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The objective of the current study is to provide a variety of families of soliton solutions to pseudo-parabolic equations that arise in
nonsteady flows, hydrostatics, and seepage of fluid through fissured material. We investigate a class of such equations, including
the one-dimensional Oskolkov (1D OSK), the Benjamin-Bona-Mahony (BBM), and the Benjamin-Bona-Mahony-Peregrine-
Burgers (BBMPB) equation. The Exp (-¢ (§))-expansion method is used for new hyperbolic, trigonometric, rational, exponential,
and polynomial function-based solutions. These solutions of the pseudo-parabolic class of partial differential equations (PDEs)
studied here are new and novel and have not been reported in the literature. These solutions depict the hydrodynamics of various
soliton shapes that can be utilized to study the nature of traveling wave solutions of other nonlinear PDE’s.

1. Introduction

Nonlinear problems have always been of interest to re-
searchers [1-3] due to various applications to practical
problems. While several approximate and numerical
methods are available, analytical solutions always provide
a benchmark for such methods. Several ansatz-based
methods like mapping method [4, 5], the Jacobi elliptic
function method [6], the new extended direct algebraic
method [7], the tanh-coth method [8], the simple equation
method [9], the symmetry method [10, 11], and many others
are used for handling exact solutions to nonlinear PDEs.
Pseudo-parabolic equations, which appear in many
branches of mathematics and physics, have a one-time
derivative in the highest-order term. They arise, for exam-
ple, in the study of the flow of fluid in fractured rocks, the
consolidation of clay, the shear of second-order fluids,
thermodynamics, and the propagation of long, low-
amplitude waves.

To solve a nonlinear pseudo-parabolic equation, a nu-
merical approach has been established [12]. The stability of
numerical approximations to backward-time parabolic and
pseudo-parabolic problems and a relationship between
parabolic and pseudo-parabolic difference schemes were
also explored, along with a relationship between parabolic
and pseudo-parabolic difference schemes. The approach
suggested by Sobolev [13] may be used to identify the source
of new issues in mathematical physics, and [14] explained
why these problems are referred to as pseudo-parabolic
problems. Pseudo-parabolic equations apply to the study
of a variety of significant physical phenomena, including the
seepage of homogeneous fluids through a fissured rock [15],
the accumulation of populations, and the conduction of heat
between bodies kept at two different temperatures. They are
characterized by the occurrence of a time derivative
appearing in the highest-order term [16]. Such equations,
which comprise the nonlinear pseudo-parabolic differential,
are used in many branches of physics and mathematics to
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explain many physical implications [17]. In this direction,
Camassa [18] has obtained some soliton solutions for the
pseudo-parabolic equations. Wazwaz [19, 20] has considered
analytical solutions to the same class of equations. Johnson
[21] discussed some models arising from water waves. The
authors [22, 23] discussed the trigonometric and hyperbolic-
type soliton solutions of the same class. To provide readers
with additional information, reference [24] is cited.

The generalized pseudo-parabolic equations are one
specific instance of this class. We consider the following
generalized form of Benjamin Bona Mahony equation:

Qi — st — OGxx + V9 + 9(q) =0, (1)

where g (g) is a C*>-smooth nonlinear function, « is a positive
constant, y is a real constant, and g(x,t) represents the
velocity of fluid in the horizontal direction. Peregrine [25]
and Benjamin et al. [26] suggested the regular long-wave
equation for the widely used KdV equation as the specific
case of g(q) = qq, with « =0,y =1 in equation (1), i.e,,

G + Gexe + 95 + 9495 = 0. (2)

The equation for BBMPB is obtained by substituting
g(q) = 099, + Py in the following equation (1) to get

Gt — Quxt — %qxx + V95 + 099, + Bqr = 0. (3)

The following equation is obtained for &« = f = 0 in the
above equation, which is the following BBM equation:

G — Gxt + V95 + 099, = 0, (4)

in which y, 0 € R and 0+ 0 is a parameter. We also consider
the one-dimensional OSK equation which models in-
compressible viscoelastic Kelvin-Voigt fluid [27]

q: — /\qxxt O T 995 = 0. (5)

