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In this paper, we investigate the observability of the fractional resolvent family, and we prove two main results: the frst result
shows a generalization of the Hautus-type test for observable exponentially stable semigroups to the fractional resolvent family
and the second result shows the equivalence of the observability and the below boundedness of the linear operator on the wave
packet when the generator conforms to a specifc form.

1. Introduction

In this paper, we mainly investigate the observability of the
following fractional diferential equation in Hilbert space:

D
α
t u(t) � Au(t), t> 0

u(0) � x ∈ X, in  addition u′(0) � 0  if  α> 1( 􏼁,

⎧⎨

⎩ (1)

A is a closed densely defned linear operator on a Banach
space X. Our main results can be listed as follows: First, we
prove that the exact observability in fnite time τ can deduce
a Hautus type test with a constant depending on τ, and the
assumptions are weaker than the classical one, for example
[1], Teorem 6.5.3. Next, we show that if the resolvent is
stable and observation operator B is commuted with co-
efcient operator A, then the Hautus type inequality is
enough to prove the approximate observability. Second, we
assume that A � iαC − ϵ, where C is a negative self-adjoint
operator and ϵ is a constant small enough. We prove that for
such an operator A, the exact observability of resolvent
generated by A can be deduced from the Hautus type test,
and a perturbation result is given as a corollary. Finally, we
show that if C has a compact resolvent, then we can use the
conditions satisfed by the spectrum of the operator A to
fully characterize its observability.

Te properties of the fractional resolvent family have
been studied very intensively over the past few years; for
example, many stability, regularity, and continuity results
concerning the fractional resolvent family can be found in
[2] and references therein. Also, many pieces of literature on
this topic provide applications for Caputo fractional cal-
culus. In [3], authors investigate the stability of fractional
evolution systems with memory. In [4–8], authors also did
some quantitative analysis related to Caputo fractional
calculus, and for many other results about fractional dif-
ferential equations, we refer to [9–14].

Te observability of C0 semigroup is a classical topic, and
there is a lot of literature on this subject; for example [1, 15],
these two pieces of literature give extensive results on the
observability of C0 semigroups: the frst one focuses on the
elementary introduction and classical results and gives
many applications and relations to wave equation or
Schröndinger’s equation, see also [16], while the second one
provides many ideals and open problems about this subject.
Also, there are some works about observability not only on
general Hilbert space but also on some measurable sets, for
example [7, 17]. In addition to studying the subject itself, this
concept is also a powerful tool for proving the stability of
semigroups; for example, in the literature [18], the authors
proved that the semigroup generated by A − BB∗ is strongly
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polynomially stable by assuming that the operators A, B

satisfy a nonuniform Hatus-type test. In the literature [19],
the observability and stabilization of magnetic Schrödinger
equations have been investigated. If we concentrate on
certain equations, observability can also be proved, for
example [20].

Fractional order diferential equations, and evolution
systems containing fractional order diferentials, are very
common in nature, so the question of controllability and
observability of this class of equations is also a matter of
interest, and this is the motivation of this paper. Compar-
atively, the observability of fractional resolvent families has
been much less studied, and many kinds of literature
concentrate on fractional diferential equations with
boundary value conditions such as [14, 21]. Te main dif-
fculty in dealing with the fractional resolvent family is that
the fractional derivative does not satisfy the chain rule and
the fractional integral operator is a nonlocal operator;
therefore, we use a diferent approach when dealing with
fractional resolvent families, and the results are slightly
diferent from the semigroup case.

Tis paper is organized as follows: in Section 2, some
necessary defnitions and results on observability, Mit-
tag–Lefer functions, and fractional resolvent families are
given. Section 3 is devoted to proving a Hautus-type nec-
essary condition for exact observability. Also, Section 4 deals
with the resolvent family generated by operator A which
conforms to a specifc form and characterizes the observ-
ability by the spectrum of A.

