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Chemical graph theory, a branch of computational and applied mathematics, covers a very wide range of topics. As a result, the
world of applied sciences heavily relies on graph theory.Te concept of partition dimension has signifcant importance in the feld
of chemical graph theory. Although certain graphs have bounded partition dimensions, a graph’s partition dimension may be
constant. In this study, we look at two alternative chemical structures made of an octagonal grid: nanosheets and nanotubes. We
determined the partition dimension of an octagonal grid-generated nanosheet to be 3, and the partition dimension of a nanotube
to be limited from 4.

1. Introduction

Diferent scientifc disciplines use a variety of methodologies
to study chemical structures. To explore various chemical
networks and structures, mathematical chemistry in par-
ticular ofers a variety of tools and methodologies. Tere are
numerous approaches to studying chemical networks in
depth and tackling their applications using suggested tools.
In addition to chemistry itself, mathematical chemistry also
removes barriers in several other disciplines. One such area
is physical chemistry, where the study of chemicals is
conducted using methods from mathematical chemistry,
particularly in the areas of thermodynamics and compound
energy [1–3]. Graph theory ofers distinct and practical
subjects and variations for the study of chemical structures
and their topologies in mathematical chemistry. Several
publications on the subject of this study are provided in
[4–8].

Chemical graph theory is a reliable tool that provides
several methods for characterizing the structural properties
of molecules, crystals, polymers, and clusters. A vertex in
chemical graph theory can be a group of atoms, an orbital, an

electron, a molecule, an intermediate, or an atom, among
many other things, depending on the context, model, and
subject of the implication. An intermolecular bond or any
other force, such as the Keesom forces, may be seen as an
edge connecting two atoms [9–12].

Tree graph theory professionals suggested the concept
of analyzing a graph using a distance vector [13, 14]. Various
titles were assigned to this notion depending on the feld,
including resolving set, metric basis, or fnding set. In this
notion, a subset of vertices is selected so that the other
vertices in the overall structure, network, or graph are all
arranged in a unique manner. Te selected vertices were
arranged into sets that were referred to as the locating set
[15, 16] in the context of computer-related issues, the re-
solving set [17] in the context of chemical-related topics, and
the metric basis [18, 19] in the context of mathematical
studies of pure theoretical graphs.

Various titles for the concept of metric dimension have
been used. Te idea of metric dimension as locating sets was
frst suggested in [13, 20]. Later, we proposed the concept
using the term metric dimension rather than locating sets
[14]. Te concept of metric dimension was defned as
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resolving sets [14]. See for additional information on the
revolving set, metric basis, and metric dimension emerged
[21–23]. Partition dimension, as described in [24], is the
generalized form of metric dimension. Te partition di-
mension of a linked graph is based on the distances between
vertices and sets containing vertices, whereas the metric
dimension is based on the distances between vertices. It has
been demonstrated that fguring out a graph’s metric di-
mension is an NP-hard issue [24]. Finding a graph’s par-
tition dimension is similarly an NP-hard task because it is
a generalization of determining the metric dimension. Since
the partition dimension is a generalization of the metric
dimension, the concepts of metric and partition dimension
are closely related. We calculate the distance between
a vertex and a set rather than between two vertices [25, 26].

Taking into consideration the peculiarities of the par-
tition dimension, it is reasonable to query about the
methodology behind the description of the graphs. Te
question of whether a family of a network’s partition di-
mension is constant, fnite, or unbounded is one that re-
searchers are continually attempting to answer. As
a consequence of this, much progress has been made in the
investigation of identifying the division dimension of
a graph, and several results have been found. Such as this
idea is presented concerning the book graph [27], the op-
eration of the comb product’s produced graph is described in
[28], generalized partition dimensions are investigated in
[29], the partition dimension of a generalized class of graphs
is examined in [30], the families of circulant graphs, mul-
tipartite graphs, and chemical graphs of fullerene are ex-
plored together with their partition dimension in [31], and
convex polytopes’ graphs for their partition dimension can
be found in [32]. See the references [33–38] for more
information.