This article aims to find new families of exact soliton
solutions for the nonlinear pseudo-parabolic type models
arising in mathematical physics using the Exp (-¢(£))-ex-
pansion method [28-30]. This method is an extremely
powerful tool for dealing with soliton solutions of nonlinear
PDEs. It provides the hyperbolic, trigonometric, rational,
exponential, and polynomial functions-based soliton solu-
tions to the nonlinear PDEs. This is the actual limitation of
the used methodology here. For the more general soliton
solutions, we need to enhance our methodology also.
Akcagil et al. [31] reported the solutions to the class of
trigonometric, hyperbolic, and rational soliton solutions.
We want to build on earlier research to advance our quest for
a wealth of fresh traveling wave solutions. Our findings
include the dark, bright, rational, exponential, polynomial,
and solitary wave solutions. The solutions provided in this
research are exclusively novel and valid and have not been
previously presented for this class of equations.
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The structure of this paper is as follows: In Section 2, we
present a layout for the Exp (-¢ (£))-expansion method. In
Sections 3-5, the BBMPB, the 1D OSK and BBM equations
respectively have been studied to obtain various solutions
using this method. The graphical representations of these
solutions are presented in Section 6. In Section 7 the con-
clusion and some possible directions of future study are
mentioned.

2. Floor Plan for the Exp
(- ¢ (&))-Expansion Method

This section deals with the brief floor plan for the Exp
(—¢ (£))-expansion method [28-30] to find the explicit
soliton solutions. We give here the main steps of the method.
We consider an explicit form of the nonlinear PDE as
follows:

P(4:9: 995 ---) = 0, (6)

where ¢q is the dependent variable.

Step 1. To reduce the number of independent variables of
the equation (6), we introduce the following traveling wave
transformation:

q(x,t) =V (&),

&= x—uwt,

(7)

where w is a nonzero real parameter indicating wave speed.
Then, by adopting the traveling wave transformation, the
nonlinear PDE (6) becomes

Q(v,v',v",..)=0. (8)

Note that for cases, the invariance of the transformation
(7) serves as the existence criterion for the traveling wave
solution. Also, the term traveling wave is due to the time
behavior of the dependent variable.

Step 2. The general solution to (8) is appropriated as
a polynomial in exp (—¢(&))
Vi

V=Y a0, (9)

i=0

where a;(0<i< /) are the coeflicients to be determined
later, and ¢ (&) is the solution of the following equation:

¢' (=41, 12, (10)

where a;, A, and 1, are real constant parameters and .# can
be determined by the homogeneous balance principle. There
are five cases for the ¢ (&);

Case I: When Af -4A,>0 and A, #0,
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2_
¢ (&) = lnlz%l (—\Mf - 4), tanh(—‘/\lzu2 (£+ c1)> —A2>]. (11)

Case II: For )Lf — 41, <0 and A, #0,

A, — A2
1€3) =1n[%(\/4)t2—)tf tan(% (§+c1)>—,12>:|. (12)
1

Case III: For A; =0 and A, #0,

- _ " .
¢(€) - ln[e/lz(acl)_l] (13)
Case IV: For 1,#0, 1, #0 and > — 41, = 0,
20, (E+c))+4
= |22 T R
S ey o
Case V: For 1, = 0, 1, = 0 (or A} — 41, = 0),
¢(&) =In({+¢y). (15)

Step 3. Substituting the equation (9) into (8), the left hand
side of the ODE (8) becomes a polynomial in e¢©. By
comparing the coefficients of both sides, we get a system of
algebraic equations that is solvable by some symbolic
software like Mathematica 11.3 or Maple.

Step 4. Putting the values of ¢ () from equations (11)-(15)
one by one in (9), we get solutions for ODE (8). Replacing &
by x — wt, we get solutions for our PDE (6).

Now we are going to apply this method for some im-
portant nonlinear PDEs to have explicit soliton solutions.

ay(y - w) + aa;A + agg + A (w+ ) (a;), + 2a51,)

a; (y—w) + a(a;A, +2a,1)) + Baga; + (w + [5)(2611/\1 +6a,A, 4, + al)tg)

2

a,(y —w) +2a(a, +2a,4,) + 0(% +aya,

) +(w + B) (3a,A, + 7a,A A, + 4a,),)

3. The Benjamin-Bona-Mahony-Peregrine-
Burgers (BBMPB) Equation

Here, we first look at the equation BBMPB given by
At — oext — Oxex T V4 + eqqx + ﬂqxxx =0. (16)

By using traveling wave transformation q(x,t) =
V (€),& = x — wt, we obtain the following nonlinear ODE:

