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Since ancient times, infectious diseases have been a major source of harm to human health. Terefore, scientists have established
many mathematical models in the history of fghting infectious diseases to study the law of infection and then analyzed the
practicability and efectiveness of various prevention and control measures, providing a scientifc basis for human prevention and
research of infectious diseases. However, due to the great diferences in the transmissionmechanisms andmodes of many diseases,
there are many kinds of infectious disease dynamic models, which make the research more and more difcult. With the
continuous progress of infectious disease research technology, people have adopted more ways to prevent and interfere with the
derivation and spread of infectious disease, which will make the state of infectious disease system change in an instant. Te
mutation of this state can be described more scientifcally and reasonably by the mathematical impulse dynamic system, which
makes the research more practical. Based on this, a time-delay diferential systemmodel of infectious disease under impulse efect
was established by means of impulse diferential equation theory. A class of periodic boundary value problems for impulsive
integrodiferential equations of mixed type with integral boundary conditions was studied. Te existence of periodic solutions of
these equations was obtained by using the comparison theorem, upper and lower solution methods, and the monotone iteration
technique. Finally, combined with the practical application, the established time-delay diferential systemmodel was applied to the
prediction of the stability and persistence of the infectious disease dynamic system, and the correctness of the conclusion was
further verifed. Tis study provides some reference for the prevention and treatment of infectious diseases.

1. Introduction

Impulsive diferential equation is a basic tool to study
process state transition and has important applications in life
science. Compared to diferential equations without pulses,
impulsive diferential equations can more truly and accu-
rately refect the motion laws of nature and scientifc felds,
so they are widely used in the research of population dy-
namic systems, infectious disease dynamic models, micro-
bial models, medical chemotherapy, and neural network
systems [1–7]. In the history of human development, in-
fectious disease is a major pain point afecting human health
and life span. For this reason, scientists have established
numerous mathematical models to quantitatively study the

transmission law of infectious diseases in the history of
continuous fght against infectious diseases and have made
brilliant achievements, which have extraordinary practical
signifcance for the control of infectious diseases. Te use of
mathematical models to study the law of the spread of in-
fectious diseases frst began with En’ko in 1889, and then in
1927, Kermack and Mckendrick established an infectious
disease model and studied its spread law and epidemic trend
by using dynamic methods. In recent years, the international
research on infectious diseases and other biological systems
has developed rapidly, and a large number of mathematical
models have been used to analyze various infectious diseases.
In the prevention and treatment of infectious diseases such
as the novel coronavirus, infuenza, SAS, and avian fu based
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on the mathematical modeling analysis, it is found that
prevention and interference can be carried out through
vaccination, wearing masks, medical treatment, and elimi-
nating environmental pollution, thus making the state of the
infectious disease system change instantly. Te sudden
change of this state can be described more reasonably and
realistically by using the impulsive dynamic system in
mathematics, so the diferential equation model with an
impulsive efect has been widely studied by scholars at home
and abroad [7–10].

At the same time, the boundary value problem of dif-
ferential equations is an important research feld, and
scholars have been very active in this feld [2–4, 7–10]. In the
previous theory of diferential equations, people always
assumed that the state of dynamic systems changes con-
tinuously with time; however, in the real world, there are
many natural systems that change at certain intervals. For
some reasons, the state of the system is often subjected to
some temporary interference, which makes the state of the
system change greatly in a short time. For example, when
fsh farmers release fsh or catch fsh, the fsh in the pond will
suddenly increase or decrease; when spraying agricultural
and forestry pesticides, the number of pests will be greatly
reduced. In the prevention and control of the novel coro-
navirus pneumonia and other infectious diseases, the
number of infected people in this region has rapidly de-
creased through prevention and control and isolation and
vaccination. Such problems, scientists found that in math-
ematical modeling, such disturbances that make the system
change dramatically instantaneously can be expressed in the
form of pulses, and this discovery quickly made the evo-
lution process of pulse disturbances widely applied to the
study of various infectious disease dynamic systems. Using
the impulsive diferential system to establish a more sci-
entifc and reasonable model, studying the transmission law
and epidemic trend of the virus, and proposing prevention,
immunization, and control strategies have quickly become
the focus of research at home and abroad. For example, Yang
et al. [10] gave the sufcient conditions for the elimination
and persistence of the disease by using the persistence theory
of the pulse system and disturbance technology in the SIS
epidemic model with pulse inoculation and isolation and
verifed the reliability of the conclusion through numerical
simulation. Haque et al. [9] analyzed four impulsive dif-
ferential equation models in the study of Clonorchiasis
sinensis, obtained an efective method to control the number
of snails through fsh inoculation, and analyzed the stability
of the control time of Clonorchiasis sinensis. Cooke and
Driessche [11] studied the existence, uniqueness, and sta-
bility of the solution of the integral-diferential equation in
the SEIRS disease transmission model of the population
structure, thus providing the threshold and stability con-
ditions of the model. In [12], Wen Wang studied the dy-
namic behavior of the SEIRS epidemic model with delayed
pulses and obtained sufcient conditions for the local and
global stability of the equilibrium state of the endemic
system. Dietz [13] studied the change of age structure of host
population caused by parasite death in the new model of
microparasite and macroparasite transmission and

predicted the change trend of the critical community of
parasite population by deducing the results of the formula.