Consider the graph denoted by H, characterized by the
juxtaposition of its vertex and edge sets, namely, α(H) and
◆(H), respectively. Let the set P, comprising proper ele-
ments selected from α(H), be designated as the s-elements’
proper set. Now, let r(α◇,◇ | P) represent an s-tuple distance
identifcation, denoted by ζ(α◇,◇ | P1), ζ(α◇,◇ | P2),
. . . , ζ(α◇,◇ | Ps), elucidating the partition resolving set of the
principal node within the structural framework of H. Tis
principal node set is precisely designated as P under the
condition that all principal nodes contained therein possess
distinct identifers. Te partition dimension (pd) of H is
denoted by the subsets in that set of α(H) that have the
lowest possible count. Te shortest geodesics or path from

one vertex to another vertex is known as distance and
written as ζ.

Tere are many felds where resolving partition pa-
rameters are applied, including network verifcation and its
detection [39]. In their discussion of resolving partitions in
robot navigation, the well-known Djokovic–Winkler re-
lationship is discussed [39, 40], describing the resolving sets
taken into account as an application for the mastermind
game strategies. Additionally, [41–43] all make use of re-
solving sets. Moreover, [14, 21, 44] are references to further
examine the uses of this notion in networks. We computed
the partition dimension of the chemical structures in this
paper due to the numerous applications of partition di-
mension in chemical graph theory.

2. Partition Dimension of Nanosheet
Derived from Octagonal Grid

Te thickness of the 2D nanostructures is what makes them
so signifcant [45]. Tey are employed in nanotechnology,
nanomedicine, and gene transfer. Teir thicknesses range
from 1nm to 100nm. Because of their incredibly thin ar-
chitectures, nanosheets difer from their bulk counterparts.
Tey are best suited for the administration of various
medications along with therapeutic DNA and RNAs due to
the high surface-to-volume ratio.

Te following details the construction of the nanosheet
NSη,ζ obtained using the octagonal grid. Red is used in
Figure 1 to indicate edges with degree 2 and 3 end points.
When an edge has an endpoint of degree 2, it is coloured
blue, and when it has an endpoint of degree 3, it is coloured
black. A two-degree vertex is represented by the colour
green, and a three-degree vertex is represented by the colour
black. Te focal point of the resolving set is the double-
coloured vertices. Due to degree 2, the points β1,1, β1,4η are
coloured green and red, respectively, and are components of
the resolving set.

Let η and ζ stand for the horizontal and vertical numbers of
C8 and η, ζ ≥ 1, η, ζ ∈ Z+, respectively. Te number of nodes
with a degree of 3 is η, ζ ≥ 1, η, ζ ∈ Z+, while the number of
vertices with a degree of two is 4(η + ζ). Te order of NSη,ζ is
|O(NSη,ζ)| � 8ηζ , and the size of NSη,ζ is |E(NSη,ζ)| �

12ηζ − 4(η + ζ).
In labelling, two parameters η, ζ and two indexes ◇,◇

are employed. ◇ changes 4 times with η, and ◇ varies twice
with v. Moreover, the labelling described above in vertex and
edge sets is shown in Figure 1, and it is used in our major
fndings. Te nanosheet’s vertex and edge sets are as follows:

V(NS) � α◇,◇, β◇,◇;◇ � 1, 2, . . . ζ, ◇ � 1, 2, . . . 4η ,

E(NS) � α◇,◇α◇,◇+1, β◇,◇β◇,◇+1;◇ � 1, 2, . . . ζ, ◇ � 1, 2, . . . 4η ,

∪ α◇,◇β◇,◇;◇ � 1, 2, . . . ζ, ◇ � 0, 1(mod4) ,

∪ α◇,◇β◇,◇;◇ � 1, 2, . . . ζ, ◇ � 2, 3(mod4) .

(1)
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Theorem 1. Let NSη,ζ octagonal grid-based nanosheet with

η, ζ ≥ 1. Ten, pd(NSη,ζ) � 3.