2. Preliminaries

In this paper,C,R,Zmeans the complex plane, the real line,
and the set of all integers, respectively. For every complex
number x, Re(x), Im(x) being its real, imaginary part and
arg(x) being its angle. M, m are two constants that may
change from line to line, and the constants M(τ, s), m(τ, s)

vary with τ and s. In all cases, we assume that X and Y are
Hilbert spaces and that A is a densely defned, closed, linear
operator on X with N(A), D(A), and R(A) being its kernel,
domain, and range, respectively. σ(A) and ρ(A) signify the
spectrum and resolvents set of A, respectively, and
B ∈L(X, Y) is a linear bounded operator map X to Y.
Regularly, ∗ stands for the convolution on R+:

(f∗ g)(t) � 􏽚
t

0
f(t − s)g(s)ds. k ∈ L

1
R+( 􏼁, f ∈ L

1
R+, X( 􏼁,

(2)

and 􏽢f(λ) denote the Laplace transform of an exponentially
bounded function f ∈ L1(R+, X), defned by

􏽢f(λ) � 􏽚
∞

0
e

−λt
f(t)dt, (3)

if this integral is convergent. Also, 􏽥f(λ) denote the Fourier
transform of a function f ∈ L1(R, X), defned by

􏽥f(λ) � 􏽚
R

e
−iλt

f(t)dt, (4)

if f is defned on R+, then we extend it to R by zero and still
denote by f if no confusion occurs.

Te sector Σ(ω, θ) is defned as

Σ(ω, θ) ≔ z | z ∈ C, |arg(z − ω)|< θ􏼈 􏼉, (5)

for ω ∈ R and θ ∈ (0, π]; if ω � 0, then we write
Σ(0, θ) ≔ Σ(θ) for convenience.

We now defne the observability of the fractional re-
solvent family.

Defnition 1. If A generates a bounded fractional resolvent
family Sα(t)􏼈 􏼉, then the pair (A, B, α) is exactly observable in
time τ, and there is a constant μ> 0 such that

􏽚
τ

0
‖BSα(t)x‖

2dt≥ μ‖x‖
2 ∀x ∈ D(A). (6)

Te pair (A, B, α) is approximately observable in time τ
if

∩
t∈[0,τ]

N BSα(t)( 􏼁 � 0{ }. (7)

Defnition 2. Let ϕ(x) � BSα(t)x ∈L(D(A), L2((0,∞),

Y)). Te pair (A, B, α) is exactly (or approximately) ob-
servable in infnite time if ϕ is bounded from below (or
ker(ϕ) � 0{ }).

Ten, we recall the Mittag–Lefer function, which plays
an important role in studying fractional diferential equa-
tions. Te properties and applications of this function can be
found in the [13, 22, 23].

Te Mittag–Lefer function Eα,β(z) is defned by

Eα,β(z) ≔ 􏽘
∞

n�0

z
n

Γ(αn + β)
�

1
2πi

􏽚
Ha

μα−β
e
μ

μα − z
dμ, z ∈ C, (8)

where α, β> 0, Ha is the Hankel contour which starts and
ends at −∞ and encircles the disc |μ|≤ |z|1/α counter-
clockwise. We write Eα(z) ≔ Eα,1(z) if there is no confu-
sion. Te Mittag–Lefer function Eα(t) satisfes the
fractional diferential equation.

D
α
t Eα ωt

α
( 􏼁 � ωEα ωt

α
( 􏼁, (9)

where Dα
t is the Caputo derivative of α-order (see

[13, 24, 25]). Te most useful properties of this function are
the following integral:

􏽚
∞

0
e

−λt
t
β−1

Eα,β st
α

( 􏼁dt �
λα−β

λα − s
, Re(λ)>|s|1/α, (10)

and their asymptotic expansion for 0< α< 2 and β> 0:

Eα,β(z) �
1
α

z
1−β/α exp z

1/α
􏼐 􏼑 + εα,β(z), |arg z|≤

1
2
απ, (11)

Eα,β(z) � εα,β(z), |arg(−z)|<
1
2
απ, (12)

where
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εα,β(z) � − 􏽘
N−1

n�1

z
−n

Γ(β − αn)
+ O |z|

−N
􏼐 􏼑, (13)

as z⟶∞ and N ∈ N be a integer bigger than 1. From the
asymptotic expansion, one knows that Eα(−ωtα) � O(t−α) as
t⟶∞ when ω> 0.

Next, we defne fractional resolvent families and list
some properties here.