With the increasingly wide application of impulsive
diferential equations in the process of solving practical
problems, many achievements have been made [14–26] and
many new research methods have been obtained. For ex-
ample, in literature [4, 14, 15], the authors studied the ex-
istence of positive solutions to these problems by using the
fxed point index theory, cone stretching, and cone com-
pression fxed point theorems. However, through the review
of many literature studies, it is found that the common
feature of these literature studies is that the equations
studied contain relatively few cases of integral boundary
conditions or integral impulsive conditions and most lit-
erature only contains one of them [17–20]. In particular, the
periodic boundary value problems involving mixed tybe
impulsive Integro-diferential equation are rarely studied. In
addition, the epidemic model of impulse interference is less
studied in recent years, especially the model with integral
impulse has not been studied. However, in the study of the
infectious disease dynamic system, we found many cases
about the joint impact of impulse vaccination, isolation,
treatment, and population movement on the disease dy-
namics. Te solution of such problems requires more
complex and accurate impulse diferential equation models,
which have not been fully studied so far, so this is a very
worthy research feld. Te integral impulsive conditions and
integral boundary conditions have not been reported;
however, this type of equation often appears in life science
research, such as the prevention and vaccination of in-
fectious diseases. For example, the dynamic system of in-
fectious diseases studied in the literature [9, 10] intervenes
with the spread of diseases by means of pulse vaccination
and isolation. Te persistence theory and perturbation
technology of impulsive systems are used to study the
conditions of the disappearance and persistence of the
disease and further discuss the global stability of the
infection-free periodic solution, which has theoretical value
and practical signifcance for the prevention and treatment
of infectious diseases. In addition, the epidemic model of
impulse interference is less studied in recent years; espe-
cially, the model with integral impulse has not been studied.
However, in the study of the infectious disease dynamic
system, we found many cases about the joint impact of
impulse vaccination, isolation, treatment, and population
movement on the disease dynamics. Te solution of such
problems requires more complex and accurate impulse
diferential equation models, which have not been fully
studied so far, so this is a very worthy research feld.
Terefore, in this paper, a class of diferential models with
integral impulsive conditions and integral boundary con-
ditions was studied with the background of the infectious
disease dynamics model. Te model considered in this paper
has some generality in the prevention and control of in-
fectious diseases. Especially when controlling the epidemic
of infectious diseases by means of pulse vaccination and
isolation, in order to predict the number of vaccination,
control cycle, continuity, and stability, we need to apply the
theory and method of the pulse diferential equation to
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study, so as to give more accurate results and the best scheme
of rational drug use.Te conclusion of this paper generalizes
the conclusions of the existing literature to a large extent,
and in practical application, it can better refect the conti-
nuity and stability of the control measures under a variety of

intervention conditions, which has certain practical signif-
icance and application value for the prevention and treat-
ment of infectious diseases.

In this paper, we are concerned with the following
impulsive integrodiferential equations of mixed type:

u′(t) � g(t, u(t), u(α(t)), (Au)(t), (Bu)(t)), t≠ tk, t ∈ J � [0, T],

Δu tk(  � Ik 
tk

tk− τk

u(s)ds − 
tk− 1+σk− 1

tk− 1

u(s)ds , k � 1, 2, · · · , m,

u(0) � u(T) + k1 
T

0
u(s)ds + k2,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(1)

where k1, k2 ∈ R, α ∈ [J, J].0 � t0 < t1 < · · · < tm < tm+1 � T.tk

< α(t)≤ t, t ∈ (tk, tk+1],

Ik ∈ C(R, R),Δu tk(  � u tk+
  − u tk−

 , 0< σk− 1 ≤
tk − tk− 1

2
, 0< τk ≤

tk − tk− 1

2
, k � 1, 2, · · · , m.

(Au)(t) � 
t

0
a(t, s)u(s)ds, (Bu)(t) � 

1

0
b(t, s)u(s)ds,

(2)

where a ∈ C[F, R+], F � (t, s) ∈ J × J: t≥ s{ }, b ∈ C[J2, R+],

R+ � [0, +∞).
In paper [17], Chen and Qin studied the following

impulsive integrodiferential equations:

u′(t) � f(t, u(t), (Tu(t)), (Su)(t), t ∈ J+
′,

Δu|tk
� Ik u tk( ( , k � 1, 2, · · · ,

u(∞) � cu(η) + βu(0),

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(3)

where J � [0, +∞), J+ � (0, +∞), 0< t1 · · · < tk < · · · , tk⟶
∞, J+
′ � J+\ t1, · · · , tk, · · · , C ∈ [J+ × P+ × P+ × P+, P], Ik ∈

C[P+, P+](k � 1, 2, · · ·), 0≤ c< 1, β + c> 1, tm− 1 < η≤ tm. Te
author investigated the multipositive solutions by applying
the fxed point theorem of cone expansion-compression.

Zhang et al. [19] used the fxed point theorem of strict set
contraction operators to study the following impulsive
integrodiferential equations:

x″(t) + w(t)f t, x(t), x′(t), (Ax)(t), (Bx)(t)(  � θ, t≠ tk, t ∈ J,

Δx|t�tk
� Ik x tk( ( ,

Δx′|t�tk
� Ik x tk( , x′ tk( ( , k � 1, 2, · · · , m,

x(0) � x(1) � 
1

0
v(s)x(s)ds,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)

where w ∈ C(J, [0, +∞)), f ∈ C[J × E × E × E × E, E], J �

[0, 1], IK ∈ C[E, E], and Ik ∈ C[E × E, E], v ∈ L1[0, 1] are
nonnegative numbers.