Proof. Assume the partition resolving set P � P1, P2, P3 ,
where P1 � α1,1 , P2 � α1,4η , P3 � V(NSη,ζ)\ α1,1, α1,4η .
To prove that pd(NSη,ζ)≤ 3, we will show that P is
a resolving set.

Te representations for η, ζ � 1 are present in Table 1.
Te unique representation of each vertex in NSη,ζ for

η, ζ > 1 is provided as follows.
Let ζ(α◇,◇, P1) � ◆1, ζ(α◇,◇, P2) � ◆2, ζ(α◇,◇, P3) �

◆3 and r(α◇,◇ ∣ P) � (◆1,◆2,◆3).

◆1 �

◇ +◇ − 2, when◇ � 1&◇ � 1, 2, . . . , 4η,

4◇ − ◇ − 3, when◇ � 1, 2, . . . ζ,◇ � 1, 2,

4(◇ − 1) +◇ − 3 − z1, when◇ ≥ 3& 3≤◇< 4(◇ − 2) + 2,

2◇ +◇ − 3, when◇ ≥ 2&◇≥ 4◇ − 6,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(2)

where z1 � 2◇ − 2/4.

β2,4η

β2,4η−1

β2,1 β2,2 β2,3

α2,1 α2,4η

αϖ,4η

αϖ,4η−1

αϖ,1

αϖ,2

αϖ,3

βϖ,1
βϖ,4

βϖ,4η

βϖ,4η−1

αϖ,4

α1,1 α1,4 α1,5

α1,6 α1,7

α1,8 α1,4η

α1,4η−1

β1,1

β1,2 β1,3

β1,4

β1,5
β1,6

β1,7

β1,8
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Figure 1: In general, the nanosheet that was formed from the octagonal grid.
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◆2 �

2◇ − ◇ + 4η − 2, when 1≤◇≤ η + 1, 1≤◇≤ 4η − 3x + 6,

2(◇ − 1) − ◇ + 4η, when◇ � 1, 1≤◇≤ 4η,

4◇ − ◇ + 2η − 4, when◇> η + 1, ◇ � 1, 2, 3,

4◇ − 4, when◇≥ 2, ◇ � 4η, η≥ 2,

2◇ − ◇ + 4η + z1, when 3≤◇≤ η + 1, 4(η − ◇ + 2)≤◇≤ 4η − 5, η≥ 2,

2◇ − ◇ + 4η − 2 + z2, when◇≥ η + 1,◇> 4, η≥ 2,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3)

where z1 � 2◇ − 4(η − ◇) + 8/4, z2 � 2◇ − 4/4.

◆3 �
1, when α1,1 & α1,4η,

0, when othervise.
 (4)

Let ζ(β◇,y, P1) � ◆1′, ζ(β◇,y, P2) � ◆2′, ζ(β◇,y, P3) � ◆3′
and r(β◇,◇ ∣ P) � (◆1′,◆2′,◆3′)

◆1′ �

◇ +◇ − 1, when◇ � 1&◇ � 1, 2, 3, . . . 4η,

4(◇ − 1) +◇, when◇ � 1, 2, 3, . . . ζ,◇ � 1, 2, 3,

4(◇ − 1) +◇ − z1, when◇≥ 2& 3<◇≤ 4(◇ − 1),

2◇ +◇ − 2, when◇≥ 2&◇≥ 4(◇ − 1),

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(5)

where z1 � 2◇/4.

◆2′ �

2◇ − ◇ + 4η − 1, when◇ � 1,◇ � 4η,

2◇ − ◇ + 4η − 1, when◇≤ η, 1≤◇≤ 4η − 3,

4(η +◇) − ◇ − 3, when 3≤◇≤ η, 4η − 4≤◇≤ 4η, η≥ 2,

4(◇ − 1) +◇ + 2η − 1, when◇> η,◇ � 1, 2& η � 1, 2, 3,

2◇ − ◇ + 4η + 1 + z1, when 3≤◇≤ η, 4(η − ◇)≤◇≤ 4η − 3, η≥ 3,

4◇ − ◇ + 2η − 1 + z2, when◇> η + 1,◇≥ 3, η≥ 2,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(6)

where z1 � 2◇ − 4(η − ◇) + 6/4, z2 � 2◇ − 2/4.

