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Tis work examines a new class of working vacation queueing models that contain regular (original) and retrial waiting queues.
Upon arrival, a customer either starts their service instantly if the server is available, or they join the regular queue if the server is
occupied. When it is empty, the server departs the system to take a working vacation (WV). Te server provides services more
slowly during theWV period. New customers join the retry queue (orbit), if the server is on vacation. Te supplementary variable
technique (SVT) examines the steady-state probability generating functions (PGFs) of queue size for diferent server states. Several
system performances are numerically displayed, including system state probabilities, mean busy cycles, mean queue lengths,
sensitivity analysis, and cost optimization values. Te motivation for this model in a pandemic situation is to analyze new
healthcare service systems and refect the characteristics of patient services.

1. Introduction

Te importance of managing queues is apparent in the real
world. All network communications, healthcare systems,
and industries use these queues. Several researchers have
investigated the idea of repeated tries (retrial queues), which
means that a new customer must leave the service area and
repeat his request after a specifed period, called retrial time
if the server is busy when he arrives. In between trials,
a blocked customer in a retrial group has been considered as
being in orbit. Artalejo [1] and Falin [2] provide a complete
survey.

Many of the authors have investigated concepts in recent
years for an emergency service mechanism that would
charge diferent rates during a period of vacation or
breakdown. During the absence (vacation) time, the primary
server provides service at various rates, known as working
vacations or working breakdowns. Tese services are pri-
marily helpful in communication networks and healthcare
systems. Chandrasekaran et al. [3] surveyed working va-
cation queueing models briefy.

In real life, there are two types of queues: normal and
retry. Such queues can be found in computer networks,
networks of communication, medical care systems, and
many other systems. Most works are covered in queueing
theory, which states that there is only one waiting queue,
i.e., when a server is busy, customers will either wait in orbit
(the retrial queue) or in front of the server. Tis type of
service may often afect the hospital system. Some emer-
gency cases arise in person; when doctors are unavailable, it
is a risk. Motivated by this factor, this research developed
a model of both queues (original and orbit) into a single
server model that incorporates the idea of working vaca-
tions (M[1],[2]/G/1/WVTis model is necessary for the
hospital system because patients can receive treatments in
person or online.

1.1. Literature Review. Retrial queues in queueing theory
have shown to be an interesting area of study, as indicated by
the surveys [1, 2]. See Artalejo and Corral [4] and Atencia
et al. [5] for additional details regarding the retrial queues.
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To get more information on vacation queueing ap-
proaches, researchers may study the works of Doshi [6] and
Tian and Zhang [7]. Te concept of two categories of cus-
tomers in the vacation model and balking has been in-
vestigated by Baruah et al. [8]. Te M/G/1 queue with
a single working vacation and general service times has been
researched by Zhang and Hou [9]. Afterward, vacation
interruption was included in a Bernoulli schedule that Gao
and Liu [10] considered.

An approach to a retrial queueing system with a single
working vacation was suggested by Arivudainambi et al.
[11]. In connection to working vacations and vacation in-
terruptions, a retrial queue with general retrial times was
created by Gao et al. [12]. Kalidass and Ramanath [13] are
identifed with introducing the idea of M/M/1 queueing
models with working breakdowns. An M/G/1 queueing
system with catastrophes and working breakdown services
has been discussed by Kim and Lee [14]. Furthermore,
a preemptive priority queueingmodel has been developed by
Ammar and Rajadurai [15].

Recently, reservice or feedback service or diferent
types of queues in service is highly required for service
quality. In 2009, Krishnakumar et al. [16] considered
a multiserver feedback retrial queue with a fnite bufer
queue. Here the model was framed by the demand for
reservice for served customers. Charan et al. [17] have
studied an optional reservice retrial queueing model in
Bernoulli vacation queues. A model in a multiserver re-
trial queueing system with the presence of discouraged
customers, failures, and vacations was recently in-
vestigated by Saravanan et al. [18]. Rismawati et al. [19]
developed a priority queueing model with multiple va-
cations and vacation interruptions.

In 2020, Gao and Zhang [20] studied a queueing system
with two types of waiting queues with vacation and general
retrial times. In this model, both the normal waiting queue
and the retried orbit queue are considered. Recently, Vaezi
et al. [21] investigated a real-world case study of prioritizing
and queueing emergency department patients utilizing
a novel data-driven decision-making technique.

1.2. Methodology and Advantages

1.2.1. Model. Motivated by the work of [20], this in-
vestigation proposes a new form of queueing system with
two waiting queues (original queue and orbit queue) due to
server working vacations (M[1],[2]/G/1/WV). Te main aim
of this model is to investigate new healthcare service systems
in the case of a pandemic and to represent diferent aspects
of patient services.

1.2.2. Methodology and Results. We develop a Markovian
process for the system using all of the elapsed durations for
retrial, service, and working vacation as supplementary
variables. We further adopt the generating function ap-
proach to obtain system performance measures.

1.2.3. Numerical Illustrations. In system performance
measures and cost-efectiveness, the numerical infuence of
parameters is demonstrated.

1.2.4. Advantages. Te number of patients visiting the
emergency department is increasing during the COVID-19
pandemic. Suppose the capacity of the queueing system
increases, and the number of patients in the system increases
for various reasons, such as inappropriate allocation of
resources or servers. In such instances, it reduces social
isolation and the transmission of infectious illnesses to
patients and other staf members in healthcare facilities. To
decrease waiting times, the number of patients in emergency
departments, and the risk of infection, an additional server
should be added or provided with extra services at various
rates. We concluded that it was important to keep patients
waiting for as a short time as possible based on the literature
research.