Defnition 3 (see [24]) [Defnition 3]. Let 0< α≤ 2, a family
Sα(t)􏼈 􏼉t≥0 ⊂ L(X) is called an α-times resolvent family
generated by A if the following conditions are satisfed:

(a) Sα(t) is strongly continuous for t≥ 0 and Sα(0) � I

(b) Sα(t)A ⊂ ASα(t) for t≥ 0; that is, Sα(t)D

(A) ⊂ D(A) and ASα(t)x � Sα(t)Ax for x ∈ D(A)

(c) for x ∈ X, the resolvent equation

Sα(t)x � x + A 􏽚
t

0
gα(t − s)Sα(t)xds, (14)

holds for all t≥ 0, where gα(t) ≔ tα−1/Γ(α).

It is well known that the α-times resolvent family is
uniquely determined by its generator A. If A generates an
α-times resolvent family Sα(t), then the solution to the
abstract fractional Cauchy problem (1) is given by
u(t) � Sα(t)x.

Defnition 4. An α-times resolvent family Sα(t) is said to
be exponentially bounded if there exists a constant M≥ 1
and ω≥ 0 such that ‖Sα(t)‖≤Meωt for every t≥ 0. Sα(t) is
called bounded if ω can be taken as 0, i.e., ‖Sα(t)‖≤M for
all t≥ 0.

Let θ0 ∈ (0, π/2], an α-times resolvent family Sα(t) is
called the analytic of angle θ0 if Sα(t) admits an analytic
extension to the sectorial sector Σ(θ0). An analytic α-times
resolvent family Sα(t) is called bounded if ‖Sα(z)‖ is uni-
formly bounded for z ∈ Σθ for any 0< θ< θ0.

Lemma 5 (see [24]). Teorems 2.8 and 2.9. Let 0< α≤ 2.
Ten, A generates an α-times resolvent family Sα(t) satisfying
‖Sα(t)‖≤Meωt for every t≥ 0 if and only if (ωα,∞) ⊂ ρ(A)

and
􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

d
n

dλn λα−1
R λα, A( 􏼁􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤

Mn!

(λ − ω)
n+1, λ>ω, n ∈ N0. (15)

In this case, λα: Reλ>ω{ } ⊂ ρ(A) and

λα−1
R λα, A( 􏼁x � 􏽚

∞

0
e

−λt
Sα(t)xdt, Reλ>ω, (16)

for every x ∈ X. In particular, if Sα(t) is bounded, then
supλ>0‖λR(λ, A)‖<∞.

3. A Hautus-Type Necessary Condition for
Exact Observability

Te Hautus-type necessary condition for exponential stable
semigroup can be found in many works of literature, such as
[1], but the conditions we assume here are diferent.

Theorem 6. If A generates a bounded fractional resolvent
family Sα(t)􏼈 􏼉,

‖Sα(t)x‖ ≤M‖x‖, x ∈ X, t> 0. (17)

If pair (A, B, α) is exactly observable in time τ, then for
every s ∈ C and every x ∈ D(A),

‖(sI − A)x‖
2

+ m(τ, s)‖Bx‖
2 ≥ μ‖x‖

2
, (18)

where M(τ, s) ≔ τ1/2M‖B‖ 􏽒
τ
0 ‖tα−1Eα,α(stα)‖dt and m(τ, s)

� 􏽒
τ
0 ‖Eα(stα)‖2dt.

Proof. Since pair (A, B, α) is exactly observable in time τ, we
only need to prove that

M(τ, s)‖(zI − A)x‖
2

+ m(τ, s)‖Bx‖
2 ≥ ‖BSα(t)x‖

2
L2((0,τ),X).

(19)

We choose s ∈ C and x ∈ D(A), we denote

q � (A − sI)x, (20)

then we have

D
α
t Sα(t)x � Sα(t)Ax � sSα(t)x + Sα(t)q, (21)

and then we conclude that

Sα(t)x � Eα stα( 􏼁x + 􏽚
t

0
h(t − τ)Sα(τ)qdτ, (22)

where h(t) � tα−1Eα,α(stα).
Ten, we have

BSα(t)x � Eα stα( 􏼁Bx + h∗BSα( 􏼁(t)q. (23)

By using the property of convolutions, we have

‖BSα(t)x‖
2
L2((0,τ),X) ≤ ‖Eα stα( 􏼁‖

2
L2((0,τ),X)‖Bx‖

2

+‖h(t)‖L1((0,τ),X) ‖BSα(t)‖ L2((0,τ),X)‖q‖.