◆3′ �
1, when α1,1 & α1,4η,

0, when othervise.
 (7)

One can note from Figure 2 when ζ(ε1, α1,1) � ζ(ε2, α1,1),
this would imply that ζ(ε2, α1,4η)≠ ζ(ε1, α1,4η) also ζ(ε2,
α1,4η) � ζ(ε1, α1,4η) and this would imply that ζ(ε1, α1,1)
≠ ζ(ε2, α1,1).

We discuss all cases where ζ(ε1, α1,1)≠ ζ(ε2, α1,1), while
ζ(ε1, α1,4η) � ζ(ε2, α1,4η) or (ε1, α1,1) � ζ(ε2, α1,1), ζ(ε1, α1,4η)

≠ ζ(ε2, α1,4η).
From all above cases, there is no possibility in which two

representations are same. Tis shows that pd(G)≤ 3. On
contrary, supposed that partition dimension is 2 that is not
possible because pd(G) � 2 if and if only G � Pn [24].

Hence, it is proved that pd(NSη,ζ) � 3. □

3. Partition Dimension of Nanotube
Derived from Octagonal Grid

Tere are numerous applications for carbon nanotubes,
including thin-flm electronics, water fltration, automotive
components, molecular electronics, catalyst supports, en-
ergy storage, boat hull construction, device modelling,
biomedical applications, air and water fltration systems,
sporting goods, actuators, coatings, and electromagnetic
shields. Tere are over a thousand metric tonnes of carbon
nanotubes that are manufactured every year. Over the course
of the last three decades, carbon nanotubes have been in-
strumental in a variety of sectors, including microelectronic

4 Journal of Mathematics



circuits, microscopy, quantum mechanics probes, and the
creation of devices that have an efect on biological systems.

Te single-wall andmultiwall forms of carbon nanotubes
are indistinguishable from one another in terms of their
expression. A wide range of qualities are shown by these
nanotubes, including but not limited to the following:
electrical conductivity, electron emission, aspect ratio,
thermal conductivity, expansion characteristics, and
strength and elasticity. Especially noteworthy is the fact that
researchers have conducted a substantial study on nanotubes
within the context of fuid fow dynamics. In addition, other
researchers have investigated the topological indices of these
particular nanotubes, especially that which pertains to graph
theory. Quantifying the partition dimensions of this specifc
nanotube is the goal that we have set for ourselves in this
section [45].

But frst, we will build the octagonal-grid-derived
nanotube, which we’ll refer to as ONSη,ζ .

Te edges in Figure 3 that have end points of degrees 2
and 3 are highlighted in red. When an edge has an endpoint

of degree 2, it is coloured blue, and when it has an endpoint
of degree 3, it is coloured black. Vertices with degrees of 2
and 3 are coloured green and black, respectively. Employing
a dual-colour scheme for the specifed vertex, a dynamic
rotating set is established.Tis confguration is infuenced by
the vertex’s degree, set at 3, and the pivotal nature of the
resolving set. Consequently, α1,1 is distinctly marked with
both black and red hues. Additionally, owing to a degree of 2
and the resolving set point, α1,3 and βζ,2 are attributed with
green and red colours, respectively.

Te order of ONTη,ζ is given by |O(ONTη,ζ)| � 8ηζ,
while the size of NSη,ζ is defned as |E(ONTη,ζ)| � 12ηζ + 2η.