Recently, Chatthai et al. in [20] concerned a class of frst-
order impulsive integrodiferential equations with multi-
point boundary conditions:

x′(t) � f(t, x(t), (Fu)(t), (Su)(t)), t ∈ J � [0, T], t≠ tk,

Δx tk(  � Ik 

ck

l�1
ρk

l x ηk
l ⎛⎝ ⎞⎠, k � 1, 2, · · · , m,

x(0) + μ 

m

k�1


ck

l�1
τk

l x ηk
l ρk

l � x(T),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)
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where f ∈ C(J × R3, R), 0 � t0 < t1 < · · · < tm < tm+1 � T.

Δx(tk) � Ik(
tk

tk− τk
u(s)ds − 

tk− 1+σk− 1

tk− 1
u(s)ds), k � 1, 2, · · · , m.

By using the method of lower and upper solutions in re-
versed order coupled with the monotone iterative technique,
the authors obtained the extremal solutions of the boundary
value problem.

In recent years, there have been few studies on mixed
impulsive integral-diferential equations. Inspired by liter-
ature [19, 20] and combined with pulses caused by various
disturbance factors of the infectious disease dynamic system,
this paper studied the infectious disease model with pulse
delay. Compared with the simple time-delay model and
impulsive model, the boundary conditions and impulsive
integral considered were more complex and the established
equation system was more general. Tis paper established
the time-delay diferential systemmodel of infectious disease
under the pulse efect, gave the existence condition of the
solution under pulse action, used upper and lower solution
methods and the monotone iteration technique to study the
stability of the periodic solution of the system under pulse

action, and extended it to the practical application case of
infectious disease prevention and control, hoping to provide
a new solution for the optimal control and prevention of
infectious disease.

2. Preliminaries

Let J− � J\ t1, t2, · · · , tm , PC(J) � u: J→R | u(t) be con-
tinuous at t≠ tk, u(t−

k ) � u(tk), k � 1, 2, · · · , m}. PC′(J) �

u ∈ PC(J): u′ is continuous in J − , u′(0+), u′(T− ), u′(t+
tk

)

and u′(t−
tk

) exist, k � 1, 2, · · · , m}. Let τ � max
tk+1 − tk , k � 0, 1, 2, · · · , m.

PC(J) and PC′(J) are Banach spaces with the following
norm:

‖u‖PC � sup |u(t)|: t ∈ J{ }, ‖u‖PC′ � max ‖u‖PC, ‖ u′ ‖ PC .

(6)

Lemma 1 (Comparison theorem). Tere exist
M> 0, M1, M2, M3 ≥ 0, 0≤Dk < 1, k � 1, 2, · · · , m, satisfying

u′(t) + Mu(t) + M1u(α(t)) + M2(Au)(t) + M3(Bu)(t)≤ 0, t≠ tk, t ∈ [0, T],

Δu tk( ≤ − Dk 
tk− τk

tk− 1+σk− 1

u(s)ds, k � 1, 2, · · · , m,

u(0)≤ u(T),

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(7)

where 0< σk− 1 ≤ (tk − tk− 1)/2, 0< τk ≤ (tk − tk− 1)/2, k � 1, 2, · · · ,

m and 
T

0 [M + M1 + M2 
t

0 a(t, s)ds + M3 
T

0 b(t, s)ds]dt −

1/M
m
k�1Dk(eMτk − eM(τ− σk− 1))≤ 1. Ten u(t)≤ 0,∀ t ∈ J.

Proof. Let v(t) � u(t)eMt, we have

v′(t)≤ − M1e
M(t− s)

v(α(t)) − M2 
t

0
a(t, s)e

M(t− s)
v(s)ds − M3 

T

0
b(t, s)e

M(t− s)
v(s)ds,

Δv tk( ≤ − Dk 
tk− τk

tk− 1+σk− 1

e
M tk− s( )v(s)ds, k � 1, 2, · · · , m,

v(0)≤ v(T)e
− Mt

.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(8)

In order to prove that the conclusion holds, the proof by
contradiction is used here. Suppose v(t)> 0, for all t ∈ J. It is
discussed in the following two cases:

(i) Tere exists t− ∈ J, satisfying v(t− )> 0, and
v(t)≥ 0,∀ t ∈ J.

(ii) Tere exists t∗, t∗ ∈ J, satisfying v(t∗)< 0, v(t∗)> 0.
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Case (i): From (8), we have v′(t)< 0(t ∈ J) and
Δv(tk)≤ 0. So, v(t) is nonincreasing, it shows
v(0)≥ v(t− )> 0 and v(T)≤ v(0). Again by (8), we have
v(T)≤ v(0)≤ e− MTv(T), hence v(T)≤ 0, namely, v(0)≤ 0,

which is a contradiction.

Case (ii): Let t∗ ∈ (ti, ti+1], i ∈ 0, 1, 2, · · · , m{ }, such that
v(t∗) � inf v(t): t ∈ J{ }< 0, and t∗ ∈ (ti, ti+1], j ∈ 0, 1, 2,{

· · · , m}, such that v(t∗)> 0.