(y - w)V —aV’ +§v2 +(B+w)V" =0. (17)

By comparing the highest order of linear term V" with
the highest degree of nonlinear term V? in (17), we decide
the order of V as O(V) = 2. Based on this order, we deduce
that the solution of (17) is of the following type:

V() =a,+ al(eﬂb“)) + al(ef(/)(f))z. (18)

Such that ¢ (&) satisfies (10). By substituting (18) into
(17), we transform the right-hand side of the equation into
a polynomial in e #®, and then by comparing coefficients
the following system arises:

0)

0,

0, (19)

2aa, + Oa,a, +2(w + ) (a, + 5a,1,) =0,

gag +6a, (w+f) =0.



We solve this system with Mathematica 11.3 to get the
following set of parameters.

First set
_ o4 (y-w)
6(a; —ax\,)
a, (2a,4, - ay)
A =55
4a;
0 2a, (w—-1y)
(a, - 02/\2)2’ (20
B - —6waidl + 12wa,ay, + ya; — wa: — wa;
6(a, - azAz)z
&2
=1
%= 4a,
2 2 2
6=In 1 q|Ae; - 2alzc12)t2 ~4 ok
20 a;
Case II: For A2 — 41, <0 and A, #0,
1 1+ 2a,a,), - Ma;
¢ =1n N 9 31“22 2 "M% on
1 612
Case III: For A, =0 and A, #0,
1 -
=-In|——2—|. 24
(/) [6/12 (‘E*Cl) 14 ( )
Case IV: For 1, #0, 1, #0, and A3 — 41, = 0,
A 4]
¢=1In 2(54'#” . (25)
(Az (§+ci) |
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Inserting these parameters into (18), we obtain
2
a 2
V(E) =—L+a(e?®)+a,(e?O). (21)
O = () ()
Thus, the solutions for (10) becomes

Case I: When A} — 41, >0 and 1, #0,

AZ 2_2 2 — 2
24, 611?2 2~ 4 (£+C1) _/\2 ] (22)

4a,

2
aj +2a,a,A

2

2~ 345
(E+cy) |2 | (23)
4a,

Case V: For A, =0, 4, =0, (or Af -4}, =0),
¢=In(§+c,) (26)

Now by putting (22)-(26) one by one into (21) the
solutions for our ODE are given by

Family 5. When A3 — 41, >0 and A, #0,

2 2 2
a 1 Asa5 — 2a,a,A
Vll(-x:t): 1 -a, \/ 272 122 2
4a, 20 a;

-1
_ 2 205 _ 2
i tanh< \j)tzaz Z;?AZ all &+ C1)> + Az>:|

(27)

-2
1 I)L%a% -2a,a,), — at ’Aga% -2a,a,, —at
—a, |:2_)L1 < V > tanh \J P (E+cp) | +M, .

a;
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Family 6. For /\f —-4), <0 and A, #0,
-1
2 2.2 2 2.2
1 ai +2a,a,A, — Aa ai +2a,a,A, — Asa
Vi (x,1) ﬁ+al|:2_)t1< ’ L 172 2 2tan<V’ 1 14621%2 : 2(f+cl)>—)tz>]
(28)
-2
va, 1 ’al + 2a1a22/\2 - Ma? an Ia% + 2a1a2§2 - Ma? Exre) -1 )| -
20 \J as \1 4a3
Family 7. For A, =0 and A, #0, Family 8. For A, #0, 1, #0, and A} — 41, = 0,
2 2
a A A
1% Jt — 1 2 " .
13 (x ) 4a2+al |:e/\z(f+cl) _ 1:| +a2|:e)[z(f+51) — 1:|
(29)
2 -1 -2
A 4 A 4
Vig(x,t) =i+a1 [2(§+Cl) il ] +a2|:2(§+cl) * ] . (30)
4a, (/\2 (§+c1) (Az (§+cy)
Family 9. For A, =0, 1, =0, (or A} — 41, = 0), Inserting these parameters into (18), we obtain.
2 242 2
- - 8 A, —4ajd; -3 - _ 2
Vis(x,1) :f—l+a1 (§+c1) 1"’“2(5""%) 2. (31) V() = e Al G a1+a1<e ¢(f))+a2(e ME)) ‘
a, 4a,
where € = x — wt in all above cases. (33)
Second set is as follows: Thus, the solutions for (10) becomes
_sa(w-y) X Case I: When A7 — 41, >0 and A, #0,
6(a; - ax},)
a, (2a,), - a;)
A =—"F5—5
4a;
o 2a, (y —w) (32)
(a, - azA2)2
g - —6was)l + 12wa,a,\, — yas — 6wa: — wa;
6(a, - azAz)z ’
o= 8a,a,\, — 4a’A’ - 3a
o 4a, '
1 Aa; -2a,a,), - a; Aa; -2a,a,), - a;
¢=In|—| - 2% 7 ST T8 2% algz 274 E+c) | -4 | (34)