For the purpose of labelling, two parameters, η and ζ,
along with two indices, are employed. Te variable ζ con-
tributes to the variation of parameter I twice, while the
variable h leads to four successive shifts in index J. Te
vertex and edge sets of the nanotube are delineated as
follows:

V(ONT) � α◇,◇, β◇,◇;◇ � 1, 2, 3 . . . ζ, ◇ � 1, 2, 3 . . . 4η ,

E(ONT) � α◇,◇α◇,◇+1, β◇,◇β◇,◇+1;◇ � 1, 2, 3 . . . ζ, ◇ � 1, 2, 3 . . . 4η ,

∪ α◇,◇β◇,◇;◇ � 1, 2, 3 . . . ζ, ◇ � 0, 1(mod 4) ,

∪ α◇,◇β◇,◇;◇ � 1, 2, 3 . . . ζ, ◇ � 2, 3(mod 4) ,

∪ α◇, 1α◇, 4ηβ◇, 1β◇, 4η;◇ � 1, 2, 3 . . . ζ, η≥ 1 .

(8)

Theorem  . Let ONTη,ζ be a nanotube with η, ζ ≥ 1. Ten,
2≤pd(ONTη,ζ)≤ 4.

Table 1: Representation of vertices of Figure 2.

Vertex α1,1 α1,2 α1,3 α1,4 β1,1 β1,2 β1,3 β1,4
r(. ∣ P) (0, 3, 1) (1, 2, 0) (2, 1, 0) (3, 0, 1) (1, 4, 0) (2, 3, 0) (3, 2, 0) (4, 1, 0)

α1,1

α1,2 α1,3

α1,4

β1,1

β1,4

β1,3β1,2

Figure 2: Vertices representation for the nanosheet.
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Proof. Assume the partition resolving set P � P1, P2, P3,

P4} where P1 � α1,1 , P2 � α1,3 , P3 � βζ,2 , P4 � V(ON
Tη,ζ)\ α1,1, α1,3, βζ,2 . To prove that pd(ONSη,ζ)≤ 4 we will
show that P is a resolving set.Te proof of this theorem splits
into two cases. Case one for η, ζ � 1 and case two for η, ζ ≥ 1.

Te distinctive representations of all vertices within
ONTη,ζ are enumerated as follows, considering the values of
η, ζ ≥ 1.

Te representation of P � P1, P2, P3, P4  for η � 1 � ζ is
shown in Table 2.

Te unique representation of each vertex in NSη,ζ for
η, ζ > 1 is provided as follows.

Let ζ(α◇,◇, P1) � ◆1, ζ(α◇,◇, P2) � ◆2, ζ(α◇,◇, P3) �

◆3, ζ(α◇,◇, P4) � ◆3, and r(α◇,◇ ∣ P) � (◆1,◆2,◆3,◆4).

◆1 �

4(◇ − 1) − ◇ + 1, when◇≥ 1,◇ � 1,

2◇ +◇ − 3, when◇ � 1, 2& 2≤◇≤ 2η + 1,

4(◇ − 2) +◇ + 1, when◇ � 3& 2≤◇≤ 5, η≥ 2,

4(◇ − 2) +◇ − 1, when◇ � 3& 5≤◇≤ 2η + 1, η≥ 2,

2(◇ + 5) − ◇ + 13, when◇ � 1, 2& 2≤◇≤ 2η + 1,

4(◇ + 2) − ◇ + 13, when◇ � 1, 2, 3, 4 . . . ζ,◇ � 4η,

4(◇ − 2) +◇ + 1 − z1, when◇≥ 4, 1≤◇≤ 2η + 1, η≥ 3,

4◇ − ◇ + 3ζ − 2 + z2, when◇≥ 4, 2η + 2≤◇≤ 4η, η≥ 3(odd),

4◇ − ◇ + 3η − 1 + z3, when◇≥ 4& 2η + 4≤◇≤ 4η, η≥ 2(even),

4◇ − ◇ + 4η − 9, when◇ � 4, 5, . . . , ζ, 2η + 2≤◇≤ 4η + 3, η≥ 2(even),

4◇ − ◇ + 4η − 1, when◇ � 4, 5, . . . , ζ, 2η + 2≤◇≤ 2η + 3, η � 2, 4,

4◇ − ◇ + 4η − 7, when◇ � 3& 4η − 4≤◇≤ 4η − 5, η≥ 4,

4◇ − ◇ + 4η − 5, when◇ � 3,&4η − 4≤◇< ≤ 4η − 1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(9)