If t∗ < t∗, then i≤ j, by integration of (8), we can get

v t
∗

(  � v t∗(  + 
t∗

t∗

v′(s)ds + 
0<tk<t∗
Δv tk( 

≤ v t∗(  − v t∗(  
T

0
M + M1 + M2 

t

0
a(t, s)ds + M3 

T

0
b(t, s)ds dt + 

m

k�1
Dk 

tk− τk

tk− 1+σk− 1

e
M tk− s( )ds⎡⎣ ⎤⎦

≤ v t∗(  − v t∗(  
T

0
M + M1 + M2 

t

0
a(t, s)ds + M3 

T

0
b(t, s)ds dt −

1
M



m

k�1
e

Mτk − Dke
M τ− σk− 1( ) ⎡⎣ ⎤⎦

≤ v t∗(  − v t∗( 

< 0,

(9)

which contradicts v(t∗)> 0.
If t∗ > t∗, then it is similar to the above proof.Te lemma

is proved.

Next, let us consider the following linear equation:

u′(t) + Mu(t) + M1u(α(t)) + M2(Au)(t) + M3(Bu)(t) � σ(t), t ∈ J
−
,

Δu tk(  � − Dk 
tk− τk

tk− 1+σk− 1

u(s)ds + Ik 
tk

tk− τk

η(s)ds − 
tk− 1+σk− 1

tk− 1

η(s)ds  + Dk 
tk− τk

tk− 1+σk− 1

η(s)ds,

u(0) � η(T) + k1 
T

0
η(s)ds + k2,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(10)

where M> 0, M1, M2, M3 ≥ 0, 0≤Dk < 1, σ(t), η(t) ∈ PC(J),

0< σk− 1 ≤ (tk − tk− 1)/2,

0< τk ≤
tk − tk− 1

2
, k � 1, 2, · · · , m. (11)

□

Lemma 2. Assume that u ∈ PC′(J) is a solution of (10) if and
only if u ∈ PC(J) is a solution of the following impulsive
integral equations:

u(t) � e
− Mt η(T) + k1 

T

0
η(s)ds + k2 

+ 
t

0
σ(s) − M1u(α(s)) − M2(Au)(s) − M3(Bu)(s) e

M(s− t)
ds

+ 
0<tk<t

e
M tk− t( ) · − Dk 

tk− τk

tk− 1+σk− 1

u(s)ds + Ik 
tk

tk− τk

η(s)ds − 
tk− 1+σk− 1

tk− 1

η(s)ds  + Dk 
tk− τk

tk− 1+σk− 1

η(s)ds .

(12)

Proof. Assume that u ∈ PC′(J) is a solution of (10). Let
v(t) � u(t)eMt, v ∈ PC′(J),
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v′(t) � σ(t) − M1u(α(t)) − M2(Au)(t) − M3(Bu)(t) e
Mt

,

v(t) � v(0) + 
t

0
v′(s)ds + 

0<tk<t
v t

+
k(  − v tk(  ,

(13)

so

v(t) � u(0) + 
t

0
σ(s) − M1u(α(s)) − M2(Au)(s) − M3(Bu)(s) e

Ms
ds + 

0<tk<t
Δu tk( e

Mtk . (14)

Ten,

u(t) � e
− Mt η(T) + k1 

T

0
η(s)ds + k2 

+ 
t

0
σ(s) − M1u(α(s)) − M2(Au)(s) − M3(Bu)(s) e

M(s− t)ds

+ 
0<tk<t

e
M tk− t( ) · − Dk 

tk− τk

tk− 1+σk− 1

u(s)ds + Ik 
tk

tk− τk

η(s)ds − 
tk− 1+σk− 1

tk− 1

η(s)ds  + Dk 
tk− τk

tk− 1+σk− 1

η(s)ds .

(15)

It is easy to know that u(0) � η(T) + k1 
T

0 η(s)ds +

k2, t ∈ [0, T], so u(t) satisfes (12).
Conversely, if u ∈ PC(J) is a solution of (12), then by

performing the direct diferentiation of (12), we can easily

verify that u ∈ PC(J) satisfes (10). Te lemma is
proved. □

Lemma 3. Let M> 0, M1, M2, M3 ≥ 0, 0≤Dk < 1, 0< σk− 1 ≤
(tk − tk− 1)/2, 0< τk ≤ (tk − tk− 1)/2, k � 1, 2, · · · , m, and

sup
t∈J


T

0
M1 + M2 

s

0
a(s, r)dr + M3 

T

0
b(s, r)dr e

M(s− t)
ds + 

m

k�1
Dk tk − tk− 1 − σk− 1 − τk( 

⎧⎨

⎩

⎫⎬

⎭ < 1, (16)

then problem (10) has a unique solution. Proof. For convenience, we defne the operator T:

(Tu)(t) � e
− Mt η(T) + k1 

T

0
η(s)ds + k2 

+ 
t

0
σ(s) − M1u(α(s)) − M2(Au)(s) − M3(Bu)(s) e

M(s− t)ds

+ 
0<tk<t

e
M tk− t( ) · − Dk 

tk− τk

tk− 1+σk− 1

u(s)ds + Ik 
tk

tk− τk

η(s)ds − 
tk− 1+σk− 1

tk− 1

η(s)ds  + Dk 
tk− τk

tk− 1+σk− 1

η(s)ds .

