were defned.Te interval-valued neutrosophic graph
is a fundamental issue in graph theory that has wide applications in the real world. Also, problems may arise when partial
ignorance exists in the datasets of membership [0, 1], and then, the concept of IVNG is crucial to represent the problems. Line
graphs of neutrosophic graphs are signifcant due to their ability to represent and analyze uncertain or indeterminate information
about edge relationships and complex networks in graphs. However, there is a research gap on the line graph of interval-valued
neutrosophic graphs. In this paper, we introduce the theory of an interval-valued neutrosophic line graph (IVNLG) and its
application. In line with that, some mathematical properties such as weak vertex isomorphism, weak edge isomorphism, efective
edge, and other properties of IVNLGs are proposed. In addition, we defned the vertex degree of IVNLGwith some properties, and
by presenting several theorems and propositions, the relationship between fuzzy graph extensions and IVNLGs was explored.
Finally, an overview of the algorithm used to solve the problems and the practical application of the introduced graphs were
provided.

1. Introduction

Graph theory is a mathematical discipline that deals with
mathematical representations of the links between objects. Not
all systems described by science and technology can accom-
modate complex processes and occurrences. For situations like
these, mathematical models have been created to handle dif-
ferent kinds of systems with uncertainty-containing compo-
nents. In 1965, Zadeh presented fuzzy sets by giving
membership grades to each object of the interval set [1]. Based
on Zadeh’s fuzzy relations, Kaufman [2] proposed fuzzy
graphs. Later on, Rosenfeld [3] discussed the fuzzy analogy of
many graph-theoretic notions. After this, researchers started to
introduce many classes of fuzzy graphs, and they have brought
remarkable advances to impressive applications of fuzzy theory.

However, linguistic terms are very important in
decision-making theory, such as data mining, multiattribute

decision-making (MADM) problems, and a novel type of
linguistic information form to facilitate decision-makers in
evaluating online learning platforms in a comprehensive
manner, and the determination of decision-makers’ weights
is a key step prior to the aggregation of individual assessment
information into a collective result [4, 5].

Te membership function was insufcient to explain
exactly the complexity of object features, leading to the
suggestion of a nonmembership function with fuzzy sets
(FS). Te extension of FS, which is called intuitionistic fuzzy
sets (IFS), was introduced [6–8]. Later, the notion ofm-polar
interval-valued intuitionistic fuzzy graphs was introduced
[9]. Also, several types of arcs in the interval-valued intui-
tionistic (S, T)-fuzzy graphs and their properties were
studied [10, 11]. Due to the dynamic nature of certain
problems that cannot be addressed by FS and IFS, Smar-
andache [12] introduced neutrosophic sets (NS). He added
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another component, the indeterminacy degree, to the def-
inition of IFS. Te notion of SVNSs, which has multiple
applications in entropy measure, decision-making, index
distance, and similarity measure, can be independently
expressed as a truth-membership function (TMF), an in-
determinacy membership function (IMF), and a non-
membership or falsity function (FMF) by adhering to the
defnition of NS [13]. In any case, from a philosophical
perspective, the membership, indeterminate, and non-
membership values are independent with respect to one
another, and the TMF, IMF, and FMF values are in the
interval of [0, 1] presented in [14]. For that reason, some-
times it happens that the membership, indeterminate, and
nonmembership values cannot be measured as a point, but
they can be measured as an interval. Considering this, later,
an IVNS and its properties were introduced [15, 16]. In
comparison to an SVNS, an IVNS provides a more accurate
and fexible description of graphs. An IVNS is a general-
ization of SVNSs, and it has many applications in decision-
making [17].

Besides the fact that single-valued neutrosophic graphs
(SVNG) were proposed [18], graph theory is a basic idea in
modern mathematics. Graphs are used as a mathematical
tool to visually represent and evaluate social networks after
all of this has been considered. Consequently, neutrosophic
graphs with interval values were studied by Broumi et al.
[19]. However, Akram and Shahzadi [20] provided a dif-
ferent defnition of SVNG because this defnition goes
against the concepts of complement and join characteristics.
He also presented the concept of interval-valued neu-
trosophic competition graphs [21]. An IVNG and some of its
functions were discussed in light of the revised defnition of
SVNSs. Tey also noticed that IVNG may be altered to take
on a regular structure [22]. Connectivity concepts are the key
to graph clustering and networks, and they are the most
important concept in the entire graph theory [23].

In a network, vertices hold signifcance due to their
connections with other vertices, while edges in a line graph
can be applied with vertices’ attributes [24]. Typically, the
structure of a line graph L(G) is more complex than that of
the corresponding graph G. Many other researchers studied
diferent classes of L(G), such as classical line graphs [25],
fuzzy line graphs [26], interval-valued fuzzy line graphs
(IVFLGs) [27], intuitionistic fuzzy line graphs (IFLGs) [28],
and the L(G) of IVIFG [29].

Subsequently, SVNGs were explored by researchers and
used to tackle a variety of real-world modeling and opti-
mization issues. Also, the defnition and mathematical
properties of SVNLG were derived from the single-valued
neutrosophic graph [30]. Tey provided both necessary and
sufcient criteria for SVNG and its corresponding SVNLG
to be isomorphic. Also, neutrosophic vague line graphs were
investigated [31]. Isomorphic properties of those graphs
were also initiated. Te reader should read articles
[19, 32–34] to understand the fundamental ideas of the line
graph and its properties.

Te interval-valued neutrosophic graph is an elementary
graph theory problem with numerous real-world applica-
tions. Nevertheless, no other academics have yet to

introduce the IVNLG theory. In this study, we introduced
the theory and application of interval-valued neutrosophic
line graphs and described some of their properties. One of
the motives of this research was to apply the concepts in-
troduced to real-life problems. Finally, a procedure to drive
IVNLG from a connected simple NG and its application are
presented.

Tis work’s framework is organized as follows: In Section
1, we provide a basic overview of fuzzy graphs (FGs), IFG,
neutrosophic graphs (NGs), and the line graphs that cor-
respond to each of these concepts. In Section 2, we cover the
foundational mathematical ideas that will be applied to the
research. A comprehensive defnition and appropriate ex-
amples of IVNLG are provided in Section 3. Some basic
IVNLG properties are presented in Section 4, along with
some propositions. In Section 5, a real-world application for
a decision-making problem was designed using IVNLG.
Finally, further research work related to the research paper is
discussed in the conclusion.

2. Preliminaries

Here, we have used standard defnitions, terminologies, and
results from the rest of the article.

Defnition 1 (see [35]). An ordered triple G � (V, σ, μ) is
called FG where V � v1, v2, · · · , vn􏼈 􏼉 such that σ: V

⟶ [0, 1], a fuzzy relation μ on σ is μ: V × V⟶ [0,1]

such that μ(u, v)≤ σ(u)∧ σ(v), for all u, v ∈ V.

Defnition 2 (see [36]). Te graph G � (V, E) is an IFG if the
following conditions are satisfed:

(a) Function σ1: V⟶ [0, 1] is TMF of the vertex set of
G, and c1: V⟶ [0, 1] is the FMF of vertex set of G
and 0≤ σ1(v) + c1(v)≤ 1,∀v ∈ V.

(b) Te function σ2: V × V⟶ [0, 1] is TMF of the
edge set of G, and c2: V × V⟶ [0, 1] is FMF of the
edge set ofG such that σ2(vivj)≤ σ1(vi)∧ σ1(vj)& c2
(vivj)≤ c1(vj)∨ c1(vj) with the condition

0≤ σ
2 vivj
􏼐 􏼑

+ c2 vivj􏼐 􏼑≤ 1, ∀vivj ∈ E. (1)

Defnition 3. For a nonempty undirected graph G � (V, E)

with n-vertices, consider Si � u i, xi1
, · · · , xki

􏽮 􏽯, 1≤ i≤ n, 1
≤ j≤ ki, vertex ui are end vertices of edge xij ∈ E. Ten,
P(E) � (S,Λ) is said to be the intersection graph such that
S � Si􏼈 􏼉 is a node set of the graph P(E) and an edge of the
graph P(E) is Λ � SiSj | Si ∩ Sj ≠∅, Si, Sj ∈ S, i≠ j􏽮 􏽯.

Defnition 4. Let P(E) � (S,Λ) be the intersection graph of
G � (V, E). Ten, L(G) of G can be derived by defnition of
the intersection graph P(E). Tis implies L(G) � (Z, W) is
a line (edge) graph where Z � ux, vx􏼈 􏼉∪ x{ }: x � (ux, vx􏼈

∈ E, ux, vx ∈ V, W � SxSy | x≠y&Sx ∩ Sy ≠∅􏽮 􏽯 and Sx �

ux, vx􏼈 􏼉∪ x{ }, where x ∈ E.
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Defnition 5 (see [37]). Let A be a subset of a universal set X.
Ten, A � (tA(x), iA(x), fA(x)): x ∈ X􏼈 􏼉 is called the
neutrosophic set such that tA: X⟶ ]0−, 1+[, iA⟶ ]0−,

1+[&fA: V⟶ ]0−, 1+[ are TMF, IMF, and FMF, re-
spectively, with the condition

0− ≤ tA(x) + iA(x) + fA(x)≤ 3+
. (2)

where the functions TMF, IMF, and FMF of A will be real
standard or nonstandard subsets of ]0−, 1+[.

Due to the fact that it is difcult to use the above def-
inition of NS in real-life situations, Wang et al. introduced
the idea of SVNS having TMF, IMF, and FMF values in the
range of [0, 1], which will be used in scientifc and engi-
neering applications [12].