α1,1

α1,2

α1,4 α1, 

α1,6 α1,7

α1,8
α1,4h

α1,4h-1

β1,1

b1,2

β1,3

β1,4 β1, 

β1,6 β1,7

β1,8

β1,4h

β1,4h-1

β2,4h
β2,4h-1

β2,1

β2,2

β2,3

α2,1

α2,2 α2,3

α2,4h

α2,4h-1

αv,4h

αv,4h-1

αv,1

αv,2

αv,3

βv,1

βv,2

βv,4
βv,4h

βv,4h-1

αv,4

α1,1

α2,1

αv,1

βv,1

β2,1

β1,1

α1,3

βv,3

Figure 3: Generalize nanotube derived by the octagonal grid.
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where z1 � 2◇ − 2/4, z2 � 2◇ − 2η + 2/4, z3 � 2◇ −

2η + 2/4.

◆2 �

4◇ − ◇ − 1, when◇ � 1, 2, . . . , ζ,◇ � 1, 2 , 3,

4◇ +◇ − 7, when◇ � 1, 2, . . . , ζ,◇ � 4, 5,

2◇ +◇ − 5, when◇ � 1, 2& 6≤◇≤ 2η + 3,

2◇ − ◇ + 4η + 1, when◇ � 1, 2& 2η + 4≤◇≤ 4η − 1, η≥ 3,

4◇ − ◇ + 4η − 5, when◇ � 1, 2, . . . , ζ,◇ � 4η, η≥ 2,

4◇ +◇ − 9 − z1, when◇≥ 4& 6≤◇≤ 2η + 3, η≥ 2,

4◇ − ◇ + 4η − 3 − z2, when◇≥ 3, 2η + 4≤◇≤ 4η − 1, η≥ 2,

◇ +◇, when◇ � 3& 6≤◇≤ 9, η≥ 3,

◇ +◇ − 2, when◇ � 3& 10≤◇≤ 4η + 3, η≥ 4,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(10)

where z1 � 2◇ − 6/4, z2 � 24η − ◇ − 1/4

◆3 �

4η − 4◇ +◇ + 1, when 1≤◇≤ η &◇ � 1, 2 , 3,

4η − 4◇ +◇ − 1 − z1, when 1≤◇≥ η − 2, 4≤◇≤ 2η + 2,

η≥ 3, η − ◇ +◇ + 1, when◇ � η&3≤◇≤ 2η + 2,

6η − 2◇ − ◇ + 3, when η − 1≤◇≤ η, 2η + 3≤◇≤ 4η − 3, η≥ 3,

8η − 4◇ − ◇ + 3, when 1≤◇≤ η, 4η − 3≤◇≤ 4η, η≥ 2,

η − ◇ +◇ + 2, when 1≤◇≤ η − 1, 4≤◇≤ 7, η≥ 3,

η − ◇ +◇ + 2, when 1≤◇≤ η − 1,◇ � 4,5 ifη � 2,

η − ◇ +◇, when 1≤◇≤ η − 1, 8≤◇≤ 2η + 2, η≥ 3,

8η − 4◇ − ◇ + 1 − z2 + z, when 1≤◇≤ η − 2, 2η + 3≤◇≤ 4η − 3, η≥ 3,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(11)

where z1 � 2◇ − 4/4, z2 � 24η − ◇ − 3/4, z �

1, if ◇≥ 3η,◇ � η − 2
0, otherwise

◆4 �
1, when α1,1, α1,3, βv,2,

0, when othervise.
 (12)

Let ζ(β◇,◇, P1) � ◆1′, ζ(β◇,◇, P2) � ◆2′, ζ(β◇,◇, P3) �

◆3′, ζ(β◇,◇, P4) � ◆4′, and r(β◇,◇ | P) � (◆1′,◆2′,◆3′,◆4′).