2. Notations and Probabilities

Notations:

(1) N1(t) � customers present in the original queue at
time t

(2) N2(t) � customers present in the orbit queue at
time t

(3) I(t) � server’s state at time t
(4) λ� arrival rate
(5) θ� vacation rate
(6) ζ01(t) � elapsed retrial time
(7) ζ02(t) � elapsed service time
(8) ζ03(t) � elapsed working vacation time
(9) a(x)≡ the hazard rate (HR or completion rate)

related to the retrial, i.e., a(x)dx � (dA(x)/
1 − A(x))

(10) μb(x)≡ the HR related to the service, i.e.,
μb(x)dx � (dSb(x)/1 − Sb(x))

(11) μv(x)≡ the HR related to the slower rate service, i.e.,
μv(x)dx � (dSv(x)/1 − Sv(x))

(12) A∗(ϑ)≡ Laplace–Stieltjes transform (LST) for
retrial

(13) S∗b (ϑ)≡ LST for the regular busy state
(14) S∗v (ϑ)≡ LST for WV
(15) β(i) ≡moments for regular busy period (i� 1, 2)
(16) E(B)� expected busy period
(17) E(W)� expected working vacation period
(18) E(I)� expected length of idle time

Probabilities:

(1) D0(t)≡ the chance that the server is working vaca-
tion (lower speed service) and the system is empty at
time t (also known as an idle state).
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(2) D1(x, n2, t)≡ it is possible that, at time t, there are
precisely n (n2 � n) customers in the orbit, with the
test customer’s retry time elapsed and lying between
x and x+ dx (referred to as the retrial state).

(3) D2(x, n1, n2, t)≡ the possibility that, at time t, the test
customer receiving service has exactly n (n1 � n2 � n)
customers in the original queue and orbit, with the
test customer’s elapsed normal service time falling
between x and x+ dx (referred to as the busy state).

(4) D3(x, n2, t)≡ the chance that, with the test cus-
tomer’s elapsed slower service time falling between x
and x+ dx (a working vacation state), there are
precisely n (n2 � n) customers in the orbit at time t.

2.1. Detailed Description of the Mathematical Model. We
consider a new type of queueing system in two waiting
queues (original queue and orbit queue) with working va-
cations (M[1],[2]/G/1/WV). Figure 1 represents the system
considered in this paper. Te system specifcations are given
in the following:

(i) Te arrival process: according to a Poisson process,
customers arrive individually.

(ii) Te regular service process: the service time follows
a general distribution in normal busy times.

(iii) Te working vacations process: Every time the orbit
becomes empty, the server starts vacation, and
vacation time has an exponential distribution with
the parameter θ. If any customer joins in while the
server is on vacation (also known as a “working
vacation”), the server continues to run at a slower
speed service rate (μv < μb). Processes proceed more
slowly during the working vacation period. Assume
that during a low-speed service completion instant,
any customers are in orbit. Vacation interruption
occurs when the server stops its vacation and re-
sumes during regular operating mode. If not, it
continues the vacation. After a vacation, if there are
still customers in orbit, the server continues as
usual. Te server begins a fresh vacation if it
does not.

(iv) Te system and retrial process:Tere are two queues
in the system—the orbit queue and the original
queue. When the server is busy, arriving customers
will join the original queue; otherwise, they will join
the orbit queue if the server is on vacation. Both
queues follow FCFS rules. Te suggested approach
has been used to execute the general retrial
policy [20].

(v) It is assumed that the random variables in every
state are independent.

2.2. A Real-Life Example of the Suggested Model. One of the
most essential difculties in recent situations, such as the
COVID-19 pandemic, is the considerable increase in the
number of people requiring emergency department services

in hospitals. One of the issues that hospital management
confronts in emergency departments is establishing the
allocation of resources at each time such that the cost of
providing services and the expense of patients waiting in
queue are equal. In emergency departments, doctors, nurses,
paramedics, medical staf, medical equipment, and other
resources serve as additional servers in queueing systems to
which patients refer themselves. Afterward, patients wait to
receive services from these servers and leave the system.

Patients request treatment from the chief doctors (server);
if the doctors are already attending to another patient, they
enter the queue (original queue) and wait for their turn. Tere
are no patient waits, and the chief doctor goes on a secondary
job (vacation). During secondary jobs, if patients request
treatment, the chief doctor provides additional treatments like
essential frst aid treatments or collecting information about the
illness (working vacation). Allocating excessive resources sig-
nifcantly costs the system without improving waiting time.
When infected patients arrive, if the doctor is in an additional
service stage, they will join another queue (retrial queue) and
continue to try. After additional service completion, if any
patients are waiting for treatment, the doctors return to regular
treatment (vacation interruption). It appears reasonable to
optimize healthcare queueing systems to lower infection rates
among patients based on their health status so patients at
higher risk of infection leave the queue sooner. Service options
should be increased as much as feasible to decrease the length
and density of the emergency department’s queues, the risk of
disease transmission, and the length of time patients must wait.
Tis idea makes us consider the queue of retry customers
resulting from server vacations, which includes the concept of
working vacations. Administrators of hospitals will signif-
cantly beneft from the results of this model.

3. Steady-State Analysis of the System

Tis section develops the steady-state diference-diferential
equations for the retrial queueing system by using SVT.
Following that, we calculate the PGF of the orbit size for the
system and various server states.

3.1. System Analysis. For further development of this model
M[1],[2]/G/1/WV, let us defne the random variables ζ i, (i �

1,2,3) to obtain the Markov process (I(t), N1(t), N2(t),

ζ i(t)), t≥ 0}. Te server states of {I(t)� 0, 1, 2, 3} are idle,
free, busy, and working vacation. Figure 2 presents a tran-
sition state diagram of the model.