Defnition 6 (see [20]). An SVN-graph is a pair of function
G � (A, B) where A � (t1, i1, f1) is the subset of V and B �

(t2, i2, f2) is the subset of E with the conditions:

(a) Te functions t1: V⟶ [0, 1], i1: V⟶ [0, 1] and
f1: V⟶ [0, 1] are TMF, IMF, and FMF of the
vertex set of u ∈ V, respectively, such that
0≤ t1(u) + i1(u) + f1(u)≤ 3,∀u ∈ V

(b) Te function t2: V × V⟶ [0, 1], i2: V × V⟶
[0, 1] and f2: V × V⟶ [0, 1] represent the TMF,
IMF, and FMF of edge E, respectively, with the
condition t2(uiuj)≤ t1(ui)∧ t1(uj), i2(uiuj)≤ i1(ui )

∧ i1(uj) and f2(uiuj)≤f1(ui)∨f1(uj) such that
0≤ t2(uiuj) + i2(uiuj) + f2(vivj)≤ 3,∀ vivj ∈ E

Defnition 7. Let G � (A1, B1) be an NG with
A1 � (tA1

, iA1
, fA1

) and B1 � (tB1
, iB1

, fB1
) be SVNS on V and

E, respectively. Ten, the intersection graph
(S,Λ) � (A2, B2) of SVNG G, where

(i) tA2(Si) � tA1
(vi ), iA2(Si) � iA1

(vi), and fA2(Si) �

fA1
(vi ),for all Si, Sj ∈ S

(ii) tB2(SiSj) � tB1
(vivj, iB2(SiSj) � iB1

(vivj, and fB2
(SiSj) � fB1

(vivj, for all SiSj ∈ Λ

where A2 � (tA2
, iA2

, fA2
) and B2 � (tB2

, iB2
, fB2

).

Defnition 8 (see [30]). Consider L(G) � (Z, W) of G∗ �

(V, E). Ten, an associated L(G) of an SVNGG � (A1, B1) is
a pair L(G) � (A2, B2) where A2 � (tA2

, iA2
, fA2

) and B2 �

(tB2
, iB2

, fB2
) represent the SVNSs with Z and W, re-

spectively, so that

(i) tA2(Sx) � tB1(x) � tB1(uxvx), iA2(Sx) � iB1(x) � iB1
(uxvx), fA2(Sx) � fB1(x) � fB1(uxvx), for all
Sx ∈ Z

(ii) tB2(SxSy) � tB1(x)∧ tB1(y), iB2(SxSy) � iB1(x)∧ iB1
(y), tB2(SxSy) � tB1(x)∨ tB1(y), for all SxSy ∈W

Defnition 9 (see [28]). Suppose there are two SVNGs G1 �

(A1, B1) and G2 � (A2, B2), then the mapping φ: V1⟶ V2
is a homomorphism of φ: G1⟶ G2 such that

tA1 ui( 􏼁≤ tA2 φ ui( 􏼁( 􏼁,

iA1 ui( 􏼁≤ iA2 φ ui( 􏼁( 􏼁,

fA1 ui( 􏼁≤f2 φ ui( 􏼁( 􏼁,

(3)

and also,

tB1 uiuj􏼐 􏼑≤ tB2 φ ui( 􏼁φ uj􏼐 􏼑􏼐 􏼑,

iB1 uiuj􏼐 􏼑≤ iB2 φ ui( 􏼁φ uj􏼐 􏼑􏼐 􏼑,

fB1 uiuj􏼐 􏼑≤fB2 φ ui( 􏼁φ uj􏼐 􏼑􏼐 􏼑,

(4)

where ui ∈ V1, uiuj ∈ E1.

Defnition 10 (see [22]). Let X≠∅ set of points (objects)
and A⊆X. Ten, we defne an IVNS of A as follows:

A � t
−
A(u), t

+
A(u)􏼂 􏼃, i

−
A(u), i

+
A(u)􏼂 􏼃, f

−
A(u), f

+
A(u)􏼂 􏼃: u ∈ X􏼈 􏼉,

(5)

where t−
A(u), t+

A(u),i−A(u), i+A(u), f−
A(u), and f+

A(u) are
subsets of X with t−

A(u)≤ t+
A(u),i−A(u)≤ i+A(u), and

f−
A(u)≤f+

A(u) for all u ∈ X.
Troughout this article, we used the modifed defnition

of IVNG which is introduced by Mohammed Akram and
Nasir [22].

Defnition 11. Let X≠∅ be a set of objects, then G � (A, B)

is said to be IVNG, where A � ([t−
A(u), t+

A(u)],

[i−A(u), i+A(u)], [f−
A (u), f+

A(u)]) and B � ([t−
B (u), t+

B (u)],

[i−B (u), i+B (u)], [f−
B(u), f+

B (u)]) are an IVN relation, which
satisfes the following conditions:

t
−
B uiuj􏼐 􏼑≤ t

−
A ui( 􏼁∧ t

−
A uj􏼐 􏼑, t

+
B uiuj􏼐 􏼑≤ t

+
A ui( 􏼁∧ t

+
A uj􏼐 􏼑,

i
−
B uiuj􏼐 􏼑≤ i

−
A ui( 􏼁∧ i

−
A uj􏼐 􏼑, i

+
B uiuj􏼐 􏼑≤ i

+
A ui( 􏼁∧ i

+
A uj􏼐 􏼑,

f
−
B uiuj􏼐 􏼑≤f ui( 􏼁∨f

−
A uj􏼐 􏼑, f

+
B uiuj􏼐 􏼑≤f

+
A ui( 􏼁∨f

+
A uj􏼐 􏼑,

(6)

where 0≤ t+
B(uiuj) + i+B(uiuj) + ft+

B(uiuj)≤ 3 for all
uiuj ∈ E.

Defnition 12. An IVNGG � (A, B) with no parallel edges
or self-loops is called simple IVNG.

Defnition 13. Given an IVNG G � (A, B), then, for ui ∈ V,
the degree u is denoted by d(ui) and given by

d ui( 􏼁 � d
−
t ui( 􏼁, d

+
t ui( 􏼁􏼂 􏼃, d

−
i ui( 􏼁, d

+
i ui( 􏼁􏼂 􏼃, d

−
f ui( 􏼁, d

+
f ui( 􏼁􏽨 􏽩􏼐 􏼑,

(7)

where
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d
−
t ui( 􏼁, d

+
t ui( 􏼁􏼂 􏼃 � 􏽘

ui ≠ uj

t
−
B ui, uj􏼐 􏼑, 􏽘

ui ≠ uj

t
+
B ui, uj􏼐 􏼑⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦,

d
−
i ui( 􏼁, d

+
i ui( 􏼁􏼂 􏼃 � 􏽘

ui ≠ uj

i
−
B ui, uj􏼐 􏼑, 􏽘

ui ≠ uj

i
+
B ui, uj􏼐 􏼑⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦,

d
−
f ui( 􏼁, d

+
f ui( 􏼁􏽨 􏽩 � 􏽘

ui ≠ uj

[zwj]f
−
B ui, uj􏼐 􏼑, 􏽘

ui ≠ uj

[zwj]f
+
B ui, uj􏼐 􏼑⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦, for all ui, uj ∈ V.

(8)

Defnition 14 (see [38]). An IVNG G is strong IVNG if and
only if all of the following holds:

t
−
B uiuj􏼐 􏼑 � t

−
A ui( 􏼁∧ t

−
A uj􏼐 􏼑, t

+
B uiuj􏼐 􏼑 � t

+
A ui( 􏼁∧ t

+
A uj􏼐 􏼑,

i
−
B uiuj􏼐 􏼑 � i

−
A ui( 􏼁∧ i

−
A uj􏼐 􏼑, i

+
B uiuj􏼐 􏼑 � i

+
A ui( 􏼁∧ i

+
A uj􏼐 􏼑,

f
−
B uiuj􏼐 􏼑 � f

−
A ui( 􏼁∨f

−
A uj􏼐 􏼑 andf

+
B uiuj􏼐 􏼑 � f

+
A ui( 􏼁∨f

+
A uj􏼐 􏼑, ∀uiuj ∈ E.

(9)

Defnition 15. An IVNG G is complete IVNG if a graph G
satisfes the following properties:

t
−
B uiuj􏼐 􏼑 � t

−
A ui( 􏼁∧ t

−
A uj􏼐 􏼑, t

+
B uiuj􏼐 􏼑 � t

+
A ui( 􏼁∧ t

+
A uj􏼐 􏼑,

i
−
B uiuj􏼐 􏼑 � i

−
A ui( 􏼁∧ i

−
A uj􏼐 􏼑, i

+
B uiuj􏼐 􏼑 � i

+
A ui( 􏼁∧ i

+
A uj􏼐 􏼑,

f
−
B uiuj􏼐 􏼑 � f

−
A ui( 􏼁∨f

−
A uj􏼐 􏼑 andf

+
B uiuj􏼐 􏼑 � f

+
A ui( 􏼁∨f

+
A ui( 􏼁, ∀ui, uj ∈ V.

(10)

Tus, the neighborhood of the vertex ui in IVNG is denoted
by N(ui), and it is defned by

N ui( 􏼁 � uj ∈ V: uj is a neighbor of ui􏽮 􏽯. (11)

Defnition 16. An edge e � (vi, vj) of an IVNGG is said to be
an efective edge if t −

B (ui, uj) � t −
A (ui)∧ t −

A (uj),t+
B

(ui, uj) � t+
A (ui)∧ t+

A(uj),i −
B (ui, uj) � i −

A (ui)∧ i −
A (uj),i+B

(ui, uj) � i+A(ui)∧ i+A (uj),f
−
B (ui, uj) � f −

A (ui)∨f −
A (uj),

and f+
B (ui, uj) � f+

A (ui)∨f+
A (uj) for all (ui, uj) ∈ E. For

instance, the vertex ui is a neighbor of uj, and uj is neighbor
of ui.

3. Interval-Valued Neutrosophic Line Graph

We have here introduced an IVNLG for undirected IVNG
and some mathematical properties of undirected IVNG with
examples. We only considered IVNG without self-loops and
parallel edges.