◆1′ �

2◇ +◇ − 2, when◇ � 1, 2& 4≤◇≤ 2η + 1,

2◇ − ◇ + 4η, when◇ � 1, 2& 2η + 2≤◇≤ 4η − 3,

4◇ +◇ − 4, when◇≥ 1,◇ � 1, 2, . . . 4η,

4◇ − ◇ + 4η − 2, when◇≥ 1, 4η − 3≤◇≤ 4η,

◇ +◇ + 3, when◇ � 3& 4≤◇≤ 7,

◇ +◇ + 1, when◇ � 3& 8≤◇≤ 2η + 1, η≥ 4,

4◇ +◇ − 6 − z1, when◇≥ 4& 4≤◇≤ 2η + 1, η≥ 2,

4◇ − ◇ + 3η + z2, when◇≥ 3, 2η + 1≤◇≤ 4η − 3η≥ 2(even),

4◇ − ◇ + 3η + 1 + z3, when◇≥ 3, 2η + 4≤◇≤ 4η − 3, η≥ 5(odd),

4◇ − ◇ + 3η − 1, when◇ � 4, 5, . . . , η, 2η + 1≤◇≤ 4η + 3, η≥ 6(even),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(13)
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where z1 � 2◇ − 4/4, z2 � 2◇ − 2η + 2/4, z3 � 2◇ −

2η + 2/4.

◆2′ �

4◇ − ◇, when◇ � 1, 2, . . . , η,◇ � 1,

4◇ − ◇ + 2, when◇ � 1, 2, . . . , η,◇ � 2, 3&,

4◇ +◇ − 6 − z1, when◇≥ 3, 4≤◇≤ 2η,

4◇ +◇ − 6, when◇ � 1, 2& 4≤◇≤ 7,

2◇ +◇ − 4, when◇ � 1, 2& 8≤◇≤ 2η + 3, η≥ 3,

2◇ +◇ − 4, when◇ � 1, 2.&◇ � 8if η � 2,

2◇ − ◇ + 4η, when◇ � 1, 2& 2η + 3<◇≤ , η≥ 3,

4◇ − ◇ + 4η, when◇ � 1, 2.&4η − 2≤◇≤ 4η, η≥ 3,

4◇ − ◇ + 4η − 2 − z2, when◇≥ 3, 2η + 4≤◇≤ 4η − 3, η≥ 4.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(14)

where z1 � 2◇ − 4/4, z2 � 24η − ◇ − 3/4.

◆3′ �

4η − 4◇ +◇, when 1≤◇≤ η,◇ � 1,

4η − 4◇ +◇ − 2 − z1, when 1≤◇≤ η − 1& 2≤◇≤ 2η + 2, η≥ 2,

η − ◇ +◇ − 2, when◇ � η., 3≤◇≤ 2η + 2, η≥ 2,

6η − 2◇ − ◇ + 2, when η − 1≤◇≤ η, 2η + 2≤◇≤ 4η − 1, η≥ 2,

6η − 2◇ − +4, when◇ � η − 2.&4η − 4≤◇≤ 4η − 1, η≥ 3,

6η − 2◇ − ◇ + 2, when◇ � η − 2.&2η + 2≤◇≤ 4η − 5, η≥ 4,

8η − 4◇ − ◇ + 2, when 1≤◇≤ ζ,◇ � 4η.& η≥ 2,

8η − 4◇ − ◇ − z2z, when 1≤◇≤ ζ − 3, 2η + 2≤◇≤ 4η − 1, η≥ 4,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(15)

Table 2: Unique representation of vertices of Figure 4.

Vertex α1,1 α1,2 α1,3 α1,4 β1,1 β1,2 β1,3 β1,4
r(. ∣ P) (0, 2, 2, 1) (1, 1, 3, 0) (2, 0, 4, 1) (1, 1, 3, 0) (1, 3, 1, 0) (2, 4, 0, 1) (3, 3, 1, 0) (2, 2, 2, 0)

α1,1

α1,2
α1,3

α1,4

β1,1 β1,4

β1,3β1,2

α1,1

β1,1

Figure 4: Vertices representation for the nanotube.
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where z1 � 2◇ − 2/4, z2 � 24η − ◇ − 1/4, z �

1, if ◇≥ 3η,◇ � η − 2,

0, otherwise.