(24)

So if we denote M(τ, s) ≔ τ1/2M‖B‖ 􏽒
τ
0 ‖tα−1Eα,α(stα)‖dt

and m(τ, s) � 􏽒
τ
0 ‖Eα(stα)‖2dt, then we have

μ‖2‖
2 ≤ ‖BSα(t)x ‖

2
L2((0,τ),X) ≤m(τ, s)‖Bx‖

2

+ M(τ, s)‖(A − sI)x‖
2
.

(25)

□

Example 1. (1) Take � L2(R), Af(x) � (−df/dx − λf(x)),
λ> 0. Ten, it is well known that A generates a stable
C0-semigroup T(t){ },

Journal of Mathematics 3



T(t)f(x) � e
−λt

f(x + t). (26)

Tus, it is easy to see that A generates a stable α-times
fractional resolvent family Sα(t)􏼈 􏼉,

Sα(t)f(x) � 􏽚
∞

0
Φα,1−α(t, s)T(s)f(x)ds, (27)

where Φα,1−α(t, s) is the Wright-type function, which can be
found in many pieces of literature, such as [11, 22, 24].

Now, let Bf(x) � f(0), the BT(t)f(x) � e−λtf(t) and

BSα(t)f(x) � e
−λt

f(t). (28)

So we have

􏽚
τ

0
‖BSα(t)f(x)‖

2dt � 􏽚
τ

0
‖e

−λt
f(t)‖

2dt≥ e
−2λτ

‖f‖
2
. (29)

Tus, BSα(t) is exactly observable in time τ, τ > 0. Ten,
by this theorem, we deduce that for every τ > 0, the following
equation is valid:

M(τ, s)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
(s + λ)f(x) +

df
dx

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

L2(R)

+ m(τ, s)‖f(0)‖
2 ≥ μ‖f(x)‖

2
L2(R).

(30)

By using Teorem 6, we can prove the following result.

Proposition 7. If A generates a stable fractional resolvent
family Sα(t)􏼈 􏼉 with α ∈ (1,2), there exists a constant M such
that for every x ∈ X,

‖Sα(t)x‖ ≤Mt−α‖x‖. (31)

If Sα(t)􏼈 􏼉 commute with B and equation (18) holds for
some τ > 0, then pair (A, B, α) is approximately observable
in infnite time.

Proof. Since B and Sα(t) commute, we deduce that

‖BSα(t)Sα(τ)x‖ ≤M ‖BSα(t)x‖ . (32)

Ten, we denote ϕ(x) � BSα(t)x, of course, ϕ(x) is well-
defned, and we know that ker(ϕ) is an invariant space of
Sα(t)􏼈 􏼉, and we need to prove that ker(ϕ) � 0{ }. Let 􏽥Sα(t)􏽮 􏽯

be the restriction of Sα(t)􏼈 􏼉 on ker(ϕ) which also be
a fractional resolvent family with generator 􏽥A, the restriction
of A on ker(ϕ). Ten, it is easy to prove that

D(􏽥A)⊆D(A)∩ ker(ϕ)⊆N(B). (33)

Now, suppose we have equation (18) with constants
M(τ, s) and m(τ, s), then, for every s ∉ Σ(1/2απ) and every
x ∈ D(􏽥A),

M(τ, s) ‖(A − sI)x‖
2 ≥ μ ‖x‖

2
, (34)

or equivalently, for every s ∈ ρ(􏽥A), s ∉ Σ(1/2απ),

‖(sI − A)
−1

‖ ≤ μ(1/2)
M(τ, s). (35)

It can be calculated directly that for every given τ > 0,
M(τ, s) is uniformly bounded for s ∈ ρ(􏽥A), s ∉ Σ((1/2)απ).
For s ∈ Σ((1/2)απ), the uniform boundedness of (sI − A)−1

can be deduced from the property of fractional resolvent
family with estimate (31), and then, we obtain that
‖(sI − A)−1‖ is uniformly bounded for s ∈ ρ(􏽥A), then by [1],
Lemma 6.5.5, ker(ϕ) � 0{ }. □

Proposition 8. If pair (A, B, α) is exactly observable in
infnite time and Sα(t)􏼈 􏼉 is stable with rate t−α and α ∈ (1,2),
then it is exactly observable in time τ for τ big enough.