(17)

If u1, u2 ∈ PC′(J) are two solutions of (10), from Lemma
2, we have
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u1(t) � Tu1( (t), u2(t) � Tu2( (t),

‖ u1 − u2 ‖ PC � ‖ Tu1( (t) − Tu2( (t) ‖ PC

� ‖ 
t

0
M1u2(α(s)) + M2 

s

0
a(s, r)u2(r)dr + M3 

T

0
b(s, r)u2(r)dr e

M(s− t)ds

+ 
0<tk < t

e
M tk− t( ) · Dk 

tk− τk

tk− 1+σk− 1

u2(s)ds

− 
t

0
M1u1(α(s)) + M2 

s

0
a(s, r)u1(r)dr + M3 

T

0
b(s, r)u1(r)dr e

M(s− t)ds

− 
0<tk < t

e
M tk− t( ) · Dk 

tk− τk

tk− 1+σk− 1

u1(s)ds ‖

� sup
t∈J


t

0


M1 u2(α(s)) − u1(α(s))(  + M2 

s

0
a(s, r) u2(r) − u1(r)( dr

+ M3 
T

0
b(s, r) u2(r) − u1(r)( dre

M(s− t)ds

+ 
0<tk < t

e
M tk− t( ) · Dk 

tk− τk

tk− 1+σk− 1

u2(s) − u1(s)( ds



≤ sup
t∈J


T

0
M1 + M2 

s

0
a(s, r)dr + M3 

T

0
b(s, r)dr e

M(s− t)ds + 
m

k�1
Dk tk − tk− 1 − σk− 1 − τk( 

⎧⎨

⎩

⎫⎬

⎭ ‖ u1 − u2 ‖ PC.

(18)

So, by the Banach fxed point theorem [27], impulsive
integral (12) has a unique solution u ∈ PC(J). From Lemma
2, u ∈ PC(J) is a unique solution of (10). Te lemma is
proved. □

3. Main Result

In this section, the authors establish the existence conditions
of the solution of (1) by using the upper and lower solution

methods and the monotone iteration technique. Te fol-
lowing defnition is frst given.

Defnition 4. ψ ∈ PC′(J) is called a lower solution of (1) if

ψ′(t)≤g(t,ψ(t),ψ(α(t)), (Aψ)(t), (Bψ)(t)), t≠ tk, t ∈ J � [0, T],

Δψ tk( ≤ Ik 
tk

tk− τk

ψ(s)ds − 
tk− 1+σk− 1

tk− 1

ψ(s)ds , k � 1, 2, · · · , m,

ψ(0)≤ψ(T) + k1 
T

0
ψ(s)ds + k2.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(19)

Identically, φ ∈ PC′(J) is called an upper solution of (1)
if

φ′(t)≥g(t,φ(t),φ(α(t)), (Aφ)(t), (Bφ)(t)), t≠ tk, t ∈ J � [0, T],

Δφ tk( ≥ Ik 
tk

tk− τk

φ(s)ds − 
tk− 1+σk− 1

tk− 1

φ(s)ds , k � 1, 2, · · · , m,

φ(0)≥φ(T) + k1 
T

0
φ(s)ds + k2.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(20)
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In addition, we denote [ψ(t), φ(t)] � u ∈ PC(J): ψ(t)

≤ u(t)≤φ(t), t ∈ J}.

Theorem  . Suppose the following conditions hold:

(H1) ψ(t), φ(t) are the lower and upper solutions of (1),
respectively, and satisfy ψ(t)≤φ(t).

(H2) ∃M> 0, M1, M2, M3 ≥ 0, such that

g(t, x, y, z, w) − g(t, x, y, z, w)≥ − M(x − x) − M1(y − y) − M2(z − z) − M3(w − w). (21)

For ψ(t)≤ x(t)≤x(t)≤φ(t), ψ(t)≤y(t)≤y(t)≤φ(t),

(Aψ)(t)≤ z(t)≤ z(t)≤ (Aφ)(t), (Bψ)(t)≤w(t)≤w(t)≤ (Bφ)(t), ∀t ∈ J
−
. (22)

(H3) ∃ 0≤Dk < 1(k � 1, 2, · · · , m), such that

Ik 
tk

tk− τk

x(s)ds − 
tk− 1+σk− 1

tk− 1

x(s)ds  − Ik 
tk

tk− τk

y(s)ds − 
tk− 1+σk− 1

tk− 1

y(s)ds 

≥ − Dk · 
tk− τk

tk− 1+σk− 1

(x(s) − y(s))ds,

u(T) − u(T) + k1 
T

0
(u(s) − u(s))ds ≥ 0.

(23)

Here, ψ(t)≤y(t)≤ x(t)≤φ(t), k � 1, 2, · · · , m.ψ(t)

≤ u≤ u≤φ(t), k1 ∈ R.

Ten, there exist sequences of monotone iterations
ψn(t) , φn(t)  ⊂ PC′(J) satisfying ψ � ψ0 ≤ψ1 ≤ψ2
≤ · · · ≤ψn ≤ · · · ≤φn ≤φn− 1 ≤ · · · ≤φ1 ≤φ0 � φ, such that

limn⟶∞ ψn � u∗(t), limn⟶∞ φn � u∗(t) uniformly on J.
Here, u∗(t), u∗(t) are the minimum and maximum solu-
tions of (1) on [ψ(t), φ(t)], respectively.