We analyze the ergodicity of the embedded Markov
chain at departure or vacation epochs. Assume that {tn; n� 1,
2, ...} represents the nth sequence of epochs during which
a regular service or a lower service period completion epoch
occurs. N1,n � N1(tn) and N2,n � N2(tn) represent the
number of customers in the original queue and orbit, re-
spectively, at time tn. Ten, the process Zn � (N1,n, N2,n), n

≥ 0} is a Markov chain with state space N × N. Using the
method of embedded Markov chain [20] (see Appendix A),
the system is ergodic (stable) if and only if ρ< 1, where
ρ � λβ(1).
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Te following densities of probability are defned as

D0 � P I(t) � 0, N1(t) � 0, N2(t) � 0 ,

D1 x, n2( dx � P I(t) � 1, N1(t) � 0, N2(t) � n2, x≤ ζ1(t)≤ x + dx , n2 ≥ 1,

D2 x, n1, n2( dx � P I(t) � 2, N1(t) � n1, N2(t) � n2, x≤ ζ2(t)≤x + dx , n1 ≥ 0, n2 ≥ 0,

D3 x, n2( dx � P I(t) � 3, N1(t) � 0, N2(t) � n2, x≤ ζ3(t)≤ x + dx , n2 ≥ 0.
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Figure 1: Two waiting queues with working vacations.
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Figure 2: Transition state diagram of the model.
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Te following state’s equations can be obtained by ap-
plying the SVT method (see Appendix):

(λ + θ)D0 � 
∞

0
D2(x, 0,0)μb(x)dx + 

∞

0
D3(x, 0)μv(x)dx + θD0, (2)

dD1 x, n2( 

dx
+(λ + a(x))D1 x, n2(  � 0, n2 ≥ 1, (3)

dD2 x, n1, n2( 

dx
+ λ + μb(x)( D2 x, n1, n2(  � λD2 x, n1 − 1, n2( , n1 ≥ 1, n2 ≥ 1, (4)

dD3 x, n2( 

dx
+ λ + θ + μv(x)( D3 x, n2(  � λD3 x, n2 − 1( , n2 ≥ 1. (5)

Te boundary conditions are at x� 0:

D1 0, n2(  � 
∞

0
D2 x, 0, n2( μb(x)dx + 

∞

0
D3 x, n2( μv(x)dx, n2 ≥ 1, (6)

D2 0, n1, n2(  � 
∞

0
D2 x, n1 + 1, n2( μb(x)dx + 

∞

0
D1 x, n2 + 1( a(x)dx + λ

∞

0
D1 x, n2( dx

+ θ
∞

0
D3 x, n2( dx, n1 ≥ 1, n2 ≥ 1,

(7)

D3 0, n2(  �
λD0, n2 � 0,

0, n2 ≥ 1.
 (8)

Te normalized condition is

D0 + 
∞

n2�1

∞

0
D1 x, n2( dx + 

∞

n1�1


∞

n2�1

∞

0
D2 x, n1, n2( dx + 

∞

n2�1

∞

0
D3 x, n2( dx � 1. (9)

3.2. System’s Steady-State Solutions. Te generating func-
tions (GFs) are defned to solve equations (3)–(8), for |zi|≤ 1,
as follows:

D1 x, z2(  � 
∞

n2�1
D1 x, n2( z

n2 ; D2 x, z1, z2(  � 
∞

n1�0


∞

n2�0
D2 x, n1, n2( z

n1z
n2 ; D3 x, z2(  � 

∞

n2�0
D3 x, n2( z

n2 . (10)
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Multiplying equations of (3)–(8) by zn and summing
over n to obtain the generating functions,

zD1 x, z2( 

zx
+(λ + a(x))D1 x, z2(  � 0, (11)

zD2 x, z1, z2( 

zx
+ λ 1 − z1(  + μb(x)( D2 x, z1, z2(  � 0, (12)

zD3 x, z2( 

zx
+ λ 1 − z2(  + θ + μv(x)( D3 x, z2(  � 0, (13)

D1 0, z2(  � 
∞

0
D2 x, 0, z2( μb(x)dx

+ 
∞

0
D3 x, z2( μv(x)dx − λD0,

(14)

D2 0, z1, z2(  �
1
z1


∞

0
D2 x, z1, z2( μb(x)dx

+
1
z2


∞

0
D1 x, z2( a(x)dx + λ

∞

0
D1 x, z2( dx

+ θ
∞

0
D3 x, z2( dx −

1
z1


∞

0
D2 0,0, z2( μb(x)dx,

(15)

D3 0, z2(  � λD0. (16)

Solving the partial diferential equations (11)–(13), it
follows that

D1 x, z2(  � D1 0, z2( [1 − A(x)]e
− λx

, (17)

D2 x, z1, z2(  � D3 0, z1, z2(  1 − Sb(x) e
− λ 1− z1( )x

, (18)

D3 x, z2(  � D3 0, z2(  1 − Sv(x) e
− λ 1− z2( )x

. (19)

Using equations (17)–(19) in (15) and making some
calculations, we get

D2 0, z1, z2(  �
D1 0, z2( 

z2
A
∗
(λ) + z(1 − A

∗
(λ)(  +

1
z1

D2 0, z1, z2( S
∗
b λ − λz1(  −

1
z1

D2 0, 0, z2(  + λD0V(z), (20)

where A(z2) � A∗(λ) + z2(1 − A∗(λ) and V(z) � (θ[1 − S∗v
(θ + λ − λz2)]/θ + λ(1 − z2)).