Defnition 17. Let P(E) � (S,Λ) be an intersection graph of
G∗ � (V, E). Let G � (A1, B1) be an IVNG of G∗. Ten, an
IVN-intersection graph P(G) � (A2, B2) of P(E) is defned
as follows:

(a) A2 andB2 are IVNSs of S and Λ, respectively,
(b) t+

A2
(Si) � t+

A1
(vi),

i −
A2

(Si) � i −
A1

(vi),
i+A2

(Si) � i+A1
(vi),

f −
A2

(Si) � f −
A1

(vi),
f+

A2
(Si) � f+

A1
(vi), for all Si, Sj ∈ S.

(c) t −
B2

(SiSj) � t −
B1

(vivj),

t+
B2

(SiSj) � t+
B1

(vivj),

i −
B2

(SiSj) � i −
B1

(vivj),

i+B2
(SiSj) � i+B1

(vivj),

fB
−
2(SiSj) � f −

B1
(vivj),

fB
+
2(SiSj) � f+

B1
(vivj), for all SiSj ∈ Λ.

Terefore, any IVNG of P(E) is called an IVN-
intersection graph.

Defnition 18. Consider the line graph L(G∗) � (Z, W) of
the graph G∗ � (V, E) and let G � (A1, B1) be an IVNG of
G∗.Ten, we defne an IVNLG ofG as L(G) � (A2, B2) where
A2 � ([t −

A2
, t+

A2
], [i −

A2
, i+A2

], [f −
A2

, [f+
A2

]) is an IVNS on
Z andB � ([t −

B2
, t+

B2
], [i −

B2
, i+B2

], [f −
B2

, [f+
B2

]):

(i) Te vertex of an IVNLG of G is computed as
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t
−
A2

Se( 􏼁 � t
−
B1

(e) � t
−
B1

ueve( 􏼁, t
+
A2

Se( 􏼁 � t
+
B1

(e) � t
+
B1

ueve( 􏼁,

i
−
A2

Se( 􏼁 � i
−
B1

(e) � i
−
B1

ueve( 􏼁, i
+
A2

Se( 􏼁 � i
+
B1

(e) � i
+
B1

ueve( 􏼁,

f
−
A2

Se( 􏼁 � f
−
B1

(e) � f
−
B1

ueve( 􏼁, f
+
A2

Se( 􏼁 � f
+
B1

(e) � f
+
B1

ueve( 􏼁, ∀ Se ∈ Z.

(12)

(ii) Te edge of an IVNLG of G is computed as

t
−
B2

Sei
Sej

􏼒 􏼓 � t
−
B1

ei( 􏼁∧ t
−
B1

ej􏼐 􏼑,

t
+
B2

Sei
Sej

􏼒 􏼓 � t
+
B1

ei( 􏼁∧ t
+
B1

ej􏼐 􏼑,

i
−
B2

Sei
Sej

􏼒 􏼓 � i
−
B1

ei( 􏼁∧ i
−
B1

ej􏼐 􏼑,

i
+
B2

Sei
Sej

􏼒 􏼓 � i
+
B1

ei( 􏼁∧ i
+
B1

ej􏼐 􏼑,

f
−
B2

Sei
Sej

􏼒 􏼓 � f
−
B1

ei( 􏼁∨f
−
B1

ej􏼐 􏼑,

f
+
B2

Sei
Sej

􏼒 􏼓 � f
+
B1

ei( 􏼁∨f
+
B1

ej􏼐 􏼑, for all Sei
Sej
∈W.

(13)

Example 1. Consider an IVNG G � (A1, B1) as shown in
Figure 1 where the vector set of a graph G is
A1 � u1, u2, u3, u4, u5􏼈 􏼉 and B1 � u1u2, u1u5, u2u3, u2􏼈

u4, u2u5, u3u5, u4u5} is the edge set on A1, as shown in
Tables 1 and 2.

From above Figure 1, we can drive a line graph as
follows: Consider (S,Λ) is the intersection graph of G, that
is, S � Se1

� v1v2, Se2
� v1v5, Se3

� v2v5, Se4
�􏽮 v2v3, Se5

�

v2v4, Se6
� v3v5, Se7

� v4v5}.Ten, by the defnition of the line
graph, L(G) � (A2, B2) can be obtained by routine com-
putation; the vertex set of IVNLG G is as follows:

tA2
Se1

􏼐 􏼑 � t
−
B1

e1( 􏼁, t
+
B1

e1( 􏼁􏽨 􏽩 � [0.1, 0.2],

tA2
Se2

􏼐 􏼑 � t
−
B1

e2( 􏼁, t
+
B1

e2( 􏼁􏽨 􏽩 � [0.1, 0.6],

tA2
Se3

􏼐 􏼑 � t
−
B1

e3( 􏼁, t
+
B1

e3( 􏼁􏽨 􏽩 � [0.1, 0.2],

tA2
Se4

􏼐 􏼑 � t
−
B1

e4( 􏼁, t
+
B1

e4( 􏼁􏽨 􏽩 � [0.1, 0.2],

tA2
Se5

􏼐 􏼑 � t
−
B1

e5( 􏼁, t
+
B1

e5( 􏼁􏽨 􏽩 � [0.0, 0.2],

tA2
Se6

􏼐 􏼑 � t
−
B1

e6( 􏼁, t
+
B1

e6( 􏼁􏽨 􏽩 � [0.1, 0.3],

tA2
Se7

􏼐 􏼑 � t
−
B1

e7( 􏼁, t
+
B1

e7( 􏼁􏽨 􏽩 � [0.1, 0.4],

iA2
Se1

􏼐 􏼑 � i
−
B1

e1( 􏼁, i
+
B1

e1( 􏼁􏽨 􏽩 � [0.2, 0.3],

iA2
Se2

􏼐 􏼑 � i
−
B1

e2( 􏼁, i
+
B1

e2( 􏼁􏽨 􏽩 � [0.2, 0.3],

iA2
Se3

􏼐 􏼑 � i
−
B1

e3( 􏼁, i
+
B1

e3( 􏼁􏽨 􏽩 � [0.3, 0.5],

iA2
Se4

􏼐 􏼑 � i
−
B1

e4( 􏼁, i
+
B1

e4( 􏼁􏽨 􏽩 � [0.0, 0.5],

iA2
Se5

􏼐 􏼑 � i
−
B1

e5( 􏼁, i
+
B1

e5( 􏼁􏽨 􏽩 � [0.3, 0.7],

iA2
Se6

􏼐 􏼑 � i
−
B1

e6( 􏼁, i
+
B1

e6( 􏼁􏽨 􏽩 � [0.0, 0.5],

iA2
Se7

􏼐 􏼑 � i
−
B1

e7( 􏼁, i
+
B1

e7( 􏼁􏽨 􏽩 � [0.4, 0.5],

fA2
Se1

􏼐 􏼑 � f
−
B1

e1( 􏼁, f
+
B1

e1( 􏼁􏽨 􏽩 � [0.1, 0.2],

fA2
Se2

􏼐 􏼑 � f
−
B1

e2( 􏼁, f
+
B1

e2( 􏼁􏽨 􏽩 � [0.1, 0.6],

fA2
Se3

􏼐 􏼑 � f
−
B1

e3( 􏼁, f
+
B1

e3( 􏼁􏽨 􏽩 � [0.1, 0.2],

fA2
Se4

􏼐 􏼑 � f
−
B1

e4( 􏼁, f
+
B1

e4( 􏼁􏽨 􏽩 � [0.1, 0.2],

fA2
Se5

􏼐 􏼑 � f
−
B1

e5( 􏼁, f
+
B1

e5( 􏼁􏽨 􏽩 � [0.0, 0.2],

fA2
Se6

􏼐 􏼑 � f
−
B1

e6( 􏼁, f
+
B1

e6( 􏼁􏽨 􏽩 � [0.1, 0.3],

fA2
Se7

􏼐 􏼑 � f
−
B1

e7( 􏼁, f
+
B1

e7( 􏼁􏽨 􏽩 � [0.1, 0.4].

(14)

Using the defnition of the line graph, an edge set of
IVNLG G is as follows: so that an IVNLG G is shown in
Figure 2.
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tB2
Se1