Proof. First, we set up two sequences ψn(t) , φn(t)  which
satisfy the following equations:

ψi
′(t) + Mψi(t) + M1ψi(α(t)) + M2 Aψi( (t) + M3 Bψi( (t)

� g t,ψi− 1(t),ψi− 1(α(t)), Aψi− 1( (t), Bψi− 1( (t)( 

+ Mψi− 1(t) + M1ψi− 1(α(t)) + M2 Aψi− 1( (t) + M3 Bψi− 1( (t)

Δψi tk(  � − Dk 
tk− τk

tk− 1+σk− 1

ψi(s)ds + Ik 
tk

tk− τk

ψi− 1(s)ds − 
tk− 1+σk− 1

tk− 1

ψi− 1(s)ds 

+ Dk 
tk− τk

tk− 1+σk− 1

ψi− 1(s)ds,

ψi(0) � ψi− 1(T) + k1 
T

0
ψi− 1(s)ds + k2,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(24)

8 Journal of Mathematics



φi
′(t) + Mφi(t) + M1φi(α(t)) + M2 Aφi( (t) + M3 Bφi( (t)

� g t,φi− 1(t), φi− 1(α(t)), Aφi− 1( (t), Bφi− 1( (t)( 

+ Mφi− 1(t) + M1φi− 1(α(t)) + M2 Aφi− 1( (t) + M3 Bφi− 1( (t)

Δφi tk(  � − Dk 
tk− τk

tk− 1+σk− 1

φi(s)ds + Ik 
tk

tk− τk

φi− 1(s)ds − 
tk− 1+σk− 1

tk− 1

φi− 1(s)ds 

+ Dk 
tk− τk

tk− 1+σk− 1

φi− 1(s)ds,

φi(0) � φi− 1(T) + k1 
T

0
φi− 1(s)ds + k2.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(25)

Next, the conclusion is proved to hold in three steps.
Step one, we show that ψi ≤ψi+1,φi ≤φi− 1, i � 1, 2, · · · , n.

Let q(t) � ψ0(t) − ψ1(t), then

q′(t) + Mq(t) + M1q(α(t)) + M2(Aq)(t) + M3(Bq)(t)

� ψ0′(t) + Mψ0(t) + M1ψ0(α(t)) + M2 Aψ0( (t) + M3 Bψ0( (t)

− g t,ψ0(t),ψ0(α(t)), Aψ0( (t), Bψ0( (t)(  + Mψ0(t) + M1ψ0(α(t)) + M2 Aψ0( (t) + M3 Bψ0( (t) 

� ψ0′(t) − g t,ψ0(t),ψ0(α(t)), Aψ0( (t), Bψ0( (t)( 

≤ 0,

Δq tk(  � Δψ0 tk(  − Δψ1 tk( 

≤ − Dk 
tk− τk

tk− 1+σk− 1

ψ0(s) − ψ1(s)( ds

� − Dk 
tk− τk

tk− 1+σk− 1

q(s)ds, k � 1, 2, · · · m,

q(0) � ψ0(0) − ψ1(0)≤ψ0(T) − ψ1(T) � q(T).

(26)

From Lemma 1, we have q(t)≤ 0,ψ0(t)≤ψ1(t), t ∈ J. It
is similar to the above proof, we can verify φ1(t)≥φ0(t). By
mathematical induction, we can get

ψi ≤ψi+1,φi ≤φi− 1, i � 1, 2, · · · , n. (27)

Step two, we prove that ψ1 <φ1 if ψ0 <φ0.

Let q(t) � ψ1(t) − φ1(t), ∀t ∈ J− , we have

q′(t) + Mq(t) + M1q(α(t)) + M2(Aq)(t) + M3(Bq)(t)

� ψ1′(t) + Mψ1(t) + M1ψ1(α(t)) + M2 Aψ1( (t) + M3 Bψ1( (t)

− φ1′(t) − Mφ1(t) − M1φ1(α(t)) − M2 Aφ1( (t) − M3 Bφ1( (t)

� g t,ψ0(t),ψ0(α(t)), Aψ0( (t), Bψ0( (t)(  + Mψ0(t) + M1ψ0(α(t)) + M2 Aψ0( (t) + M3 Bψ0( (t) 

− g t,φ0(t),φ0(α(t)), Aφ0( (t), Bφ0( (t)(  + Mφ0(t) + M1φ0(α(t)) + M2 Aφ0( (t) + M3 Bφ0( (t) 

≤ 0,

Δq tk(  � Δψ1 tk(  − Δφ1 tk( 
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� − Dk 
tk− τk

tk− 1+σk− 1

ψ1(s)ds + Ik 
tk

tk− τk

ψ0(s)ds − 
tk− 1+σk− 1

tk− 1

ψ0(s)ds 

+ Dk 
tk− τk

tk− 1+σk− 1

ψ0(s)ds − − Dk 
tk− τk

tk− 1+σk− 1

φ1(s)ds + Ik 
tk

tk− τk

φ0(s)ds − 
tk− 1+σk− 1

tk− 1

φ0(s)ds  + Dk 
tk− τk

tk− 1+σk− 1

φ0(s)ds 

≤ − Dk 
tk− τk

tk− 1+σk− 1

ψ1(s) − φ1(s)( ds

� − Dk 
tk− τk

tk− 1+σk− 1

q(s)ds, k � 1, 2, · · · m,

q(0) � ψ1(0) − φ1(0)≤ψ1(T) − ψ1(T) � q(T).