4a,
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Case II: For )L% - 41, <0 and A, #0,

1 T+ 2a,a,), - Aoa; 1+ 2a,a,), - Aoa;
¢=1In o ! ‘11‘;22 27 0% | |2 012222 2% E+c) | -1 | (35)
2 2 2
Case III: For A, =0 and A, #0, Case V: For A, =0, 1, =0 (or /1% -4, =0),
gb:_ln[/\(flz) . (36) ¢:1n(f+cl)' (38)
e\t 1]

) Now by putting (34)-(38) one by one into (33) the
Case IV: For A; #0, A, #0 and A} — 44, =0, solutions for our ODE are given as follows.
A (E+c)) +4]

¢= ln[ (/\2 o | (37)  Family 10. When A2 —4),>0and A, #0,
2 1) |

-1

8a,a,\, — 4aA> - 3a° 1 a2 - 2a,a,), — a? a2 - 2a,a,\, — a?

Vi (1) = a;aA, 4aa1 2 “1_a1 o \J’ 2% 3126’2 2 — a4 tanh \J’ 2% Z:zlz 2 — a4 (E+ey) |+,
2 1 2

a4
-2
1 ]Agag - 2a,a,\, — a? l/liag -2a,a,\, — a?
-a,|— h .
a, [2)»2 ( \J 2 tan \J 42 (E+c) | +A,

(39)
Family 11. For A> -4, <0 and A, #0,
-1
_ 292 2 2 12,2 2 12,2
Vi (ot = 8a,a,A, — 4ajA; — 3a] ra, 1 [al + 2a1a22/12 Aza; tan ’al + 2611(12/2\2 Aa; (E+re) | -2,
4a, 20 as 4a’
(40)
1 Iaz +2a,a,A, — \2a? ’az +2a,a,), — Aa? N
+ay| 3 \11 19222 7 20% tan \Jl 19222 7% (f ) |- A,
2 a; 4a;
Family 12. For A, =0 and A, #0,
8a,a,), — 4a’A - 3a° N R g
Vig(x,t) = + +ay| | . 41)
18(x ) 4612 a; eh(f"ﬁ) -1 a e/\z(f*'cl) 1 (
Family 13. For A, #0, 1,#0 and A} — 41, = 0,
8a,a,\, — 4aid; - 3a; /\(£+c)+471 )L(E+c)+472
R TCIEE I (NSNS O SRR o
a, (Az (§+e) (’12 (§+c1)
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Family 14. For A, =0, A, =0 (or /1% -41, =0),
2

3a - -
Vgt =—tray(E+e)” +a,(§+e)™  (43)
2
where & = x — wt in all above cases.
Third set is as follows:
_ 0a,
=
1 = ay (alAZ - ao)
e B
4
Oa, A
w= A 2 4 fay + 7y,
2
0a, A,
p=— ~ba-r (44)
ag = dg,
a, =ay,
a, =0,
A=Ay,
0=26.
2 2 2
6=In 1 [ q|Agen - 4alito)tz + 4ay tanh
20 a;
Case II: For A2 —41,<0 and A, #0,
1 [ |4a,a0), — Ayat — 4a;
¢ =1In T ) 22‘11 % tan
1 al
Case III: For A, =0 and A, #0,
A
=—In|——2—1|. 48
o= ey )

Case IV: For 1, #0, 1, #0 and A} — 41, = 0,

7
Inserting these parameters into (18), we obtain
V() =a,+ al(e_¢(5)). (45)
Thus, the solutions for (10) becomes
Case I: When A7 — 41, >0 and 1, #0,
2 2 2
Aaj - 4a1c210)tz + 4ay E+re) |-, (46)
a,
4a,a,), - Noa; — 4a;
a,80M, 22‘11 a (E+c) | -2, (47)
a,
4
¢=1In [M] (49)
(/\2 (§+c)
Case V: For A, =0, A, =0, (or Af -4, =0)
¢p=In(+c)). (50)