Using equations (17)–(20) and (14)–(16) after making
some manipulations, we get
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D1 0, z2(  � D2 0, 0, z2(  + D3 0, z2( S
∗
v θ + λ − λz2( 

− λD0,
(21)

D2 0, 0, z2(  �
D1 0, z2( A z2( 

z2
+ λD0V(z), (22)

D3 0, z2(  � λD0. (23)

From equations (20)–(23) in (17)–(19), we get

D1 x, z2(  �
z2λD0 S

∗
v θ + λ − λz2(  − 1 + V(z)( [1 − A(x)]e

− λx

R
∗
(λ) z2 − 1( 

, (24)

D2 x, z1, z2(  �
z1 − 1( λD0

R
∗
(λ) z2 − 1( 

S
∗
v θ + λ − λz2(  − 1( A z2(  + z2V(z)(  1 − Sb(x)( e

− λ 1− z1( )x

z1 − S
∗
b λ − λz1( ( 

⎧⎨

⎩

⎫⎬

⎭, (25)

D3 x, z2(  � λD0 1 − Sv(x)( e
− λ 1− z2( )x

. (26)

Theorem 1. Temarginal GFs of the number of customers in
the orbit and queue are as follows under the stability con-
dition ρ< 1:

(i) During the retrial, if the server is idle,

D1 z2(  �
z2D0 1 − A

∗
(λ)(  S

∗
v θ + λ − λz2(  − 1 + V(z)( 

R
∗
(λ) z2 − 1( 

. (27)

(ii) When the server is busy,

D2 z1, z2(  �
S
∗
b λ − λz1(  − 1( D0

R
∗
(λ) z2 − 1( 

S
∗
v θ + λ − λz2(  − 1( A z2(  + z2V(z)( 

z1 − S
∗
b λ − λz1( ( 

 . (28)

(iii) While the server is on a working vacation,

D3 z2(  �
λD0V(z)

θ
. (29)

(iv) Te idle probability of the server:

D0 �
A
∗
(λ) 1 − λβ(1)

 

(λ/θ) 1 − S
∗
v (θ)(  + A

∗
(λ) 1 − λβ(1)

S
∗
v (θ)  

.

(30)

Proof. From equations (24)–(26), we defne the partial PGFs
as

D1 z2(  � 
∞

0
D1 x, z2( dx, D2 z1, z2(  � 

∞

0
D2 x, z1, z2( dx, D3 z2(  � 

∞

0
D3 x, z2( dx. (31)
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By setting (z1, z2) � (1, 1) in (24)–(26) and using
l’Hôspital’s rule whenever necessary, we can calculate the
probability that the server is idle (D0) when there are no
customers in the system using the normalizing condition.
Tis gives us D0 + D1(1) + D2(1,1) + D3(1) � 1. □

Corollary  . If the system in ρ< 1, then

(i) Te PGFs of the orbit size is

Ks(z) � D0 + D1 z2(  + D2 z1, z2(  + D3 z2( ,

Ks(z) � D0
Nr1(z) + Nr2(z)

Dr1(z)
 ,

(32)

where

Nr1(z) � z1 − S
∗
b λ − λz1( (  R

∗
(λ) z2 − 1( 

λ
θ

 V(z) + 1  + z2 1 − A
∗
(λ)(  S

∗
v θ + λ − λz2(  − 1 + V(z)(  ,

Nr2(z) � S
∗
b λ − λz1(  − 1(  S

∗
v θ + λ − λz2(  − 1( A z2(  + z2V(z)( ,

Dr1(z) � R
∗
(λ) z2 − 1(  z1 − S

∗
b λ − λz1( ( .

(33)

(ii) Te PGF of the system size is

KO(z) � D0 + D1 z2(  + z2 D2 z1, z2(  + D3 z2( ( ,

KO(z) � D0
Nr3(z) + Nr4(z)

Dr1(z)
 ,

(34)

where

Nr3(z) � z1 − S
∗
b λ − λz1( (  R

∗
(λ) z2 − 1(  z2

λ
θ

 V(z) + 1  + z2 1 − A
∗
(λ)(  S

∗
v θ + λ − λz2(  − 1 + V(z)(  ,

Nr4(z) � z2 S
∗
b λ − λz1(  − 1(  S

∗
v θ + λ − λz2(  − 1( A z2(  + z2V(z)( ,

(35)

where D0 is given in equation (30).

4. Measures of System Performance

In this section, some important system measures of the two
waiting queues due to server working vacations (M[1],[2]/G/
1/WVs) are derived.

4.1. Probabilities of System States. By fxing the limit func-
tions (z1, z2)⟶ (1, 1) and using the l’Hôspital’s rule as
necessary, we obtain the following probabilities for system
states from equations (27)–(29):

(i) During the retrial time, the idle probability (D1) is
given by

D1 � D1(1) �
λD0

θ
1 − A
∗
(λ)(  1 − S

∗
v (θ)( 

A
∗
(λ)

 . (36)

(ii) Te idle probability of the system (D) is given by

D � D0 + D1(1) �
D0 A

∗
(λ) +(λ/θ) 1 − A

∗
(λ)(  1 − S

∗
v (θ)(  

A
∗
(λ)

. (37)

(iii) Te server’s busy probability (D2) is given by
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D2 � D2(1, 1) �
λD0β

(1)
(λ/θ) + A

∗
(λ)(  1 − S

∗
v (θ)( 

A
∗
(λ) 1 − λβ(1)

 
.

(38)

(iv) Te server’s slower service (working vacation)
probability (D3) is given by

D3 � D3(1) �
λD0

θ
1 − S
∗
v (θ)( . (39)

4.2. Computation of Mean Queue Size and Orbit Size

(i) Te expected regular queue size (L1) is given by

L1 � lim
z1⟶1

d

dz
D2 z1, 1( ,

L1 �
D0λ

2β(2) 1 − S
∗
v (θ)(  (λ/θ) + A

∗
(λ)( 

2 1 − λβ(1)
 

2 .