Proof. For x ∈ D(A) and τ > 0, we have

􏽚
τ

0
‖BSα(t)x‖

2dt � 􏽚
∞

0
‖BSα(t)x‖

2dt − 􏽚
∞

τ
‖BSα(t)‖

2dt. (36)

Since there are constants m, M, such that

􏽚
∞

0
‖BSα(t)x‖

2dt≥m‖x‖
2

􏽚
∞

τ
‖BSα(t)‖

2dt≤Mτ1−α
‖x‖

2
.

(37)

Ten, equation (36) reads

􏽚
τ

0
‖BSα(t)x‖

2dt≥ m − Mτ1−α
􏼐 􏼑‖x‖

2
. (38)

If τ big enough such that m − Mτ1−α > 0, for such τ, pair
(A, B, α) is exactly observable in time τ. □

4. Hautus-Type Tests for Exact
Observability with a Special Generator

In this section, we focus on the fractional resolvent family
generator of the following form:

A � i
α
C, (39)

where C is a negative self-adjoint operator and satisfes the
following condition:

N Eα(z)( 􏼁∩ σ i
α
C( 􏼁 � ∅, (40)

where N(Eα(z)) is the set consisting of all zeros of Eα(z).
Ten, A generates a bounded fractional resolvent family
Sα(t)􏼈 􏼉, and for every x, y ∈ X, we have

Sα(t)x, y􏼊 􏼋 � 􏽚
σ(A)

Eα t
α
s( 􏼁dEx,y(s), (41)

where E is the resolution of identity corresponding to C.

Ex,y(s) ≔ 〈E(s)x, y〉. (42)

Tis can be checked directly by the Laplace transform,
dominant convergence theorem, and asymptotic behavior of
the Mittag–Lefer function. More details about the reso-
lution of identity can be found in [26], here we only list one
of them.
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Lemma 9 (see [26]). Teorem 13.24. Let E be a resolution of
identity on a set Ω, then every measurable function
f: Ω⟶ C corresponds a densely defned, closed operator
Φ(f) with domain D(Φ(f) such that:

〈Φ(f)x, y〉 � 􏽚
Ω

fdEx.y x ∈ D(Φ(f)), y ∈ X,

‖Φ(f)x‖
2

� 􏽚
Ω

|f|
2dEx,x.

(43)

By using this lemma, estimate (11), and equation (40), we
deduce that

M‖x‖≥ ‖Sα(t)x‖ ≥m‖x‖. (44)

Moreover, consider the operator A1 � A − ϵ for some
ϵ> 0, then A1 generates a fractional resolvent family
Sα,1(t)􏽮 􏽯 and

‖Sα,1(t)x‖
2

� 􏽚
σ(A)

|Eα (s − ϵ)tα( 􏼁|
2dEx,x

≤Mt
−2α

‖x‖
2
, as t⟶∞.

(45)

Theorem 10. If there exist constants M and m such that

‖ i
αωI − A( 􏼁z‖

2
+ m

2
‖Bz‖

2 ≥ ‖z‖
2 ω ∈ R, z ∈ D(A).

(46)

If ϵ2M< 1 and α ∈ (1/2, 2), then pair (A1, B, α) is exactly
observable in infnite time.

Proof. Let Sα.1(t)􏼈 􏼉 be the fractional resolvent family gen-
erated by A1, then, for every z ∈ D(A1) � D(A), we have

D
α
t Sα,1(t)z − ASα,1(t)z � −ϵSα,1(t)z. (47)

Since Sα(t)z ∈ L2(R+, X), then

(iλ)
α

− A( 􏼁 􏽦Sα,1(λ)z � −ϵ􏽦Sα,1(λ)z, (48)

then by equation (46), we have

‖ 􏽦Sα,1(λ)z ‖
2 ≤ ‖M (iλ)

α
− A( 􏼁 􏽦Sα,1(λ)z‖

2

+ m ‖B 􏽦Sα,1(λ)z‖
2 λ ∈ R.