Now by putting (34)-(38) one by one into (33) the

solutions for our ODE are given by
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Family 15. When /lf —4A,>0 and A, #0,

1
Vinlxt)=ay—a, R \J
1

Family 16. For A> — 4, <0 and A, #0,

1
Vin(xt)=ay—a N \J
1

Family 17. For A, =0 and A, #0,

A
Via(x,t)=a,+a [42]
113 0 1 e/\z(&cl)—l
Family 18. For A, #0, 1,#0 and A} — 41, = 0,

A -1
2 1

Family 19. For A, =0, 1, = 0 (or A* — 41, = 0),
Vis(6t) =ag+a; (E+¢,)7

where € = x — wt in all above cases.

4. The One-Dimensional Oskolkov
(OSK) Equation

The second model, OSK, is given by

(53)

(54)

(55)

-1
2.2 _ 2 2.2 2
B I/lzal 4a,ay), + 4ag tanh I/lzal 4a,ay), + 4ag Eve) ) -7, . (51)
ai Vo4
’4a1a0/12 -Ma? - 4a? ’4a1a0A2 - Ma? - 4a2 B
- 52
" tan V 7 (E+c) |-A :I (52)
q: — Aqxxt — 0y T 99 = 0. (56)

By using the wave transformation q(x,t),§ = x — wt, we
obtain the following nonlinear ODE:
1
—wV —aV' 4 ViV =0, (57)
By comparing the highest order of linear term V" with
the highest degree of nonlinear term V? in (57), we decide

the order of V as O(V) = 2. Based on this order, we deduce
that the solution of (57) is of the type.

V() =a,+ al(eﬂb(a) + az(eﬂb(g))z. (58)

Such that ¢ () satisfies (10). By substituting (58) into
(57), we transform the right-hand side of the equation into
a polynomial in e #®, and then by comparing coefficients
the following system arises:

2

a
—wa, + aa, A, + ?(’ + M (a), +2a,1) = 0,

—wa, + a(ad, +2a,)) + aga, + )L(ZalAl +6a,M,A, + al)ti) =0,

a
~wa, + a(a, +2a,1,) + ?1 +aya, +A(3a,A, + 7a,1,1, + 4a,),) = 0,

2

(59)
2aa, + aja, + 21 (a; + 5a,1,) =0,

2
a
2+ 6a,A = 0.
2
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We solve this system for desired constants with Math- Inserting these parameters into (58), we obtain:
ematica 11.3 that leads to the following set of parameters:

a=-50wh, += (m - Vol Jw,

6105 — 1
A =2
! A
a, = -12\w, (60)
a, = 3\wl; —(6A1, £ V6 Jwd, +%w,
-2(6A1, + Vol Jw.
V(&) = 30wA; —(6A1, = V61 Jwh, + %w —2w(6M, + VoL )(e*9) - 122w(e *D)’. (61)
Thus, the solutions for (10) becomes Case I: When A7 — 41, >0 and 1, #0,

2 2
¢(E)=lnl%<—\/%mztanh< LB e )> H (62)
1

Case 1I: For )Lf —4A,<0and A, #0,

¢(&) =In [21 (\’—ZMA;_ltan( 23)“\ Py )> 2)] (63)

Case III: For A; =0 and A, #0, Case V: For A, =0, 4, =0 (or /1% -4A, =0),
B Ay o) =In(¢+c¢)). (66)
¢(f) - ln[elz(f*'cl)_l]. (64)
) Now by putting (62)-(66) one by one into (61) the
Case IV: For A; #0, 1, #0 and A} -4\, =0, solutions for our ODE are given by
27 4
¢ (&) = ln[zg'ﬁcl)+ . (65) Family 20. When /lf —4A,>0and A, #0,
A +a)

Vi, (x,8) = €5 — 61[ < \’ 23AA2 < \————= 23/1/12 2 (&E+ c1)> +A2>]
) mw[ ( 1230 < 23M2 -2 )> 2)]

(67)
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Family 21. For. /lf —41,<0.and A, #0,

I23M§ -1
ta

Journal of Mathematics

-1

1
Vo (x,1) =€ + € R \J 3
1

(5 ) )