(40)

(ii) Te expected orbit queue size (L2) is given by

L2 � lim
z2⟶1

d

dz
D1 z2(  + lim

z2⟶1

d

dz
D2 1, z2(  + lim

z2⟶1

d

dz
D3 z2( ,

L2 �
D0

A
∗
(λ)

λ
θ

1 − A
∗
(λ)(  1 − S

∗
v (θ)(  + V

′
A
∗
(λ) +

λ2β(2)

(1 − ρ)
2   +

λ2β(2)

(1 − ρ)
2 V
′
− λ 1 − A

∗
(λ)( S
∗′
v (θ)  ,

(41)

where V′ � (λ/θ)(1 − S∗v (θ) + θS∗′v (θ)).

(iii) Te average number of customers in the system is
represented as Ls and it consists of the customers in

the orbit queue, the original queue, and the cus-
tomer being serviced.

Ls � D2 + L1 + L2,

Ls �
D0

2A
∗
(λ) 1 − λβ(1)

 
2

λ
θ

+ A
∗
(λ)  1 − S

∗
v (θ)(  2λβ(1)

+ A
∗
(λ)λ2β(2) 1 − λβ(1)

  

+
2λ
θ

1 − λβ(1)
 

2
1 − A
∗
(λ)(  1 − S

∗
v (θ)(  + V

′
 +2λ2β(2) λ

θ
V
′
+
λ
θ

1 − S
∗
v (θ)(  + λA

∗
(λ)S
∗′
v (θ) .

(42)

(iv) Using Little’s formula, the mean waiting times for
the system (Ws) and queue (Wq) are determined.

Ws �
Ls

λ
,

Wq �
L2

λ
.

(43)

4.3. Mean Busy Time and Regeneration Cycle. Consider
a regeneration cycle (H) to be the period between two
consecutive working vacations.When the server is idle, busy,

or on vacation, the periods are I, B, andW, respectively, and
H� I+B+W. Using the concept of the alternating renewal
process [20], we get

E(W)

E(H)
�
λ 1 − S

∗
v (θ)( 

θE(H)
� D3 �

λD0

θ
1 − S
∗
v (θ)( , (44)

which leads to E(H) � (1/D0).

Based on the results above, we then obtain

E(I) � E(H) × D �
A
∗
(λ) +(λ/θ) 1 − A

∗
(λ)(  1 − S

∗
v (θ)(  

A
∗
(λ)

,

E(B) � E(H) × D2 �
λβ(1)

(λ/θ) + A
∗
(λ)(  1 − S

∗
v (θ)(  

A
∗
(λ) 1 − λβ(1)

 
,

E(W) � E(H) × D3 �
λ 1 − S

∗
v (θ)( 

θ
.

(45)
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5. Significant System Particular Cases

In this section, we highlighted the following signifcant
system-specifc situations of the two types of waiting queues
that are caused by server working vacations.

5.1. Case (i): No Vacation and NoOriginal Queue. Let (θ, z1)
be (0, 0); our model can be reduced to a retrial queue with
a single working vacation, and the solutions matched those
of Arivudainambi et al. [11].

In this case, the idle probability of the server and the
PGFs of the system size are

D0 �
S
∗
3(λ) R

∗
(λ) − λβ(1)

1 

λβ(1)
3 + R

∗
(λ)S
∗
3(λ)

,

χs(z) �
ζ0 1 − S

∗
3(λ(1 − z))  z +(1 − z)R

∗
(λ)  +(1 − z)R

∗
(λ)S
∗
3(λ) 

S
∗
3(λ) S

∗
1(λ(1 − z)) z +(1 − z)R

∗
(λ)  − z 

 .

(46)

5.2. Case (ii): No Original Queue and Multiple Working
Vacations. Let z1 � θ� μv � 0; our model was changed to
a single server retrial queue with working vacations, and the
solutions agreed with the results of Gao et al. [12].

In this case, the idle probability and the PGF of the
system size are rewritten as

ζ0 �
S
∗
3(λ) R

∗
(λ) − λβ(1)

1 

λβ(1)
3 + R

∗
(λ)S
∗
3(λ)

,

χs(z) �
ζ0 1 − S

∗
3(λ(1 − z))  z +(1 − z)R

∗
(λ)  +(1 − z)R

∗
(λ)S
∗
3(λ) 

S
∗
3(λ) S

∗
1(λ(1 − z)) z +(1 − z)R

∗
(λ)  − z 

 .

(47)

5.3. Case (iii): NoWorking Vacation. Let μv⟶ 0 (no lower
speed service); our model was reduced to an M/G/1 queue
with retrial customers due to server vacation, and the results
coincided with Gao and Zhang [20].

In this case, the server’s idle probability and the PGF of
the queue size when the server is busy are as follows:

ζ0 �
λR
∗
(λ)(1 − ρ)

λβ(1)
3 p + qR

∗
(λ)(1 − ρ)(  + R

∗
(λ)S
∗
3(λp)

,

ζ4 z1, z2(  �
1 − S
∗
1 Ab z1( ( ( ζ0

λ z1( − S
∗
1 Ab z1( ( 

R(z) S
∗
3 θ + λp 1 − z2( (  − 1( 

R
∗
(λ + δ) z2 − 1( 

 .

(48)

6. Sensitivity Analysis

In this section, we used MATLAB software to discuss the
system characteristics of various parameters. We present
some numerical examples graphically based on the results.
We assume Exponential (Exp), Erlang 2-stage (Erl-2S), and
Hyper-Exponential (H-Exp) distributions for retrial, service,
and working vacation times. Te parameters’ arbitrary
values are selected to meet the stability requirement. f(x) �

υe− υx, x> 0 is the Exponential distribution, f(x) � υ2x

e− υx, x> 0 is the Erlang-2 stage distribution, and f(x) �

cυe− υx + (1 − c)υ2e− υ2x, x> 0. is the Hyper-Exponential
distribution.