(28)

By Lemma 1, we can get q(t)≤ 0( t ∈ J), i.e. ψ1 <φ1. Still
by mathematical induction, we have ψi ≤φi, i � 1, 2, · · · , n.

Step three, from the conclusion of the above two steps,
we get

ψ0 ≤ψ1 ≤ψ2 ≤ · · · ≤ψn ≤ · · · ≤φn ≤φn− 1 ≤ · · · ≤φ1 ≤φ0.

(29)

It is obvious that each ψi,φi(i � 1, 2, · · ·) satisfes (24)
and (25). Tere exist u∗, u∗ such that sequences

ψi(t) , φi(t)  satisfy limn⟶∞ ψn � u∗(t), limn⟶∞ φn

� u∗(t) uniformly on J. So, u∗(t), u∗(t) satisfy (1).
Finally, we verify that u∗(t), u∗(t) are extreme solutions

of (1).
Assume that u(t) is any solution of (1) and satisfes

ψ0(t)≤ u(t)≤φ0(t), t ∈ J.

Let q(t) � ψn+1(t) − u(t), t ∈ J− , we have

q′(t) � ψn+1′(t) − u′(t)

� g t,ψn(t),ψn(α(t)), Aψn( (t), Bψn( (t)( 

+ Mψn(t) + M1ψn(α(t)) + M2 Aψn( (t) + M3 Bψn( (t)

− Mψn+1(t) − M1ψn+1(α(t)) − M2 Aψn+1( (t) − M3 Bψn+1( (t)

− g(t, u(t), u(α(t)), (Au)(t), (Bu)(t))

≤ − M ψn+1(t) − u(t)(  − M1 ψn+1(α(t)) − u(α(t))( 

− M2 A ψn+1 − u( ( (t) − M3 B ψn+1 − u( ( (t)

� − Mq(t) − M1q(α(t)) − M2(Aq)(t) − M3(Bq)(t),

Δq tk(  � Δψn+1 tk(  − Δu tk( 

� − Dk 
tk− τk

tk− 1+σk− 1

ψn+1(s)ds + Ik 
tk

tk− τk

ψn(s)ds − 
tk− 1+σk− 1

tk− 1

ψn(s)ds 

+ Dk 
tk− τk

tk− 1+σk− 1

ψn(s)ds − Ik 
tk

tk− τk

u(s)ds − 
tk− 1+σk− 1

tk− 1

u(s)ds 

≤ − Dk 
tk− τk

tk− 1+σk− 1

ψn+1(s)ds − Dk 
tk− τk

tk− 1+σk− 1

ψn(s) − u(s)( ds + Dk 
tk− τk

tk− 1+σk− 1

ψn(s)ds

� − Dk 
tk− τk

tk− 1+σk− 1

ψn+1(s) − u(s)( ds

� − Dk 
tk− τk

tk− 1+σk− 1

q(s)ds, k � 1, 2, · · · m,

q(0) � ψn+1(0) − u(0)≤ψn+1(T) − u(T) � q(T).

(30)
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From Lemma 1, we can get q(t)≤ 0( t ∈ J), i.e.,
ψn+1(t)≤ u(t)(t ∈ J). Similarly, it is easy to see that
u≤φn+1(t ∈ J).

Terefore, ψn+1(t)≤ u(t)≤φn+1(t) for any t ∈ J, this
implies that u∗(t)≤ u(t)≤ u∗(t), the theorem is proved. □

4. Application

Impulsive diferential equation theory is based on the
continuous diferential equation. Scientists use dynamics to
describe the laws of life phenomena and then build math-
ematical models based on impulsive diferential equation
theory to further explore scientifc problems, which pro-
motes more understanding of life science. Te study of these
mathematical models has led to the exploration of a large
number of diferential equations, and it is found that some
phenomena in the optimal control of some life phenomena
are not a continuous process, which cannot be studied

simply by diferential equations. For example, in the dy-
namic system of infectious diseases, in order to prevent and
control the spread of infectious diseases, pulse vaccination is
one of the commonly used measures.Tis kind of time-delay
infectious disease model with pulse preventive vaccination is
a typical impulsive diferential equation model, which needs
to apply the theory and method of impulsive diferential
equation to carry out research and give the optimal control
strategy. Terefore, impulsive diferential equations are
widely used in infectious disease dynamic systems, and it is
of great practical signifcance to study the optimal pre-
vention and control strategy of these systems by using the
theory of impulsive diferential equations.

Based on the above theoretical derivation and the in-
fectious disease dynamic system model, we consider the
following infectious disease system model:

u′(t) � −
1
20

t
4
u(t) +

1
15

t
3

t − u
t

2
   +

1
500

t t
5

− 
t/2

0
8tsu(s)ds 

5

+
1
700

t
2

t
2

− 
1

0
2t

2su(s)ds 

7

, t≠
1
2
, t ∈ J � [0, 1],

Δu t1(  � −
1
12


t1

1/3
u(s)ds − 

1/6

0
u(s)ds , t1 �

1
2
,

u(0) � u(1) −
1
10


1

0
u(s)ds +

1
9
,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(31)

where T � 1, t0 � 0, t1 � 1/2, τ � 1/2, σ0 � 1/6, τ1 � 1/6.k1 �

− 1/10, k2 � 1/9.

In this system, u(t) is susceptible to infection at time t
and Δu(1/2) indicates the change of the infected person at
time 1/2.