1 [23M2 -1
- 12 \w|— 2 t
“’lz)tl <\J @

Family 22. For A, =0 and A, #0,

A A ’
V ’t _ 72 _ 12A 72 . 69
»(xt) =€ +¢€ |:elz (&+cy) _ 1:| w|:ekz (&+er) _ 1] ( )

Vo (x,t) =€y + el[

Family 24. For A, =0, 1, =0 (or A} — 4}, = 0),

Vs (x,t) =€y +€ (§ + ‘31)71 - 12w (& + Cl)iz’ (71)

where &=x-wt in all above cases and ¢, =31
wA} — (6M, + V6L )wA, + 3/2w,€; = -2 (6AL, + V61w for
all families.

5. The Benjamin-Bona-Mahony
(BBM) Equation

The third equation, BBM, is given by

G — Gxxt + Vqx + 099, = 0. (72)

By using the traveling wave transformation
q(x,t) =V (£),E = x—wt, we obtain the following non-
linear ODE:

47
(68)
I23M2 1 N
2 — —
<\J 4\ (f+cl)> A2>‘|
Family 23. For A, #0, A, #0 and Af -4A, =0,
-1 -2
2/\2££+c1)+4 _lew[2A2§£+cl)+4] . (70)
A +c) A& +cy)
9 2 n

(w—y)V+5V +wV" =0. (73)

By comparing the highest order of linear term V" with
the highest degree of nonlinear term V2 in (73), we decide
the order of V as O (V) = 2. Based on this order, we deduce
that the solution of (73) is of the following type:

V(&) = a, + al(e—(b(f)) " az(e—¢(£))2) (74)

Such that ¢ (&) satisfies (10). By substituting (74) into
(73), we transform the right-hand side of the equation into
a polynomial in e #®, and then by comparing coefficients
the following system arises:

0
ag(y-w) - a(z)i +Ahw(ad, +2a,1,) =0,

a, (y —w) - Oaya, + w(2a1/\1 +6a,M A, + al/\i)

a,(y-w) - gaf - Baya, + w(.%al)t2 + 8a,AMA, + 4a2/\§)

Oa

0, (75)

Ba,a, — 2w (a, + 5a,,) = 0,

0
Eaz —6a,w = 0.
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We solve this system with Mathematica 11.3 for desired
constants that lead to the following two sets of parameters.
First set is as follows:

2(y - 6wl —w)
G =—"—"p >
12 ’y—4w/11 -w
N7 w w
12w
@ =g
(76)
w=w,
0=0,
A=Ay

11

Inserting these parameters into (74), we obtain

V(&) = 2(y - 6wh, —w) 12 - 4w, — ww(ef‘ﬁ(f)) ~ lziw(eﬂb(f))z. (77)

9 6\

Thus, the solution for (10) becomes

0

w

Case I: When A7 — 41, >0 and A, #0,

6—In|- ]y—4)t1(w—l)—wt
4)tfw

Case II: For A2 — 41, <0 and A, #0,

—4A -1) - 4w, —
anh(\/y I(Zu ) w(£+61)>_\y-|-41;7§;w:|' (78)

B lw+4)t1(w—l)—y ’w+4)t1(w—l)—y B y + 4wk, —w
¢ = ln[\J o tan \1 o (E+¢y) 74/1%1” . (79)

Case III: For A, =0 and A, #0,

I \y +4wd, —w/w
(/) B e\/y+4w)tl—w/w (E-H:l) -1 ’
Case IV: For 1, #0, 1, #0 and A} — 41, = 0,

¢=1n[2\/y+4w)t1—w/w (E+cl)+4]. (81)

y+4wl, —wiw (& +¢))

(80)

Case V: For A, =0, 1, =0 (or /\f -4}, =0),
¢=In(§+c,). (82)

Now by putting (78)-(82) one by one into (77) the
solutions for our ODE are given by

Family 25. When 17 — 41, >0 and A, #0,
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e e e e N R |
1 1

2

h-aw-D-w -4l (w-1D-w yrawh, —w \|
+82[V e tanh \J ™" (E+cy) |+ T .