(49)

Ten, Plancherel theorem implies that

􏽚
∞

0
‖Sα,1(t)z‖

2dt≤M 􏽚
∞

0
‖ϵSα,1(t)z‖

2dt

+ m 􏽚
∞

0
‖BSα,1(t)z‖

2dt,
(50)

thus,

1 − ϵ2M􏼐 􏼑 􏽚
∞

0
‖Sα,1(t)z‖

2dt≤m 􏽚
∞

0
‖BSα,1(t)z‖

2dt. (51)

Combining equations (44) and (45) and 1 − ϵ2M> 0, we
have

L‖z‖
2 ≤􏽚

R+

‖BSα,1(t)z‖
2dt. (52)

for some constant L. Tis completes the proof. □

Remark 11. Tese results are also valid if A is a normal
operator with Σ(π − 1/2απ)⊆ ρ(A) and |Eα(z)|≥ ϵ for all
z ∈ σ(A) and ϵ> 0.

It should be noted that if a pair (A, B, α) is exactly
observable in time τ <∞, then equation (18) is satisfed with
constant M(τ, s) and m(τ, s), and if s ∈ z | arg(z) � 1/2απ􏼈 􏼉

and τ <∞, then both M(τ, s) and m(τ, s) are bounded and
then equation (46) is satisfed. So we conclude then the
following corollary.

Corollary 1 . Suppose ϵ small enough and A1 � A − ϵ. If
pair (A, B, α) is exactly observable in time τ <∞, then pair
(A1, B, α) is exactly observable in infnite time.

If operator A � iαC has compact resolvent, then we can
use spectral conditions to inscribe the observability of the
fractional resolvent family.

Since C is self-adjoint and has compact resolvent, then
we denote by ϕn􏼈 􏼉n∈Z1

an orthonormal basis consisting of
eigenvectors of A and by iαμn􏼈 􏼉n∈Z1

, and the corresponding
eigenvalues of A and index set Z1 are a subset of Z.

For ω ∈ R and r> 0, set

J(ω, r) � k | k ∈ Z1, |μk − ω| < r􏼈 􏼉. (53)

We call an element x ∈ X is a wave packet of A of pa-
rameters ω and r if z can be represented as

x � Σk∈J(ω,r)xkϕk, xk ∈ C. (54)

We frst give the following proposition.

Proposition 13. Te following conditions are equivalent:

(1) Bϕn ≠ 0 for all n ∈ Z1

(2) Te pair (A, B, α) is approximately observable in
infnite time

Proof. Te proof of this proposition is the same as [1],
Proposition 6.9.1, so we omit it here.

Te following lemma is a direct extension of the [1],
Lemma 6.9.4. □

Lemma 14. For each r> 0 and ω ∈ R, we defne the subspace
V(ω, r)⊆X,

V(ω, r) ≔ ϕk | k ∈ J(ω, r)􏼈 􏼉
⊥

. (55)

Let Aω,r be the part of A in V(ω, r). If K is the non-
increasing function

K(r) ≔ sup
Re(s)≥r

(Re(s))
1/2

‖B(sI − A)
−1

‖ , (56)

then
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‖B i
αωI − A( 􏼁

−1
‖ L(V(ω,r),Y) ≤

K(r)
�
r

√ ∀ω ∈ R. (57)

Now, we prove another main result of this section.

Theorem 15. If α ∈ (1,2) and ϵ small enough, A1 � A − ϵ,
then the following statements are equivalent:

(1) Tere exist r, m> 0 such that for all ω ∈ R and for
every wave packet of A of parameters ω and r, denoted
by x, we have

‖Bx ‖ Y ≥ δ‖ x ‖ X (58)

(2) Pair (A1, B, α) is exactly observable in time τ <∞

Remark 16. AlthoughTeorem 10 does not assume α> 1, we
need this assumption to ensure the function K(r) is well-
defned.