Se2
􏼐 􏼑 � t

−
B1 e1( 􏼁∧ t

−
B1 e2( 􏼁, t

+
B1 e1( 􏼁∧ t

+
B1 e2( 􏼁􏼂 􏼃 � [0.1, 0.2],

tB2
Se1

Se3
􏼐 􏼑 � t

−
B1 e1( 􏼁∧ t

−
B1 e3( 􏼁, t

+
B1 e1( 􏼁∧ t

+
B1 e3( 􏼁􏼂 􏼃 � [0.1, 0.2],

tB2
Se1

Se5
􏼐 􏼑 � t

−
B1 e1( 􏼁∧ t

−
B1 e5( 􏼁, t

+
B1 e1( 􏼁∧ t

+
B1 e5( 􏼁􏼂 􏼃 � [0.0, 0.2],

tB2
Se1

Se4
􏼐 􏼑 � t

−
B1 e1( 􏼁∧ t

−
B1 e4( 􏼁, t

+
B1 e1( 􏼁∧ t

+
B1 e4( 􏼁􏼂 􏼃 � [0.1, 0.2],

tB2
Se2

Se3
􏼐 􏼑 � t

−
B1 e2( 􏼁∧ t

−
B1 e3( 􏼁, t

+
B1 e2( 􏼁∧ t

+
B1 e3( 􏼁􏼂 􏼃 � [0.1, 0.2],

tB2
Se2

Se6
􏼐 􏼑 � t

−
B1 e2( 􏼁∧ t

−
B1 e6( 􏼁, t

+
B1 e2( 􏼁∧ t

+
B1 e6( 􏼁􏼂 􏼃 � [0.1, 0.2],

tB2
Se2

Se7
􏼐 􏼑 � t

−
B1 e2( 􏼁∧ t

−
B1 e7( 􏼁, t

+
B1 e2( 􏼁∧ t

+
B1 e7( 􏼁􏼂 􏼃 � [0.1, 0.4],

tB2
Se3

Se4
􏼐 􏼑 � t

−
B1 e3( 􏼁∧ t

−
B1 e4( 􏼁, t

+
B1 e3( 􏼁∧ t

+
B1 e4( 􏼁􏼂 􏼃 � [0.1, 0.2],

tB2
Se3

Se5
􏼐 􏼑 � t

−
B1 e3( 􏼁∧ t

−
B1 e5( 􏼁, t

+
B1 e3( 􏼁∧ t

+
B1 e5( 􏼁􏼂 􏼃 � [0.0, 0.2],

tB2
Se3

Se6
􏼐 􏼑 � t

−
B1 e3( 􏼁∧ t

−
B1 e6( 􏼁, t

+
B1 e3( 􏼁∧ t

+
B1 e6( 􏼁􏼂 􏼃 � [0.1, 0.2],

tB2
Se3

Se7
􏼐 􏼑 � t

−
B1 e3( 􏼁∧ t

−
B1 e7( 􏼁, t

+
B1 e3( 􏼁∧ t

+
B1 e7( 􏼁􏼂 􏼃 � [0.1, 0.2],

tB2
Se4

Se5
􏼐 􏼑 � t

−
B1 e4( 􏼁∧ t

−
B1 e5( 􏼁, t

+
B1 e4( 􏼁∧ t

+
B1 e5( 􏼁􏼂 􏼃 � [0.1, 0.2],

tB2
Se6

Se7
􏼐 􏼑 � t

−
B1 e6( 􏼁∧ t

−
B1 e7( 􏼁, t

+
B1 e6( 􏼁∧ t

+
B1 e7( 􏼁􏼂 􏼃 � [0.1, 0.3],

tB2
Se5

Se7
􏼐 􏼑 � t

−
B1 e5( 􏼁∧ t

−
B1 e7( 􏼁, t

+
B1 e5( 􏼁∧ t

+
B1 e7( 􏼁􏼂 􏼃 � [0.0, 0.2].

i B2
Se1

Se2
􏼐 􏼑 � i

+
B1 e1( 􏼁∧ i

+
B1 e2( 􏼁, i

+
B1 e1( 􏼁∧ i

+
B1 e2( 􏼁􏼂 􏼃 � [0.2, 0.3],

i B2
Se1

Se2
􏼐 􏼑 � i

+
B1 e1( 􏼁∧ i

+
B1 e2( 􏼁, i

+
B1 e1( 􏼁∧ i

+
B1 e2( 􏼁􏼂 􏼃 � [0.2, 0.3],

i B2
Se1

Se2
􏼐 􏼑 � i

+
B1 e1( 􏼁∧ i

+
B1 e2( 􏼁, i

+
B1 e1( 􏼁∧ i

+
B1 e2( 􏼁􏼂 􏼃 � [0.2, 0.3],

i B2
Se1

Se3
􏼐 􏼑 � i

+
B1 e1( 􏼁∧ i

+
B1 e3( 􏼁, i

+
B1 e1( 􏼁∧ i

+
B1 e3( 􏼁􏼂 􏼃 � [0.2, 0.3],

Se1
Se4

􏼐 􏼑 � i
+
B1 e1( 􏼁∧ i

+
B1 e4( 􏼁, i

+
B1 e1( 􏼁∧ i

+
B1 e4( 􏼁􏼂 􏼃 � [0.0, 0.3],

i B2
Se1

Se5
􏼐 􏼑 � i

+
B1 e1( 􏼁∧ i

+
B1 e5( 􏼁, i

+
B1 e1( 􏼁∧ i

+
B1 e5( 􏼁􏼂 􏼃 � [0.2, 0.3],

i B2
Se2

Se3
􏼐 􏼑 � i

+
B1 e2( 􏼁∧ i

+
B1 e3( 􏼁, i

+
B1 e2( 􏼁∧ i

+
B1 e3( 􏼁􏼂 􏼃 � [0.2, 0.3],

i B2
Se2

Se6
􏼐 􏼑 � i

+
B1 e2( 􏼁∧ i

+
B1 e6( 􏼁, i

+
B1 e2( 􏼁∧ i

+
B1 e6( 􏼁􏼂 􏼃 � [0.0, 0.3],

i B2
Se2

Se7
􏼐 􏼑 � i

+
B1 e2( 􏼁∧ i

+
B1 e7( 􏼁, i

+
B1 e2( 􏼁∧ i

+
B1 e7( 􏼁􏼂 􏼃 � [0.2, 0.3],

i B2
Se3

Se4
􏼐 􏼑 � i

+
B1 e3( 􏼁∧ i

+
B1 e4( 􏼁, i

+
B1 e3( 􏼁∧ i

+
B1 e4( 􏼁􏼂 􏼃 � [0.0, 0.5],

i B2
Se3

Se5
􏼐 􏼑 � i

+
B1 e3( 􏼁∧ i

+
B1 e5( 􏼁, i

+
B1 e3( 􏼁∧ i

+
B1 e5( 􏼁􏼂 􏼃 � [0.3, 0.5],

i B2
Se3

Se6
􏼐 􏼑 � i

+
B1 e3( 􏼁∧ i

+
B1 e6( 􏼁, i

+
B1 e3( 􏼁∧ i

+
B1 e6( 􏼁􏼂 􏼃 � [0.0, 0.5],

i B2
Se3

Se7
􏼐 􏼑 � i

+
B1 e3( 􏼁∧ i

+
B1 e7( 􏼁, i

+
B1 e3( 􏼁∧ i

+
B1 e7( 􏼁􏼂 􏼃 � [0.3, 0.5],

i B2
Se4

Se5
􏼐 􏼑 � i

+
B1 e4( 􏼁∧ i

+
B1 e5( 􏼁, i

+
B1 e4( 􏼁∧ i

+
B1 e5( 􏼁􏼂 􏼃 � [0.0, 0.5],

i B2
Se6

Se7
􏼐 􏼑 � i

+
B1 e6( 􏼁∧ i

+
B1 e7( 􏼁, i

+
B1 e6( 􏼁∧ i

+
B1 e7( 􏼁􏼂 􏼃 � [0.1, 0.3],

i B2
Se5

Se7
􏼐 􏼑 � i

+
B1 e5( 􏼁∧ i

+
B1 e7( 􏼁, i

+
B1 e5( 􏼁∧ i

+
B1 e7( 􏼁􏼂 􏼃 � [0.0, 0.5].

fB2
Se1

Se2
􏼐 􏼑 � f

−
B1 e1( 􏼁∨f

−
B1 e2( 􏼁, f

+
B1 e1( 􏼁∨f

+
B1 e2( 􏼁􏼂 􏼃 � [0.1, 0.6]

fB2
Se1

Se3
􏼐 􏼑 � f

−
B1 e1( 􏼁∨f

−
B1 e3( 􏼁, f

+
B1 e1( 􏼁∨f

+
B1 e3( 􏼁􏼂 􏼃 � [0.1, 0.2],

fB2
Se1

Se4
􏼐 􏼑 � f

−
B1 e1( 􏼁∨f

−
B1 e4( 􏼁, f

+
B1 e1( 􏼁∨f

+
B1 e4( 􏼁􏼂 􏼃 � [0.1, 0.2],

fB2
Se1

Se5
􏼐 􏼑 � f

−
B1 e1( 􏼁∨f

−
B1 e5( 􏼁, f

+
B1 e1( 􏼁∨f

+
B1 e5( 􏼁􏼂 􏼃 � [0.1, 0.2],

fB2
Se2

Se3
􏼐 􏼑 � f

−
B1 e2( 􏼁∨f

−
B1 e3( 􏼁, f

+
B1 e2( 􏼁∨f

+
B1 e3( 􏼁􏼂 􏼃 � [0.1, 0.6],

fB2
Se2

Se6
􏼐 􏼑 � f

−
B1 e2( 􏼁∨f

−
B1 e6( 􏼁, f

+
B1 e2( 􏼁∨f

+
B1 e6( 􏼁􏼂 􏼃 � [0.1, 0.6],

fB2
Se2

Se7
􏼐 􏼑 � f

−
B1 e2( 􏼁∨f

−
B1 e7( 􏼁, f

+
B1 e2( 􏼁∨f

+
B1 e7( 􏼁􏼂 􏼃 � [0.1, 0.6],

fB2
Se3

Se4
􏼐 􏼑 � f

−
B1 e3( 􏼁∨f

−
B1 e4( 􏼁, f

+
B1 e3( 􏼁∨f

+
B1 e4( 􏼁􏼂 􏼃 � [0.1, 0.2],

fB2
Se3

Se5
􏼐 􏼑 � f

−
B1 e3( 􏼁∨f

−
B1 e5( 􏼁, f

+
B1 e3( 􏼁∨f

+
B1 e5( 􏼁􏼂 􏼃 � [0.1, 0.2],

fB2
Se3

Se6
􏼐 􏼑 � f

−
B1 e3( 􏼁∨f

−
B1 e6( 􏼁, f

+
B1 e3( 􏼁∨f

+
B1 e6( 􏼁􏼂 􏼃 � [0.1, 0.3],

fB2
Se3

Se7
􏼐 􏼑 � f

−
B1 e3( 􏼁∨f

−
B1 e7( 􏼁, f

+
B1 e3( 􏼁∨f

+
B1 e7( 􏼁􏼂 􏼃 � [0.1, 0.4],

fB2
Se4

Se5
􏼐 􏼑 � f

−
B1 e4( 􏼁∨f

−
B1 e5( 􏼁, f

+
B1 e4( 􏼁∨f

+
B1 e5( 􏼁􏼂 􏼃 � [0.0, 0.5],

fB2
Se6

Se7
􏼐 􏼑 � f

−
B1 e6( 􏼁∨f

−
B1 e7( 􏼁, f

+
B1 e6( 􏼁∨f

+
B1 e7( 􏼁􏼂 􏼃 � [0.1, 0.3],

fB2
Se5

Se7
􏼐 􏼑 � f

−
B1 e5( 􏼁∨f

−
B1 e7( 􏼁, f

+
B1 e5( 􏼁∨f

+
B1 e7( 􏼁􏼂 􏼃 � [0.0, 0.5].