-1

(83)
Family 26. For \> -4, <0 and A, #0,
I -1
2(y - - 9 (w-1)- 4 (w-1)- 4wl —
V32(X,t)= (Y 6LU/11 w)_al {w+ Al(‘l’; ) )’tan \Jw+ Al(w ) y(f+61) _ y+ wjl w
9 \J 412w 4w Njw
1 w + 41 A N
4 -1)- 4 -1)- 4 -
[ ettty fwrah@oDy N el —w
\J 422w \J 4w Njw
(84)
Family 27. For A, =0 and A, #0,
Ve 220w 12 e [V () 1) o [V () T (85)
»WU=Tg 2 \y - wiw 6 \y - wiw '

Family 28. For A, #0, 1, #0 and A} — 41, = 0,

Vo t)_z(y—w)_E y - 4wk —w Y+ 4wl —wiw (& +¢) _l_lz_w Y+ 4wl —ww (€ +¢)) ?
=T 0 w v 2\y +4wk, —w/4 (§+¢,) +4 0 [2\y+4wh —ww (E+c;)+4]
(86)

Family 29. For A, =0, 1, =0 (or A} — 4}, = 0),

Vis(x,1) = 2()/6_ w) —%2 \ 4 L_wa(f +e)! _127w(€+ ). (87)
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where E=x-wt, 8, = 12/04/y — 4wk, — w/ww and Inserting these parameters into (88), we obtain
8, = 12w/0 in all above cases.
Second set is as follows:

12wl
QG =——p5 >
12 ’y—4w/\1 —w
M=y w w
12w
=g
(88)
w=w,
0=0,
A=Ay

Rwd; 12 fy—4wh —w  _4p)y 120, _4i)\2
V(f)=—6—6\/ww(e )~ 2Oy (89)

Thus, the solution for (10) becomes as follows: Case I: When )Lf —41,>0 and A, #0,

¢ = ln{—\jy _M‘i;; 2 _wtanh<\/y_4)tl (:;)_ D-w (E+ cl)> - %}. (90)
1 1

Case II: For A2 — 41, <0 and A, #0,

B ’w+4)t1(w—l)—y Iw+4)t1(w—l)—y B y + 4w, —w
¢ = ln|:\J 2w tan V o (E+¢p) 74/1@) . (91)

Case III: For A, =0 and A, #0, Case V: For 1, =0, 1, = 0, (or A} — 41, = 0),

I Ay +4wd, —w/w
¢ = e\/y+4w)tl—w/w (&+c)) _ 1 ’

Case IV: For 1, #0, A, #0, and /ﬁ —4), =0, Now by putting (90)-(94) one by one into (89) the

solutions for our ODE are given by
-
6=In 2\y +4wk, —wiw (§+¢;) +4 . (93)
Y+ 4wl —w/w (& +c;)

(92) ¢p=In(¢+c). (94)

Family 30. When A7 — 4}, >0 and A, #0,
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-1

12wA y—4r (w-1)-w y—4h (w-1)-w y + 4wl —w
Vielnt) = ===+ 0y H o tanh<\J’ “hw (£+Cl)>+ \)W
(95)
-2
0, ’y—4}t1(u;—l)—wtanh Iy—4)ll(w—1)—w(€+c1) . y+4w2/11—w
\j 412w \J 4w 4Aw
Family 31. For A7 —4), <0 and 1, #0,
A fo+ 4k (w-1) fw + 44, (w-1) fr+ 4w B
_ LRwh, w+4r (w-1)-y w+4r (w-1)-y [y tawh —w
Vi, (x,t) = p 8, |:\J 4)wa tan<\J T (&E+ c1)> 74Afw ]
(96)
-2
_s, ’w+4/\1(1;)—1)—ytan Iw+4/11(w—1)—y(f+61) B y+4w2/\1—w
w \ aw N
Family 32. For A, =0 and A, #0,
Uty o 12 [ [V ) ) fee () T )
B =Ty Y \y - wlw 6 \y - wiw ’

Family 33. For A, #0, 1,#0 and > — 41, = 0,

V39 (x,8) =

y+4wd, —w/w (& +c;)

LRw), 12 |y -4wk —w [
- w

o o\ w

Family 34. For A, =0, 1, = 0 (or A> — 41, = 0),

12 y-w o 2w -
Vo (%:1) = ) YTw(f+c1) : _T(f“LCl) ’
(99)
where E=x—-wt, 8, = 12/04/y — 4wk, — w/ww and

8, = 12w/ in all above cases.