Tables 1–5 show the efect of system performance D0,
L1, L2, and Ls on the arrival rate, retrial rate, service rate,
lower speed service rate, and vacation rate parameters.
Table 1 shows that as the arrival rate increases, the
probability of being idle (D0) decreases, and the mean
original queue length (L1) and mean orbit queue length
(L2) increase for three distributions. Table 2 shows that the
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retrial rate (a) increases, D0 and L1 increase, and L2 de-
creases. Tables 3 and 4 demonstrate that increasing both
service rates (μ and μv) decreases the value of L1,L2, and Ls

while increasing the value of D0. Table 5 illustrates that the
vacation rate (θ) tends to increase for D0 and L1, but it
tends to decrease for Ls.

Figures 3–14 graphically depict many important features
of the solutions, such as D0, L1, L2, and Ls, to provide a clear
understanding of the present scenario. Figures 3 and 4 depict
that with an increasing value of the retrial rate (a), the idle
probability (D0) increases, and the mean orbit queue size
(L2) decreases.

Table 1: Arrival rate (λ) infuences D0, L1, and L2.

Retrial Exp. Erl-2S H-Exp.
λ D0 L1 L2 D0 L1 L2 D0 L1 L2

1.00 0.8000 0.0037 0.0008 0.5802 0.0129 0.0090 0.7681 0.0026 0.0007
1.50 0.6886 0.0086 0.0071 0.3855 0.0267 0.0810 0.6423 0.0057 0.0060
2.00 0.5818 0.0159 0.0345 0.2430 0.0453 0.3916 0.5280 0.0099 0.0276
2.50 0.4848 0.0258 0.1190 0.1481 0.0698 1.3757 0.4301 0.0152 0.0903
3.00 0.4000 0.0386 0.3305 0.0874 0.1043 4.0658 0.3493 0.0214 0.2374

Table 2: Retrial rate (a) infuences D0, L1, and L2.

Retrial Exp. Erl-2S H-Exp.
a D0 L1 L2 D0 L1 L2 D0 L1 L2

5.00 0.6531 0.0211 0.0247 0.3659 0.0875 0.2601 0.6217 0.0141 0.0189
6.00 0.6621 0.0220 0.0235 0.3831 0.0957 0.2410 0.6340 0.0148 0.0177
7.00 0.6687 0.0226 0.0225 0.3960 0.1023 0.2268 0.6431 0.0154 0.0168
8.00 0.6737 0.0232 0.0218 0.4058 0.1077 0.2157 0.6500 0.0158 0.0161
9.00 0.6776 0.0236 0.0212 0.4136 0.1123 0.2069 0.6555 0.0162 0.0156

Table 3: Infuence of service rate (µ) on D0, L1, and L2.

Service Exp. Erl-2S H-Exp.
μb D0 L1 L2 D0 L1 L2 D0 L1 L2

5.00 0.4800 0.0933 0.2023 0.0865 0.5797 5.0164 0.4549 0.0520 0.1453
6.00 0.5161 0.0565 0.1224 0.1410 0.2362 2.0441 0.4808 0.0327 0.0913
7.00 0.5405 0.0378 0.0820 0.1784 0.1329 1.1500 0.4983 0.0225 0.0628
8.00 0.5581 0.0271 0.0588 0.2058 0.0862 0.7460 0.5110 0.0164 0.0459
9.00 0.5714 0.0204 0.0442 0.2266 0.0608 0.5258 0.5205 0.0126 0.0351

Table 4: Lower service rate’s (μv) efects on D0, L1, and Ls.

Vacation Exp. Erl-2S H-Exp.
μv D0 L1 Ls D0 L1 Ls D0 L1 Ls

5.00 0.5817 0.0159 0.1777 0.2430 0.0453 0.7989 0.5280 0.0099 0.1408
6.00 0.6102 0.0148 0.1631 0.2605 0.0442 0.7619 0.5546 0.0093 0.1304
7.00 0.6349 0.0139 0.1508 0.2773 0.0432 0.7268 0.5784 0.0088 0.1215
8.00 0.6567 0.0131 0.1401 0.2935 0.0422 0.6940 0.5999 0.0084 0.1138
9.00 0.6761 0.0123 0.1308 0.3090 0.0413 0.6636 0.6192 0.0080 0.1070

Table 5: Infuence of vacation rate (θ) on D0, L1, and Ls.

Vacation Exp. Erl-2S H-Exp.
θ D0 L1 Ls D0 L1 Ls D0 L1 Ls

3.00 0.5818 0.0159 0.0345 0.2430 0.0453 0.3916 0.5280 0.0099 0.0276
4.00 0.6000 0.0167 0.0195 0.2656 0.0459 0.2203 0.5546 0.0103 0.0162
5.00 0.6154 0.0173 0.0125 0.2857 0.0464 0.1423 0.5774 0.0106 0.0107
6.00 0.6286 0.0179 0.0088 0.3038 0.0469 0.1000 0.5969 0.0108 0.0076
7.00 0.6400 0.0183 0.0065 0.3200 0.0472 0.0745 0.6140 0.0110 0.0057
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Figures 5 and 6 illustrate that the increase in service rate
(μb) increases the original queue size (L1), which reduces the
idle probability (D0). As shown in Figures 7 and 8, as the
vacation rate (θ) increases, D0 also increases, while L2 de-
creases. Figures 9 and 10 demonstrate that the working
vacation rate (μv) increases as the mean system size (Ls)
increases, but the idle (D0) probability decreases.