(15)
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Defnition 19. An IVNG K � (V′, E′) is said to be the
subgraph of IVNG G � (V, E) if V′ ⊆V and E′ ⊆E.
Accordingly,

tA(u) �� tA
′(u), i A (u) � iA′(u), f A (u) � fA

′(u),∀u ∈ V′,

tB ei
′ej
′􏼐 􏼑 � tB
′ ei
′ej
′􏼐 􏼑, iB ei
′ej
′􏼐 􏼑 � iB′ ei

′ej
′􏼐 􏼑, fB ei

′ej
′􏼐 􏼑 � fB
′ ei
′ej
′􏼐 􏼑,∀ei
′ej
′ ∈ E′.

(16)

Proposition 20. Let K � (V′, E′) be the subgraph of IVNG
of G � (V, E). Ten, L(K) is the subgraph of an IVNLG L(G).

Proof. Suppose that K is a subgraph of IVNG G. Ten, we
have V′ ⊆V and E′ ⊆E. We know that V(L(K)) ⊆E(G), and
it is also the subset of V(L(G)). Moreover, the edge set of the
line graph L(K) is a subset of the edge set of IVNLG G.
Hence, L(K)⊆L(G). □

Defnition 21. (see [22]). A homomorphism mapping
ψ: K1⟶ K2 of two IVNGs where K1 � (M1, N1) and
K2 � (M2, N2) are the map ψ: V1⟶ V2 is defned as

(i) t −
M1

(vi)≤ t −
M2

(ψ(vi)), t+
M1

(vi)≤ t+
M2

(ψ(vi)),
i −
M1

(vi)≤ i −
M2

(ψ(vi)), i+M1
(vi)≤ i+M2

(ψ(vi)),
f −

M1
(vi)≤f −

M2
(ψ(vi)), andf+

M1
(vi)≤f+

M2
(ψ(vi)),

for all vi ∈ V1.

u5

u3

u4

u2
u1

e6

e3e2

e4

e1

e5

e7

Figure 1: IVNG G.

Table 1: Te vertices of IVNG G.

u1 u2 u3 u4 u5

[t −
A1

, t+
A1

] [0.5, 0.6] [0.1, 0.2] [0.3, 0.4] [0.2, 0.4] [0.1, 0.8]
[i −

A1
, i+A1

] [0.2, 0.3] [0.3, 0.7] [0.0, 0.5] [0.6, 0.7] [0.4, 0.5]
[f −

A1
, f+

A1
] [0.1, 0.3] [0.4, 0.7] [0.2, 0.5] [0.1, 0.2] [0.0, 0.5]

Table 2: Te edges of IVNG G.

u1u2 u1u5 u2u5 u2u3 u2u4 u3u5 u4u5

[t −
B1

, t+
B1

] [0.1, 0.2] [0.1, 0.6] [0.1, 0.2] [0.1, 0.2] [0.0, 0.2] [0.1, 0.3] [0.1, 0.4]
[i −

B1
, i+B1

] [0.2, 0.3] [0.2, 0.3] [0.3, 0.5] [0.0, 0.5] [0.3, 0.7] [0.0, 0.5] [0.4, 0.5]
[f −

B1
, f+

B1
] [0.3, 0.4] [0.2, 0.5] [0.3, 0.5] [0.2, 0.4] [0.2, 0.6] [0.2, 0.5] [0.1, 0.5]
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(ii) t−
N1

(vivj)≤ t−
N2

(ψ(vi)ψ(vj)), t+
N1

(vivj)≤ t+
N2

(ψ(vi)

ψ(vj)),

i −
N1

(vivj)≤ i −
N2

(ψ(vi)ψ(vj)), i+N1
(vivj)≤ i+N2

(ψ(vi)

ψ(vj)),
f −

N1
(vivj)≤f −

N2
(ψ(vi)ψ(vj)) andf+

N1
(vivj)≤f+

N2
(ψ(vi)ψ(vj)), ∀ vivj ∈ E1.

Defnition 22. Let K1 � (M1, N1) and K2 � (M2, N2) are
two IVNGs. Te weak vertex isomorphism is a bijective
homomorphism ψ: K1⟶ K2 such that

tM1
vi( 􏼁 � t−M1

vi( 􏼁, t+M1
vi( 􏼁􏽨 􏽩 � t−M2

ψ vi( 􏼁( 􏼁, t+M2
ψ vi( 􏼁( 􏼁􏽨 􏽩,

iM1
vi( 􏼁 � i−M1

vi( 􏼁, i+M1
vi( 􏼁􏽨 􏽩 � i−M2

ψ vi( 􏼁( 􏼁, i+M2
ψ vi( 􏼁( 􏼁􏽨 􏽩,

fN1
vi( 􏼁 � f

−
N1

vi( 􏼁, f
+
N1

vi( 􏼁􏽨 􏽩 � f
−
N2

ψ vi( 􏼁( 􏼁, f
+
N2

ψ vi( 􏼁( 􏼁􏽨 􏽩∀vi ∈M1.

(17)

Te weak line (edge) isomorphism of IVNG is a bijective
homomorphism ψ: K1⟶ K2 if the following conditions
hold:

tN1
vivj􏼐 􏼑 � t

−
N1

vivj􏼐 􏼑, t
+
N1

vivj􏼐 􏼑􏽨 􏽩 � t
−
M2

ψ vi( 􏼁ψ vj􏼐 􏼑􏼐 􏼑, t
+
M2

ψ vi( 􏼁ψ vj􏼐 􏼑􏼐 􏼑􏽨 􏽩,

iN1
vivj􏼐 􏼑 � i

−
N1

vivj􏼐 􏼑, i
+
N1

vivj􏼐 􏼑􏽨 􏽩 � i
−
M2

ψ vi( 􏼁ψ vj􏼐 􏼑􏼐 􏼑, i
+
M2

ψ vi( 􏼁ψ vj􏼐 􏼑􏼐 􏼑􏽨 􏽩,

fN1
vivj􏼐 􏼑 � f

−
N1

vivj􏼐 􏼑, f
+
N1

vivj􏼐 􏼑􏽨 􏽩 � f
−
M2

ψ vi( 􏼁ψ vj􏼐 􏼑􏼐 􏼑, f
+
M2

ψ vi( 􏼁ψ vj􏼐 􏼑􏼐 􏼑􏽨 􏽩∀vivj ∈ N1.

(18)

Defnition 23. If the mapping ψ: K1⟶ K2 is a bijective
weak vertex and weak edge isomorphism, then we say that ψ
is a weak isomorphism map of IVNGs from K1 to K2.

Defnition 24 (see [17]). A path P in undirected IVNG G �

(A, B) is a sequence of distinct nodes u0u1u2 · · · un such that
t −
B (ui−1, ui)> 0, t+

B(ui−1, ui)> 0, i −
B (ui−1, ui)> 0, i+B(ui−1, ui) >

0, f −
B (ui−1, ui)> 0, and f+

B(ui−1, ui)> 0, for 0≤ i≤ n. If P is
a path with n-vertices, then the length of P is n − 1. A
single node ui may also be taken as a path with length

([0, 0], [0, 0], [0, 0]). Te edges of the path are successive
pairs (ui−1, ui). If n≥ 3 and u0 � un, then P is referred to as
a cycle.

Defnition 25. If there is at least one path between each pair
of nodes in an IVNG G � (A, B), then IVNG G is said to be
connected; otherwise, it is disconnected.

Proposition 26. Te IVNLG L(G) is connected if its original
graph IVNG G is a connected graph.
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Figure 2: IVNLG of G.
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Proof. Given G is IVNG and L(G) is a connected IVNLG of
G, we must demonstrate that precondition. Assume G is not
connected IVNG.Ten, G has at least two nodes that are not
connected by a path. If we choose one edge from the frst
component, there are no edges that are adjacent to edges in
other components of G. Te L(G) of G is then broken and
contradicting, so that G is connected. Conversely, assume
that G is not a disconnected IVNG.Ten, there is a path that
connects each pair of nodes. Adjacent edges in G are thus
neighboring nodes in L(G), according to the defnition of

L(G). As a result, each pair of nodes in L(G) has a path that
connects them. Hence, the proof holds. □

Proposition 27. Consider G∗ � (V, E) with underlying set V

and L(G) is an IVNLG of G. Ten, L(G∗) is a line graph of
G∗.

Proof. Given an IVNG G � (A1, B1) of G∗ and
L(G) � (A2, B2) is IVNLG of L(G∗), then

tA2
Sx( 􏼁 � t

−
A2

Sx( 􏼁, t
+
A2

Sx( 􏼁􏽨 􏽩 � t
−
B1

(x), t
+
B1

(x)􏽨 􏽩,

iA2
Sx( 􏼁 � i

−
A2

Sx( 􏼁, i
+
A2

Sx( 􏼁􏽨 􏽩 � i
−
B1

(x), i
+
B1

(x)􏽨 􏽩,

fA2
Sx( 􏼁 � f

−
A2

Sx( 􏼁, f
+
A2

Sx( 􏼁􏽨 􏽩 � f
−
B1

(x), f
+
B1

(x)􏽨 􏽩,∀x ∈ E.