Proof. First, we show that (2) implies (1). Assume that pair
(A, B, α) is exactly observable in time τ, then by equation
(18) we have

‖ i
αλ( 􏼁I − A1( 􏼁x‖

2
+ m‖Bx‖

2 ≥ ‖x‖
2 λ ∈ R, (59)

then choose r such that (r + ϵ)2 � 1/2M and x � Σk∈J(ω,r)

xkϕk ∈ J(ω, r), we have
1
2
‖x‖

2
+ m‖Bx‖

2 ≥M |Σk∈J(ω,r) i
α ω − μk( 􏼁 + ϵ( 􏼁xk|

2

+ m‖Bx‖
2 ≥ ‖x‖

2
,

(60)

then

m‖Bx‖
2 ≥

1
2
‖x‖

2
. (61)

Tis proves the claim.
Next, we show that (1) implies (2). We frst prove that (1)

implies equation (46), then useTeorem 10 and Proposition
8 to get the desired result.

Take x ∈ D(A) and represent it on the basis ϕk􏼈 􏼉, denote
by x � Σkxkϕk. Take r, δ, and ω such that (1) holds and
decompose x � x1 + x2, where

x1 � Σk∈J(ω,r)xkϕk,

x2 � Σk∉J(ω,r)xkϕk.
(62)

Ten, we have

‖Bx‖
2

� ‖Bx1‖
2

+ ‖‖Bx‖
2

� ‖Bx1‖
2
+ ‖

2
+ 2Re Bx1,Bx2􏼊 􏼋. (63)

By using elementary inequality, we have, for every ϵ> 0,

2Re Bx1,Bx2􏼊 􏼋≥ − ϵ ‖Bx1‖
2

−
1
ϵ

‖Bx2‖
2
, (64)

then we have

‖Bx‖
2 ≥ (1 − ϵ) ‖Bx1‖

2
−
1 − ϵ
ϵ

‖Bx2‖
2
. (65)

Ten, by using Lemma 14 and (1), we have

‖Bx‖
2 ≥ δ2(1 − ϵ) ‖x1‖

2
−
1 − ϵ
ϵ

‖B i
αωI − A( 􏼁

−1
i
αωI − A( 􏼁x2‖

2

≥ δ2(1 − ϵ) ‖x1‖
2

−
1 − ϵ
ϵ

4K(r)
2

r
‖ i

αωI − A( 􏼁x2‖
2
.

(66)

Since Aω,r is the restriction of A in V(ω, r), then

‖ i
αωI − A( 􏼁x‖

2 ≥ ‖ i
αωI − Aω,r􏼐 􏼑x2‖

2
,

‖ i
αωI − Aω,r􏼐 􏼑x2‖

2 ≥ r
2

‖x2‖
2
.

(67)

Combining these equations, we have

M
2

‖ i
αωI − A( 􏼁x‖

2
+ m

2
‖Bx‖

2

≥m
2δ2(1 − ϵ) ‖x1‖

2

+ M
2
r
2

− m
21 − ϵ
ϵ

4K(r)
2

r
􏼠 􏼡 ‖x2‖

2
,

(68)

since ϵ< 1, choose m � 1/δ(1 − ϵ)1/2 and M big enough, we
have

‖ i
αωI − A( 􏼁x‖

2
+ m

2
‖Bx‖

2 ≥ ‖x1‖
2

+ ‖x2‖
2 ≥ ‖x‖

2
.

(69)

Tis completes the proof. □

5. Discussion

Tis paper focuses on the observability of fractional dif-
ferential equations, giving some sufcient and necessary
conditions for determining that an equation is observable. In
particular, we apply the Hautus-type inequality for the
classical case to fractional diferential equations, giving an
analogous inequality. When the space is a Hilbert space and
the operator is a self-adjoint operator, we give a condition
that does not depend on the estimate of the resolvent of the
operator, which is used to characterize the observability of
the equations.

Since this paper focuses on abstract fractional Cauchy
problems in general Banach spaces, the methods that are
generally used to consider observability are not applicable,
for example, considering the dual operator and using the
controllability of dual problems to study observability [1].
Because abstract resolvent families have quite a few common
features, we can use this approach in the future to study
other problems, such as building similar Hautus-type in-
equalities for general k-regularized resolvent operator
families, or even more general (b, l)-regularized resolvent
operator families (see defnitions of these operator families
at [27] and reference therein). And because the study of the
observability of equations now focuses on parabolic equa-
tions [7], using the resolvent family [28–30] to analyze the
equations may provide a way to study nonparabolic
equations.
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