Te combined impact of several variables on system
performance is depicted in Figures 11–14. An increasing
trend in λ and a value for L1 is seen in Figure 11. In Fig-
ure 12, the nature of Ls declines to increase the value of the
vacation rate (θ) and lower the speed service rate (μv).

Figure 13 shows that as the service rate (μb) and working
vacation rate (μv) grow, then D0 rises. Te vacation rate (θ)
and retry rate (a) increase as the nature of Ls drops in
Figure 14.

7. Cost Analysis

In this section, the two waiting queues due to server working
vacations (M[1],[2]/G/1/WVs) are addressed to optimize the
design [22]. After constructing a cost function to make the
system as cost-efective as feasible at the lowest possible cost,
the fndings of Yang and Wu [23] and Gao and Zhang [20]
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Figure 3: a’s efects on D0.
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are consulted. Parameters are set arbitrarily to satisfy the
steady-state requirement.

We performed a cost analysis based on our earlier
fndings (E(I), E(B), E(W), E(H), L1, L2, Ls). Let us defne the
following costs:

Cq � unit time cost of every customer in the
original queue
Co � unit time cost of every customer in the orbit queue
Ci � unit time cost for keeping the server idle
Cb � unit time cost for keeping the server busy
Cw � unit time cost for keeping the server on working
vacation
Cs � setup cost per cycle

Te expected cost function in the linear cost technique is
provided by

ETC � CqL1 + CoL2 + CiE(I) + CbE(B) + CwE(W)

+ Cs

1
E(H)

 .

(49)

By fxing the cost and other characteristics, we hope to
obtain the total expected cost per unit of time (ETC). For all
server state parameters, we use an exponential distribution.
Te values of the cost elements and other parameters such as
λ� 2; a� 1; μ� 10; μv � 5; θ� 3; Cq � 50; Co � 25; Ci � 25;
Cb � 60; Cw � 30; and Cs � 150 are chosen to satisfy the
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stability criteria. We obtain ETC� 115.87 from the pa-
rameter values in the estimated total cost per unit of time.

Table 6 and Figures 15–18 depict system parameters’
numerical and graphical efects on cost functions. Our re-
search directs us to the conclusion that when the cost pa-
rameters and decision parameter (θ) rise, the expected values
of TC grow linearly. Similarly, a sensitivity analysis of some

of the system’s parameters can be conducted. Te graphs
(from Figures 15–18) show the efect of some system pa-
rameters (λ, θ, μ, μv) on the total expected cost per unit
of time.

8. Results and Discussion

To provide a clear insight into the present problem, some
special features of the solutions like doctor’s idle time, the
average number of patients in the original queue and orbit
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Table 6: Impact of (θ, μv) on ETC.

μv � 1 μv � 2 μv � 3
θ ETC θ ETC θ ETC

6.00 111.4959 4.00 108.4510 4.00 113.5280
6.50 113.3034 4.50 110.5344 4.50 115.2365
7.00 114.9654 5.00 112.4578 5.00 116.8255
7.50 116.4978 5.50 114.2305 5.50 118.2999
8.00 117.9144 6.00 115.8649 6.00 119.6679
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Figure 15: Te infuence of μv on ETC.
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queue, mean waiting time of the patient in the hospital, and
expected total cost of the model are evaluated numerically in
Tables 1–6 and presented graphically in form of Figures 3–18
(by Algorithm 1). Te main fndings of this investigation in
the hospital system are summarized as follows:

(i) Te chief doctor’s resting time (idle time, D0) de-
creases by increasing the arrival rate’s value of
patients for treatment (λ) and additional treatment
rate (μv). In contrast, it increases for raising the
value of rerequesting rate (a), both treatment rates
like regular and additional (μb and μv), and doctor’s
secondary job time (θ).

(ii) Te average number of patients in the regular queue
(patients in person, L1) increases for increasing the
value of the arrival rate of patients (λ), the rere-
questing rate (a), additional treatment time (μv),
and secondary job time (θ). At the same time, it
decreases by increasing the value of the regular
treatment rate (μb).

(iii) An increase in the mean number of patients in
online requests (patients in online, L2) increases the
patient’s arrival rate (λ) and diferent treatment
rates (μb and μv). It falls for raising the values of
retrial rate (a) and secondary job time (θ).

(iv) Te expected total cost of this model (ETC) is
a linearly increasing trend for the decision pa-
rameter (θ), and parameters (arrival and treatment
rates, λ, μb, μv) are increased.

9. Conclusion

In this study, we address a new type of queueing system in
two waiting queues (original queue and orbit queue) with
working vacations (M[1],[2]/G/1/WV). Tis model’s main
feature is that it contains two waiting queues with working
vacations: the original and orbit queues. Various perfor-
mance measures, such as the size of the queue length, orbit
length, system busy period, and mean waiting times, are
derived using the SVT and PGF approaches. Finally, we
covered the sensitivity analysis for the system parameters

and a cost optimization technique for the suggested model
that reduces the average operating cost overall. Additionally,
we used MATLAB software to present some numerical
examples in graphic form. Tis model’s outcomes are tre-
mendously advantageous to hospital administrators. Re-
searchers may create models in the future to optimize queues
and servicing systems for others. Tey can also explore
priority models or a single server queueing system for the
multiwaiting station in the presence of working breakdowns,
working vacations, etc. Furthermore, it must be focused on
a few circumstances of real-life applications for COVID-19
emergencies to govern the patients correctly.