(19)

Tis implies Sx ∈ Z if an edge x ∈ E.

tB2
SxSy􏼐 􏼑 � t

−
B2

SxSy􏼐 􏼑, t
+
B2

SxSy􏼐 􏼑􏽨 􏽩 � t
−
B1

(x)∧ t
−
B1

(y), t
+
B1

(x)∧ t
+
B1

(y)􏽨 􏽩,

iB2
SxSy􏼐 􏼑 � i

−
B2

SxSy􏼐 􏼑, i
+
B2

SxSy􏼐 􏼑􏽨 􏽩 � i
−
B1

(x)∧ i
−
B1

(y), i
+
B1

(x)∧ i
+
B1

(y)􏽨 􏽩,

fB2
SxSy􏼐 􏼑 � f

−
B2

SxSy􏼐 􏼑, f
+
B2

SxSy􏼐 􏼑􏽨 􏽩 � f
−
B1

(x)∨f
−
B1

(y), f
+
B1

(x)∨f
+
B1

(y)􏽨 􏽩,∀ SxSy ∈W,

(20)

where L(G∗) � (Z, W). Consequently, L(G∗) is a line graph
of a graph G∗. □

Proposition 28. Assume that L(G) � (A2, B2) is the IVNLG
for L(G∗). Ten, L(G) is an IVNLG of certain IVNG of G �

(A1, B1) if

tB2
SxSy􏼐 􏼑 � t

−
B2

SxSy􏼐 􏼑, t
+
B2

SxSy􏼐 􏼑􏽨 􏽩 � t
−
A2

Sx( 􏼁∧ t
−
A2

Sy􏼐 􏼑, t
+
A2

Sx( 􏼁∧ t
+
A2

Sy􏼐 􏼑􏽨 􏽩,

iB2
SxSy􏼐 􏼑 � i

−
B2

SxSy􏼐 􏼑, i
+
B2

SxSy􏼐 􏼑􏽨 􏽩 � i
−
A2

Sx( 􏼁∧ i
−
A2

Sy􏼐 􏼑, i
+
A2

Sx( 􏼁∧ i
+
A2

Sy􏼐 􏼑􏽨 􏽩,

fB2
SxSy􏼐 􏼑 � f

−
B2

SxSy􏼐 􏼑, f
+
B2

SxSy􏼐 􏼑􏽨 􏽩 � f
−
A2

Sx( 􏼁∨f
−
A2

Sy􏼐 􏼑, f
+
A2

Sx( 􏼁∨f
+
A2

Sy􏼐 􏼑􏽨 􏽩,

∀Sx, Sy ∈ Z, SxSy ∈W.

(21)

Proof. Suppose (i), (ii), and (iii) are true. Tat implies

t
−
B2

SxSy􏼐 􏼑 � t
−
A2

Sx( 􏼁∧ t
−
A2

Sy􏼐 􏼑, t
+
B2

SxSy􏼐 􏼑 � t
+
A2

Sx( 􏼁∧ t
+
A2

Sy􏼐 􏼑,

i
−
B2

SxSy􏼐 􏼑 � i
−
A2

Sx( 􏼁∧ i
−
A2

Sy􏼐 􏼑, i
+
B2

SxSy􏼐 􏼑 � i
+
A2

Sx( 􏼁∧ i
+
A2

Sy􏼐 􏼑,

f
−
B2

SxSy􏼐 􏼑 � f
−
A2

Sx( 􏼁∨f
−
A2

Sy􏼐 􏼑 andf
+
B2

SxSy􏼐 􏼑 � f
+
A2

Sx( 􏼁∨f
+
A2

Sy􏼐 􏼑,∀SxSy ∈W.

(22)

For each x ∈ E, we have
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t
−
A2

Sx( 􏼁 � t
−
A1

(x), t
+
A2

Sx( 􏼁 � t
+
A1

(x),

i
−
A2

Sx( 􏼁 � i
−
A1

(x), i
+
A2

Sx( 􏼁 � i
+
A1

(x),

f
−
A2

Sx( 􏼁 � f
−
A1

(x) andf
+
A2

Sx( 􏼁 � f
+
A1

(x).

(23)

Now, from (i), (ii), and (iii), we have

t
−
B2

SxSy􏼐 􏼑 � t
−
B2

SxSy􏼐 􏼑, t
+
B2

SxSy􏼐 􏼑􏽨 􏽩

� t
−
A2

Sx( 􏼁∧ t
−
A2

Sy􏼐 􏼑, t
+
A2

Sx( 􏼁∧ t
+
A2

Sy􏼐 􏼑􏽨 􏽩

� t
−
B1

(x)∧ t
−
B1

(y), t
+
B1

(x)∧ t
+
B1

(y)􏽨 􏽩,

i
−
B2

SxSy􏼐 􏼑 � i
−
B2

SxSy􏼐 􏼑, i
+
B2

SxSy􏼐 􏼑􏽨 􏽩

� i
−
A2

Sx( 􏼁∧ i
−
A2

Sy􏼐 􏼑, i
+
A2

Sx( 􏼁∧ i
+
A2

Sy􏼐 􏼑􏽨 􏽩

� i
−
B1

(x)∧ i
−
B1

(y), i
+
B1

(x)∧ i
+
B1

(y)􏽨 􏽩,

f
−
B2

SxSy􏼐 􏼑 � f
−
B2

SxSy􏼐 􏼑, f
+
B2

SxSy􏼐 􏼑􏽨 􏽩

� f
−
A2

Sx( 􏼁∨f
−
A2

Sy􏼐 􏼑, f
+
A2

Sx( 􏼁∨f
+
A2

Sy􏼐 􏼑􏽨 􏽩

� f
−
B1

(x)∨f
−
B1

(y), f
+
B1

(x)∨f
+
B1

(y)􏽨 􏽩.

(24)

We know that IVNS A1 � ([t −
A1

, t+
A1

], [i −
A1

, i+A1
],

[f −
A1

, f+
A1

]) gives that

t
−
B1

vivj􏼐 􏼑≤ t
−
A1

vi( 􏼁∧ t
−
A1

vj􏼐 􏼑. t
+
B1

vivj􏼐 􏼑≤ t
v
A1

vi( 􏼁∧ t
+
A1

vj􏼐 􏼑.

i
−
B1

vivj􏼐 􏼑≤ i
−
A1

vi( 􏼁∧ i
−
A1

vj􏼐 􏼑. i
+
B1

vivj􏼐 􏼑≤ i
+
A1

vi( 􏼁∧ i
+
A1

vj􏼐 􏼑.

f
−
B1

vivj􏼐 􏼑≤f
−
A1

vi( 􏼁∨f
−
A1

vj􏼐 􏼑. f
+
B1

vivj􏼐 􏼑≤f
+
A1

vi( 􏼁∨f
+
A1

vj􏼐 􏼑,

(25)

which is sufcient. Te converse of this statement is obvious
from the defnition of IVNLG, and hence, the
proof holds. □

Proposition 29. Let G be IVNG, then its corresponding
IVNLG is strong.

Proof. It is omitted because it is obvious from the
defnition. □

Proposition 30. An IVNLG is the generalization of IVIFLG.

Proof. Assume that L(G) � (A2, B2) is an IVNLG of
G � (V, E). Ten, by setting the IMF and FMF values of each
vertex and each edge zero, an IVNLG is transformed into the
IVFLG. Terefore, the proof is completed. □

Theorem 3 . Let G be a connected IVNG path graph. Ten,
an IVNLG L(G) is a connected path graph.

Proof. Consider a path G is connected IVN-path graph with
|V(G)| � k. Tis implies that |E(G)| � k − 1 and that G is
a Pk path graph. Since the vertex set of an IVNLG G is the

same with edge set of IVNG G, it is obvious that IVNLG G is
a path graph with (k − 1) vertices and (k − 2) edges, so that,
L(G) is a connected path graph. Again, consider L(G) is
a connected path graph. It implies that d(vi) can not be
greater than two ∀vi ∈ L(G), where d(vi) is the degree of
vertex vi. Since V(L(G)) � E(G), every edge of G has exactly
two degrees. As a result, d(vi)≤ 2 for every vi ∈ V(G), and
the proof is now completed. □

4. Properties of Interval-Valued Neutrosophic
Line Graphs

Defnition 32. Te vertex-adjacency matrix of an IVNLG G
is the same as the edge-adjacency matrix of IVNG G.

Defnition 33. Consider L(G∗) � Z( , W) is a line graph of
G∗ � (V, E) and G � (A1, B1) is an IVNG. For an IVNLG
L(G) � (A2, B2) where A2 � tA2

, iA2
, fA2

􏽮 􏽯 and B2 � tB2
,􏽮

iB2
, fB2

} are IVNS on Z and W, respectively. Ten, we
denoted the vertex degree of L(G) by d(Sx) defned
asd(Sx) � ([d −

t (Sx), d+
t (Sx)], [d −

i (Sx), d+
i (Sx)], [d −

f(Sx),

d+
f(Sy)]) where
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d
−
t Sx( 􏼁 � 􏽘

SxSy∈W
t
−
B2

SxSy􏼐 􏼑 � 􏽘
x,y∈W

t
−
B1

(x)∧ t
−
B1

(y),

d
+
t Sx( 􏼁 � 􏽘

SxSy∈W
[zwj]t

+
B2

SxSy􏼐 􏼑 � 􏽘
x,y∈E

[zwj]t
+
B1

(x)∧ t
+
B1

(y),

d
−
i Sx( 􏼁 � 􏽘

SxSy∈W
[zwj]i

−
B2

SxSy􏼐 􏼑 � 􏽘
x,y∈E

[zwj]i
−
B1

(x)∧ i
−
B1

(y),

d
+
i Sx( 􏼁 � 􏽘

SxSy∈W
[zwj]i

+
B2

SxSy􏼐 􏼑 � 􏽘
x,y∈E

[zwj]i
+
B1

(x)∧ i
+
B1

(y),

d
−
f Sx( 􏼁 � 􏽘

SxSy∈W
f

−
B2

SxSy􏼐 􏼑 � 􏽘
x,y∈E

f
−
B1

(x)∨f
−
B1

(y),

d
+
f Sx( 􏼁 � 􏽘

SxSy∈W
f

+
B2

SxSy􏼐 􏼑 � 􏽘
x,y∈E

[zwj]f
+
B1

(x)∨f
+
B1

(y).

(26)

Defnition 34. Let G � (V, E) be an IVNG G. Ten, we have (i) Δ(G) � ([Δ−
t (G),Δ+

t (G)], [Δ−
i (G),Δ+

i (G)], [Δ−
f

(G),Δ+
f (G)]) is the maximum degree of an IVN-

graph G where

Δ−
t(G) � max d

−
t (u): u ∈ V􏼈 􏼉,Δ+

t (G) � max d
+
t(u): u ∈ V􏼈 􏼉,

Δ−
i (G) � max d

−
i (u): u ∈ V􏼈 􏼉,Δ+

i (G) � max d
+
i (u): u ∈ V􏼈 􏼉,

Δ−
f(G) � max d

−
f(u): u ∈ V􏽮 􏽯,Δ+

f(G) � max d
+
f(u): u ∈ V􏽮 􏽯.