6. Graphical Structures of Some Solitons

This section offers a brief graphical summary of the solutions
to the pseudo-parabolic equations discussed here. The wave
profile of the BBMPB equation, the BBM equation, and the
OSK equation are the main topics of our discussion. Our
newly developed families of soliton solutions for nonlinear
pseudo-parabolic models represent hyperbolic, trigono-
metric, rational, exponential, and polynomial functions. The
waveform characteristics conform to the properties of some
known solitons including the solitary waves, dark, bright,
rational, exponential, and polynomial solutions provided in

2\y +4wk, —wiw (§+¢;) +4

]_1_12_11) Y+ 4wl - wiw (€ +c¢))

6 [2\/)/ + 4wk, —w/w (E+c¢)) +4

(98)

this research. For a particular set of parameters that are listed
alongside, Wolfram Mathematica 11.3 simulations were
used to create all of these visualizations. The plots include
3D, 2D, contour plots, and density plots. The plots of the
solutions are shown in Figures 1-5.

7. Discussion of the Obtained Results

Using the Exp (—¢(£))-expansion method, new solitonic
families for nonlinear pseudo-parabolic type models have
been effectively found. Our focus was on the BBMPB
equation, the BBM equation, and the OSK equation. In this
study, we have successfully derived the new families of
soliton solutions for the nonlinear pseudo-parabolic models.
We have obtained the solutions hyperbolic, trigonometric,
rational, exponential, and polynomial functions. The dy-
namics of the solutions show that the obtained solitons are
solitary waves, dark, bright, rational, exponential, and
polynomial functions-based. The results obtained from the
authors [22, 23] contain only dark and bright solitons. So,
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0
X
(©) (d

F1GURE 1: Physical characteristics of the BBMPB equation (16) by equation (27), where A, = —1 and all remaining are 1. (a) 3D plot. (b) 2D
plot. (c) Density plot (d) 3D plot.
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FiGgure 2: Continued.
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FIGURE 2: Physical characteristics of the BBMPB equation (16) by equation (27), all the parameters taken to be 1. (a) 3D plot. (b) 2D plot.
(c) Density plot. (d) 3D plot.
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FIGURE 3: Physical characteristics of the BBMPB equation (16) by equation (48), all the parameters taken to be 1. (a) 3D plot. (b) 2D plot.
(c) Density plot. (d) 3D plot.
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() (d)

FIGURE 4: Physical characteristics of the OSK equation by (50), where A, = 2 and all remaining are 1. (a) 3D plot. (b) 2D plot. (c) Density
plot. (d) 3D plot.

(a) (b)

FiGgure 5: Continued.
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(d

F1GURre 5: Physical characteristics of the BBM equation by (99), where y, = 2 and all remaining are 1. (a) 3D plot. (b) 2D plot. (c) Density

plot. (d) 3D plot.

our results are more general and new and have many ap-
plications in the field of fluid dynamics, nonsteady flows,
seepage of fluid through fissured material, ocean engi-
neering, and physical sciences.

8. Conclusions

To integrate the pseudo-parabolic type equations in this
study, new applications of the Exp (-¢(£))-expansion
method were used. It proved to be effective to apply the Exp
(-¢ (&))-expansion method to find new analytical solutions
to the pseudo-parabolic equations. This technique estab-
lishes the solutions of the pseudo-parabolic equations in
terms of hyperbolic, trigonometric, rational, exponential,
and polynomial functions. Previously, only hyperbolic
function-based solutions were given by the authors
[22, 23], while the solutions found in [31] were trigono-
metric, hyperbolic, and rational functions. These solutions
exhibited the characteristics of dark and bright soliton
solutions. However, our results showed that the solitary
waves, dark, bright, rational, exponential, and polynomial
solutions provided in this research are exclusively novel
and valid and have not been previously presented for this
class of equations. These precise solutions capture the
dynamics of various soliton wave shapes, and they may be
used to evaluate, compare, and numerical studies in the
area. Additionally, the approach utilized in this work can be
applied to other mathematical and physics-related prob-
lems. It appears that more study is necessary for the ad-
vancement of fresh, effective analytical techniques for
solving partial differential equations. By exploiting the
improved capacities of such techniques, more problems in
science and engineering that occur in the real world can be
solved effectively. This can serve as one of the finest in-
centives for scientists to concentrate more on this re-
markable area of study.
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