Appendix

A. Proof of Theorem 1

We introduce some notations based on [20] to prove the
sufcient ergodicity condition. During a service time, let an

(n� 0, 1, 2, ...) be the chance that n customers will be added
to the original queue, and let bn (n� 0, 1, 2, ...) represent the
possibility that n customers will join the obit queue while on
vacation, so that we may get

an � 
∞

0

(λx)
n

n!
e

− λx
dSb(x), n≥ 0,

bn � 
∞

0

((λ + θ)x)
n

n!
e

− (λ+θ)x
dSv(x), n≥ 0.

(A.1)

Te GFs of an and bn are as follows:



∞

n�0
z

n
an � S

∗
b (λ(1 − z)),



∞

n�0
z

n
bn � S

∗
v (θ + λ(1 − z)).

(A.2)

Let P(k,j)(m,i) represent the probability of a one-step
transition; then, we have that P(k,j)(m,i) � P(N1,n+1 � m,

N2,k � i/N1,n � k, N2,n � j); then, defne the following
conditions.

Begin
Input: λ, a, μb, μv and θ.
Compute: the value of ρ
If (ρ< 1)
Compute: Probabilities of system states
Compute: Mean orbit and system size
Compute: Mean busy time
Compute: Expected total cost
Else
Change the input of the parameters by satisfying ρ< 1.
End
Output: D0, L1, L2 and ETC

ALGORITHM 1: Algorithm to compute D0, L1, L2, and ETC.
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(i) Case (i): k� 0 and j� 0,

P(0,0)(m,i) � am S
∗
v (θ + λ)δi,0 + A

∗
(λ)b(i+1) + 1 − A

∗
(λ)(  1 − δi,0 bi , m≥ 0, i≥ 0. (A.3)

(ii) Case (ii): k� 0 and j≥ 1,

P(0,j)(m,i) �
am A

∗
(λ)δi,j− 1 + 1 − A

∗
(λ)(  1 − δi,j− 1  , m≥ 0, i≥ j − 1,

0, Otherwise.

⎧⎨

⎩ (A.4)

(iii) Case (iii): k≥ 0 and j≥ 0,

P(k,j)(m,i) �
am− k+1, m≥ k − 1, i � j,

0, Otherwise.
 (A.5)

From the above conditions, we can get the following:

E
z

N1,n+1
1 z

N2,n+1
2

N1,n

� k, N2,n � j⎡⎣ ⎤⎦ �

S
∗
b λ − λz1( 

z2
  S

∗
v θ + λ − λz2(  − 1( A z2(  + z2V(z)( , k � 0, j � 0,

z
j− 1
2 S
∗
b λ − λz1( A z2( , k � 0, j≥ 1,

z
k− 1
1 z

j
2S
∗
b λ − λz1( , k≥ 1, j≥ 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(A.6)

If the function f(k, j) � k + (j/A∗(λ)) is nonnegative,
then (k, j) ∈ N × N, and then the mean drift

ψk,j � E N1,n+1 − N1,n  +
1

A
∗
(λ)

N2,n+1 − N2,n 
z

N2,n+1
2
N1,n

� k, N2,n � j⎡⎣ ⎤⎦

�

λβ(1)
+

λ
θ

  1 − S
∗
v (θ)(  +

λS
∗
v (θ)

A
∗
(λ)

 , k � 0, j � 0,

λβ(1)
− 1, k � 0, j≥ 1,

λβ(1)
− 1, k≥ 1, j≥ 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(A.7)
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Using Foster’s criteria is highly feasible (see Pakes [24]),
and the inequality ρ< 1 is a necessary and sufcient con-
dition for ergodicity and the system to be stable. It is ensured
by D0 > 0.

B. Proof of Steady-State Equations

Te steady-state equations are presented from equations
(2)–(5), and they can be obtained by applying the SVT
method. For a better reading, here we explained the deri-
vation of equations (3) and (4) by the basic assumption of
queueing literature:

D0(t + Δt) � (1 − (λ + θ)Δt)D0(t) + 
∞

0
D2(x, 0,0, t)μb(x)Δtdx + 

∞

0
D3(x, 0, t)μv(x)Δtdx − θΔtD0(t),

D1 x, n2, t + Δt(  � (1 − (λ + a(x))Δt)D1 x, n2, t( , n2 ≥ 1,

D2 x, n1, n2, t + Δt(  � 1 − λ + μb(x)( Δt( D2 x, n1, n2, t(  − λΔtD2 x, n1 − 1, n2, t( , n1 ≥ 1, n2 ≥ 1,

D3 x, n2, t + Δt(  � 1 − λ + θ + μv(x)( Δt( D3 x, n2, t(  − λΔtD3 x, n2 − 1, t( , n2 ≥ 1.

(B.1)

Applying the limiting behavior Δt⟶ 0 in equation
(B.1), then we get

dD0(t)

dt
� − (λ + θ)D0(t) + 

∞

0
D2(x, 0,0, t)μb(x)dx + 

∞

0
D3(x, 0, t)μv(x)dx − θD0(t), (B.2)

zD1 x, n2, t( 

zt
+

zD1 x, n2, t( 

zx
� − (λ + a(x))D1 x, n2, t( , n2 ≥ 1, (B.3)

zD2 x, n1, n2, t( 

zt
+

zD2 x, n1, n2, t( 

zx
� − λ + μb(x)( D2 x, n1, n2, t(  + λD2 x, n1 − 1, n2, t( , n1 ≥ 1, n2 ≥ 1, (B.4)

zD3 x, n2, t( 

zt
+

zD3 x, n2, t( 

zx
� − λ + θ + μv(x)( D3 x, n2, t(  + λD3 x, n2 − 1, t( , n2 ≥ 1. (B.5)

Applying the steady-state behavior limit t⟶∞ from
equations (B2)–(B5), we get the steady-state diferential
equations (2)–(5).
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