(27)

(ii) 9(G) � ([9−
t (G), 9+

t (G)], [ρ−
i (G), 9+

i (G)], [9 −
f(G),

9+
f(G)]) is the minimum degree of an IVN-graph G

where

9
−
t (G) � min d

−
t (u): u ∈ V􏼈 􏼉, 9

+
t (G) � min d

+
t(u): u ∈ V􏼈 􏼉,

9
−
i (G) � min d

−
i (u): u ∈ V􏼈 􏼉, 9

+
i (G) � min d

+
i (u): u ∈ V􏼈 􏼉,

9
−
f(G) � min d−

f (u): u ∈ V􏼈 􏼉, 9
+
f(G) � min d

+
f(u): u ∈ V􏽮 􏽯.

(28)

Defnition 35. Let G � (A1, B1) be IVNG. An edge
e � uv ∈ G is called an efective edge if

t
−
B(e) � t

−
A(u)∧ t

−
A(v). t

+
B(e) � t

+
A(u)∧ t

+
A(v),

i
−
B(e) � i

−
A(u)∧ i

−
A(v), i

+
B(e) � i

+
A(u)∧ i

+
A(v),

f
−
B(e) � f

−
A(u)∨f

−
A(v), f

+
B(e) � f

+
A(u)∨f

+
A(v) for u, v ∈ A1.

(29)

An IVNG is strong if every edge is an efective edge.
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Theorem 36. Let G be an IVNG and IVNLG be the corre-
sponding line graph of G. Ten, every edge of IVNLG is an
efective edge.

Proof. From the defnition of an IVNLG, the proof of this
theorem is straightforward. □

5. Application

Suppose that an investor invested in four diferent com-
panies, namely, food, automobile, computer, and textile
companies. Investors also had employees at each company,
and all four employees knew each other. Teir friendship is
for diferent purposes. Some of them are for the success of
the organization. Some of them are for unknown reasons
beyond the control of the manager of the company (say,
political view, culture, ethnicity, language, and so on), and
some employees make relationships for their own advantage
only, and those who do not care about the company’s
mission and objectives. Te investor wants to analyze the
friendship of his employees between the companies to
identify which relationship is for success, unknown, and
failure of the organization. Also, there is uncertainty and
imprecise situation of the employees in each company to
perform the organization’s goals. Te investor conducted
a survey and collected information from managers of each
company about how the problem afects the performance of
the organization due to the friendship of employees between
the companies and within the company.

Consider employee friendship within a car company,
a computer company, a food company, and a textile com-
pany as a vertex set and employee friendship between
companies as a set of edges.TeNS results from uncertainty,
impreciseness, and inconsistency in the data, which is caused
by the fact that the information gathered is dependent upon
the manager of each company. Since IVNSs are more ap-
propriate than SVNSs, we also use this concept. As TMF,
IMF, and FMF values, it is evident that the employees’
friendship is defned independently by IVNSs. An IVNG will
be used to represent this analysis.

Te degree of friendship activities of employees in the
company represents the membership values of a node.
Similarly, the degree of the relationship between the nodes
measures the edge membership value. As a result, there are
three diferent kinds of edge interval membership values:
truth, indeterminacy, and false. Such a type of network is an
example of an IVNG. Terefore, since the investor wants to
analyze the relationship between edges, which means
friendship between each company, transforming the given
graph into a line graph is a better way to solve the problem.

In order to construct an interval-valued neutrosophic
line graph for the friendship relationships between em-
ployees of diferent companies, a few steps can be followed:

Step 1: Defne the original graph that represents the
employees and their friendship relationships. Each
node in the graph represents an employee, and the
edges represent the friendships between them. Assign

weights or values to the edges representing the strength
or closeness of the friendships.
Step 2: Determine the interval values: Assign interval
values to each edge in the graph to represent the
membership, nonmembership, and indeterminacy as-
sociated with the friendship relationship.Tese interval
values can be based on subjective assessments, surveys,
or expert opinions. Te intervals should capture the
range of possibilities for the strength of the friendship,
considering both the lower and upper bounds.
Step 3: Construct the interval-valued neutrosophic line
graph by creating a new graph where the nodes rep-
resent the edges of the original graph. Te edges in the
interval-valued neutrosophic line graph represent the
adjacency or connections between the edges in the
original graph.
Step 4: Capture the neutrosophic aspect by accounting
for the indeterminacy, ambiguity, and incomplete
knowledge associated with the friendship relationships.
Tis can be done by allowing for the existence of
uncertain or ambiguous information within each
interval.
Step 5: Analyze and interpret the results from the
constructed interval-valued neutrosophic line graph.
Tis can involve exploring the ranges of possibilities for
the strength of the friendship relationships, identifying
any uncertain or ambiguous regions, and un-
derstanding the overall patterns or trends in the graph.

5.1.Numerical Illustration. Consider an IVN-graph G� (A1,
B1) such that A1 � {u1, u2, u3, u4} where u1, u2, u3, and u4
represents the car company, computer company, food
company, and textile company, respectively, and B1 � {u1u2,
u1u3, u1u4, u2u3, u2u4, u3u4} is an edge relationship between
companies. Ten, let us consider the values of vertex and
edge data collected frommanagers of the company, as shown
in Tables 3 and 4.

It is easy to see that there are complete relationships
between vertices of an IVNG G. So, we can follow the
following procedure:

(1) Consider the friendship of employees within
a company as a node and friendship of employees
across the company as an edge, which is shown in
terms of IVNG G

(2) Enter the truth, indeterminacy, and falsity mem-
bership of all employees’ friendship from the
collected data

(3) Drive an IVNLGG from the given IVNG using
defnition of the line graph

(4) Compute the degree of TMF, IMF, and FMF of all
vertices of IVLG G using the following relations d −

t

(Sei
) � 􏽐Sei

Sej
t −
B2

(Sei
Sej

), d+
t (Sei

) � 􏽐Sei
Sej

t+
B2

(Sei
Sej

) d −
i

(Sei
) � 􏽐Sei

Sej
i −

B2
(Sei

Sej
), d+

i (Sei
) � 􏽐Sei

Sej
i+B2

(Sei
Sej

),
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d−
f(Sei

) � 􏽐Sei
Sej

f−
B2

(Sei
Sej

), d+
f (Sei

) � 􏽐Sei
Sej

f+
B2

(Sei

Sej
), ∀Sei

Sej
∈ E(L(G))

(5) Find the maximum truth, minimum indeterminacy,
and minimum falsity membership degree of
IVNLG G.

(6) Take an appropriate decision based on step 4 to
overcome the problem.

From above Figure 3, the IVNLG L(G) � (A2, B2) where
A2 � ([t −

A2
, t+

A2
], [i −

A2
, i+A2

], [f −
A2

, f+
A2

]) and B2 � ([t −
B2

, t+
B2

],

[i −
B2

, i+B2
], [f −

B2
, f+

B2
]) are the vertex and edge set of an

IVNLG G respectively as shown in Tables 5 and 6.
Te vertex set and edge set of an IVNLG are shown in

Tables 5 and 6. Figure 4 represents the line graph of the
original graph.Te truth-membership vertex degree of Sei in
IVNLG is interpreted as howmuch the employees know each
other for the success of the company, the indeterminacy
membership vertex degree of Sei in IVNLG shows the un-
known relationship of employees in the companies, and the
falsity membership vertex degree of Sei in IVNLG represents
how much the employees know each other to get illegal
benefts from the company, which is harmful in organiza-
tions. Based on this, an investor wants to fnd the maximum
TMF, minimum IMF, and minimum FMF degree between
each vertex of IVNLG to analyze which company the em-
ployees would have good or bad relationships within the
organization. As a result of Defnition 19, the degree of the
above line graph is calculated as follows:

d
−
t Se1
􏼐 􏼑 � t

−
B2

Se1
Se2

􏼐 􏼑 + t
−
B2

Se1
Se4

􏼐 􏼑 + t
−
B2

Se1
Se5

􏼐 􏼑 + t
−
B2

Se1
Se6

􏼐 􏼑

� 0.2 + 0.2 + 0.2 + 0.1

� 0.7,

d
+
t Se1
􏼐 􏼑 � t

+
B2

Se1
Se2

􏼐 􏼑 + t
+
B2

Se1
Se4

􏼐 􏼑 + t
+
B2

Se1
Se5

􏼐 􏼑 + t
+
B2

Se1
Se6

􏼐 􏼑

� 0.4 + 0.4 + 0.4 + 0.2

� 1.8,

d
−
i Se1

􏼐 􏼑 � i
−
B2

Se1
Se2

􏼐 􏼑 + i
−
B2

Se1
Se4

􏼐 􏼑 + i
−
B2

Se1
Se5

􏼐 􏼑 + i
−
B2

Se1
Se6

􏼐 􏼑

� 0.1 + 0.1 + 0.1 + 0.1

� 0.4,

d
+
i Se1
􏼐 􏼑 � i

+
B2

Se1
Se2

􏼐 􏼑 + i
+
B2

Se1
Se4

􏼐 􏼑 + i
+
B2

Se1
Se5

􏼐 􏼑 + i
+
B2

Se1
Se6

􏼐 􏼑

� 0.4 + 0.4 + 0.4 + 0.2

� 1.8,

d
−
f Se1
􏼐 􏼑 � f

−
B2

Se1
Se2

􏼐 􏼑 + f
−
B2

Se1
Se4

􏼐 􏼑 + f
−
B2

Se1
Se5

􏼐 􏼑 + f
−
B2

Se1
Se6

􏼐 􏼑

� 0.2 + 0.2 + 0.2 + 0.3

� 0.9,

d
+
f Se1
􏼐 􏼑 � f

+
B2

Se1
Se2

􏼐 􏼑 + f
+
B2

Se1
Se4

􏼐 􏼑 + f
+
B2

Se1
Se5

􏼐 􏼑 + f
+
B2

Se1
Se6

􏼐 􏼑

� 0.3 + 0.3 + 0.3 + 0.4

� 1.3,

(30)

in similar computation, we can obtain the degree of each
vertex:

Table 3: Vertex and edge values of IVNG G.