Te following we prove that system (31) is stable.

g(t, u(t), u(α(t)), (Au)(t), (Bu)(t)) � − 1/20t
4
u(t) + 1/15t

3
[t − u(t/2)] + 1/500t t

5
− 

t/2

0
8tsu(s)ds 

5

+
1
700

t
2

t
2

− 
1

0
2t

2
su(s)ds 

7

.

(32)
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Let ψ0(t) � 0,φ0(t) � 1, It is not hard to verify that
ψ0(t) � 0 is the lower solution and φ0(t) � 1 is the upper
solution of system (31).

By computing,

g(t, x, y, z, w) − g(t, x, y, z, w) � −
1
20

t
4
(x − x) +

1
15

t
3
[(t − y) − (t − y)]

+
1
500

t t
5

− z 
5

− t
5

− z 
5

  +
1
700

t
2

t
2

− w 
7

− t
2

− w 
7

 

≥ −
1
20

t
4
(x − x) −

1
15

t
3
(y − y) −

1
100

t(z − z) −
1
100

t
2
(w − w)

≥ −
1
20

(x − x) −
1
15

(y − y) −
1
100

(z − z) −
1
100

(w − w),

(33)

where ψ0(t)≤ x(t)≤ x(t)≤φ0(t), ψ0(α(t))≤y≤y≤φ0
(α(t)),

Aψ0(t)≤ z≤ z≤Aφ0(t), Bψ0(t)≤w≤w≤Bφ0(t). (34)

So, we can get

M �
1
20

, M1 �
1
15

, M2 �
1
100

, M3 �
1
100

,


T

0
M + M1 + M2 

t

0
a(t, s)ds + M3 

T

0
b(t, s)ds dt −

1
M



m

k�1
Dk e

Mτk − e
M τ− σk− 1( ) 

� 
1

0

1
20

+
1
15

+
1
100


t/2

0
8tsds +

1
100


1

0
2t

2
sds dt − 20 ·

1
12

e
1/120

− e
1/60

 

≤
1
20

+
1
15

+
1
100

+
1
100

+
1
75

< 1,

(35)

we can get

Ik 
tk

tk− τk

x(s)ds − 
tk− 1+σk− 1

tk− 1

x(s)ds  − Ik 
tk

tk− τk

y(s)ds − 
tk− 1+σk− 1

tk− 1

y(s)ds 

� −
1
12


1/2

1/3
(x(s) − y(s))ds − 

1/6

0
(x(s) − y(s))ds 

≥ −
1
12


1/3

1/6
(x(s) − y(s))ds,

(36)

where ψ0(tk)≤y(tk)≤x(tk)≤φ0(tk), Dk � 1/12.

Obviously,

u(T) − u(T) + k1 
T

0
(u(s) − u(s))ds ≥ 0, (37)

where ψ0(t)≤ u≤ u≤φ0(t), t ∈ [0, T].

Terefore, the all conditions of Teorem 5 are satisfed.
Tus, system (31) has the extremal system of solutions
u∗, u∗ ∈ [ψ0,φ0], which can be obtained by taking limits
from some iterative sequences. Combining the initial con-
ditions of the example and the theoretical derivation in this
paper, it can be concluded that the system has certain
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stability at one time of prevention (interference) at half time;
that is, the system will tend to a disease-free equilibrium
point at half period, indicating that in the prevention of
infectious diseases, the susceptible persons can be reduced
by pulse vaccination to reduce the possibility of disease
transmission until the disease slowly disappears. In addition,
we can further verify that increasing the number of in-
oculations (interference times), for example, when the im-
pulse term of model (4.1) has three pulse moments
(t1 � 1/4, t2 � 1/3, t3 � 1/2), the stability conclusion of the
system is still true by applying the theory of this paper.
However, in this case, the theory of literature [7, 9] is not
applicable to the application example in this paper.
Terefore, this paper studies an infectious disease model
with multiple pulse disturbances. Te model studied in this
paper is an extension and optimization of the existing in-
fectious disease model, which is more universal and realistic
in the prevention and control of infectious diseases.

5. Conclusion

In life science research, the occurrence of many biological
phenomena and people’s optimal control of some life
phenomena are not a continuous process, which will be
interfered by some external conditions or human factors,
resulting in a short time disturbance of the system state.
Tis disturbance with time delay can be studied by pulsed
diferential equation theory. Especially in the prevention
and control of infectious diseases, this kind of pulse
phenomenon with time delay is very common, and the
theory of impulsive diferential equation is commonly used
to study such models in mathematics, so as to give the most
scientifc prevention strategy of infectious diseases. Based
on this, a class of periodic boundary value problem of
impulsive integrodiferential equations of mixed type with
integral boundary conditions and integral impulsive con-
ditions was studied in this paper. On the basis of the theory
of impulsive diferential equation, the comparison theorem
of impulsive integrodiferential equation was established
and the model studied was transformed into the corre-
sponding linear integrodiferential equation. By defning
the integral equation of the model, the condition of the
unique solution was obtained. On the basis of this theory,
the existence of the extreme solutions was further studied
by means of the upper and lower solution methods com-
bined with the monotone iteration technique and the
stability of the periodic solutions of system model (1) was
obtained. Finally, the validity of the mathematical model
was verifed by an application example of the infectious
disease dynamic system model under pulse inoculation
interference. Tis model provides a new way for the op-
timal control and prevention of the infectious disease
model, which has certain theoretical value and practical
signifcance.
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