(tA1
, iA1

, fA1
)

u1 ([0.3, 0.6], [0.3, 1.0], [0.1, 0.4])
u2 ([0.2, 0.7], [0.1, 0.6], [0.1, 0.9])
u3 ([0.3, 0.4], [0.4, 0.7], [0.4, 0.5])
u4 ([0.2, 0.7], [0.1, 0.6], [0.1, 0.2])

Table 4: Edge membership values of IVNG G.

(tB1
, iB1

, fB1
)

e1 � (u1, u2) ([0.2, 0.5], [0.1, 0.4], [0.1, 0.3])
e2 � (u1, u3) ([0.2, 0.4], [0.1, 0.6], [0.2, 0.3])
e3 � (u3, u4) ([0.1, 0.5], [0.3, 0.7], [0.3, 0.4])
e4 � (u1, u4) ([0.2, 0.4], [0.3, 0.7], [0.2, 0.3])
e5 � (u2, v4) ([0.2, 0.4], [0.1, 0.5], [0.2, 0.3])
e6 � (u2, v3) ([0.1, 0.2], [0.1, 0.4], [0.3, 0.8])
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d
−
t Se2
􏼐 􏼑 � 0.7, d

+
t Se2
􏼐 􏼑 � 1.6,

d
−
i Se2
􏼐 􏼑 � 0.5, d

+
i Se2
􏼐 􏼑 � 2.0,

d
−
f Se2

􏼐 􏼑 � 0.9, d
+
f Se2

􏼐 􏼑 � 1.4,

d
−
t Se3
􏼐 􏼑 � 0.4, d

+
t Se3
􏼐 􏼑 � 1.4,

d
−
i Se3
􏼐 􏼑 � 0.6, d

+
i Se3
􏼐 􏼑 � 2.2,

d
−
f Se3

􏼐 􏼑 � 1.2, d
+
f Se3

􏼐 􏼑 � 2.0,

d
−
t Se4
􏼐 􏼑 � 0.6, d

+
t Se4
􏼐 􏼑 � 1.4,

d
−
i Se4
􏼐 􏼑 � 0.6, d

+
i Se4
􏼐 􏼑 � 2.1,

d
−
f Se4

􏼐 􏼑 � 1.0, d
+
f Se4

􏼐 􏼑 � 1.8,

d
−
t Se5
􏼐 􏼑 � 0.6, d

+
t Se5
􏼐 􏼑 � 1.4,

d
−
i Se5
􏼐 􏼑 � 0.4, d

+
i Se5
􏼐 􏼑 � 1.8,

d
−
f Se5

􏼐 􏼑 � 1.0, d
+
f Se5

􏼐 􏼑 � 1.8,

d
−
t Se6
􏼐 􏼑 � 0.4, d

+
t Se6
􏼐 􏼑 � 0.8,

d
−
i Se6
􏼐 􏼑 � 0.4, d

+
i Se6
􏼐 􏼑 � 1.4,

d
−
f Se6

􏼐 􏼑 � 1.2, d
+
f Se6

􏼐 􏼑 � 2.8.

(31)

Hence, we have

d Se1
􏼐 􏼑 � ([0.7, 1.8], [0.4, 1.8], [0.9, 1.3]),

d Se2
􏼐 􏼑 � ([0.7, 1.6], [0.5, 2.0], [0.9, 1.4]),

d Se3
􏼐 􏼑 � ([0.4, 1.4], [0.6, 2.2], [1.2, 2.0]),

d Se4
􏼐 􏼑 � ([0.6, 1.4], [0.6, 2.1], [1.0, 1.8]),

d Se5
􏼐 􏼑 � ([0.6, 1.4], [0.4, 1.8], [1.0, 1.8]),

d Se6
􏼐 􏼑 � ([0.4, 0.8], [0.4, 1.4], [1.2, 2.8]).

(32)

Now, since the degree of TMF Se1
which represents em-

ployees’ relationship working in a car company and a computer
company is the maximum relative to others, so the investor
should encourage employee relations between a car company
and a computer company. Also, Se1

has theminimumdegree of
IMF and FMF. Similarly, by observing the degree of each vertex
of IVNLG G, the investor can take a decision to attain the
objective of the companies. So, in the above example, because
the vertex degree of Se6

is [0.4, 0.8], [0.4, 1.4], [1.2, 2.8]), which
means that the truth-membership degree of Se6

is minimum,
the indeterminacy-membership degree of Se6

is maximum, and
the nonmembership degree of Se6

is maximumwhen compared
with other vertices. So, the investor should focus as much as
possible on the employee’s relationship Se6, which is the
computer company and the food company. Terefore, either
disconnecting or managing employees towards the two
companies is a better option to be competitive in investment by
managing the employees’ relationships within the company
and across diferent organizations.

Now, since the degree of TMF(Se1), which represents
employees’ relationships working in a car company and
a computer company, is the highest relative to others, the
investor should encourage employee relations between a car
company and a computer company. Also, (Se1), has the
minimum degree of IMF and FMF. Similarly, by observing
the degree of each vertex of IVNLGG, the investor can make
a decision to attain the objective of the company. So, in the

([0.3, 0.4], [0.4, 0.7], [0.4, 0.5]) u4

([0.2, 0.5], [0.1, 0.4], [0.1, 0.3])

([0.1, 0.5], [0.3, 0.7], [0.3, 0.4])
([

0.
2,

 0
.4

], 
[0

.3
, 0

.7
], 

[0
.2

, 0
.3

])

([
0.

1,
 0

.2
], 

[0
.1

, 0
.4

], 
[0

.3
, 0

.8
])

([0.2, 0.4], [0.1, 0.6], [0.2, 0.3])

([0
.2, 

0.4
], [

0.1
, 0.

5],
 [0

.2, 
0.3

])

u3 ([0.1, 0.3], [0.8, 0.9], [0.4, 0.5])

u1 ([0.3, 0.6], [0.3, 1.0], [0.1, 0.4]) u2 ([0.2, 0.7], [0.1, 0.6], [0.1, 0.9])

Figure 3: IVNG G.

Table 5: Vertex set of IVNLG G.

([t−
A2

, t+
A2

], [i−A2
, i+A2

], [f−
A2

, f+
A2

])

Se1
� (u1, u2) ([0.2, 0.5], [0.1, 0.4], [0.1, 0.3])

Se2
� (u1, u3) ([0.2, 0.4], [0.1, 0.6], [0.2, 0.3])

Se3
� (u3, u4) ([0.1, 0.5], [0.3, 0.7], [0.3, 0.4])

Se4
� (u1, u4) ([0.2, 0.4], [0.3, 0.7], [0.2, 0.3])

Se5
� (u2, u4) ([0.2, 0.4], [0.1, 0.5], [0.2, 0.3])

Se6
� (u2, u3) ([0.1, 0.2], [0.1, 0.4], [0.3, 0.8])
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above example, the vertex degree of Se6 is [0.4, 0.8], [0.4, 1.4],
[1.2, 2.8], which means that the truth-membership degree of
Se6 is minimum, the indeterminacy-membership degree of
Se6 is maximum, and the nonmembership degree of Se6 is
maximum when compared with other vertices. So, the in-
vestor should focus as much as possible on the employee’s
relationship (Se6), which is the computer company and the
food company. Terefore, either disconnecting or managing
employee relationships with the two companies is a better
option to be competitive in investment by managing the
employees’ relationships within the company and across
diferent organizations.

6. Conclusion

An interval-valued neutrosophic model is more complex
than an IVIF or an IVF model. Numerous real-world sys-
tems with varying levels of precision, incompleteness,
vagueness, and uncertainty can be modeled using this
technique. As a result, the study concentrated on the IVNLG
concept, which is crucial to real-world problems.

In this paper, our focus is to introduce both the theory
and application of IVNG. Tese include defnition, vertex
degree, edge degree, isomorphic properties, and daily life
applications of IVNLGs. In this regard, we explained the
maximum degree and minimum degree of a vertex of the
IVNLGs and their role in the art of decision-making.
Many types of line graphs have already been discussed
from a diferent perspective by other researchers, for
example, classical line graphs, fuzzy line graphs, interval-
valued fuzzy line graph (IVFLG), intuitionistic fuzzy line
graphs (IFLG), and L(G) of IVIFG. Also, the line graph of
single-valued neutrosophic graphs was introduced.
Interval-valued neutrosophic line graphs are the gener-
alization of interval-valued fuzzy line graphs and interval-
valued intuitionistic line graphs. In addition, weak vertex,
weak line, and homomorphism properties are demon-
strated. We also presented some theorems, propositions,
and properties of the IVNLG. Finally, the algorithm that is
used to calculate the degree of IVNLG as well as the
application of IVNLG has also been discussed and il-
lustrated by numerical examples. Based on this result, we

Table 6: Edge set of IVNLG G.

[t−
B2

, t+
B2

] [i−B2
, i+B2

] [f−
B2

, f+
B2

]

Se1
Se2

[0.2, 0.4] [0.1, 0.4] [0.2, 0.3]
Se1

Se4
[0.2, 0.4] [0.1, 0.4] [0.2, 0.3]

Se1
Se5

[0.2, 0.4] [0.1, 0.4] [0.2, 0.3]
Se1

Se6
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Se2
Se3
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Se2

Se4
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Figure 4: IVNLG G.

Journal of Mathematics 15



can extend the introduced concept to several extensions of
neutrosophic graphs since it is the most general form of
graph today and was designed in order to capture our
complex real world. We can also extend this new concept
to direct neutrosophic graphs and other areas of graph
theory.
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