◆4′ �
1, when α1,1, α1,3, βζ,2,

0, when othervise.
 (16)

According to the concept that was presented earlier in
the form of representation, it is important to note that the
unique representation is provided by each vertex and that it
meets the resolution set criterion. Tis demonstrates that
2≤pd(ONTη,ζ)≤ 4.

Tis shows that pd(ONTη,ζ)≤ 4. On contrary, we sup-
pose that the partition dimension is 2 that is not possible
because pd(G) � 2 if and if only G � Pn [24].

Hence, it is proved that 2≤pd(ONTη,ζ)≤ 4. □

4. Conclusion

Te topic of computational and applied mathematics known
as chemical graph theory is exceedingly broad. Because of
this, graph theory is widely utilized in the feld of applied
sciences. Another relevant subject in chemical graph theory
is the partition dimension. A graph’s partition dimension
may be constant, although certain graphs have bounded
partition dimensions. In this paper, we consider two dif-
ferent chemical structures’ nanosheet and a nanotube de-
rived from an octagonal grid. We computed the partition
dimension of the nanosheet derived from the octagonal grid
as a constant that is 3 and the partition dimension of the
nanotube derived from the octagonal grid is bounded from
4. For the future research direction, one can consider the
exact partition dimension of the given graphs and also one
can study the newly developed version of the chosen graphs.

Data Availability

No data were used to support this study.

Conflicts of Interest

Te authors declare that they have no conficts of interest.

Acknowledgments

Te authors are grateful to the Deanship of Scientifc Re-
search of Jazan University for supporting this work fnan-
cially under Waed grant no.W44-91.

References

[1] B. Yang, M. Rafullah, H. M. A. Siddiqui, and S. Ahmad, “On
resolvability parameters of some wheel-related graphs,”
Journal of Chemistry, vol. 2019, Article ID 9259032, 9 pages,
2019.

[2] S. Imran, M. K. Siddiqui, and M. Hussain, “Computing the
upper bounds for the metric dimension of cellulose network,”
Applied Mathematics E-Notes, vol. 19, pp. 585–605, 2019.

[3] M. Azeem and M. F. Nadeem, “Metric-based resolvability of
polycyclic aromatic hydrocarbons,” Te European Physical
Journal Plus, vol. 136, no. 4, pp. 395–414, 2021.

[4] M. K. Siddiqui and M. Imran, “Computing the metric and
partition dimension of h-naphtalenic and vc5c7 nanotubes,”
Journal of Optoelectronics and Advanced Materials, vol. 17,
pp. 790–794, 2015.

[5] S. Manzoor, M. K. Siddiqui, and S. Ahmad, “On entropy
measures of polycyclic hydroxychloroquine used for novel
coronavirus (covid-19) treatment,” Polycyclic Aromatic
Compounds, vol. 42, no. 6, pp. 2947–2969, 2022.

[6] M. K. Siddiqui, M. Naeem, N. A. Rahman, and M. Imran,
“Computing topological indices of certain networks,” Journal
of Optoelectronics and Advanced Materials, vol. 18, pp. 9-10,
2016.

[7] J.-B. Liu, M. F. Nadeem, H. M. A. Siddiqui, and W. Nazir,
“Computing metric dimension of certain families of toeplitz
graphs,” IEEE Access, vol. 7, pp. 126734–126741, 2019.

[8] H. Raza, S. Hayat, and X. F. Pan, “On the fault-tolerant metric
dimension of convex polytopes,” Applied Mathematics and
Computation, vol. 339, no. 15, pp. 172–185, 2018.

[9] N. Trinajstic, Chemical GraphTeory, CRC Press, Boca Raton,
FL, USA, 2018.

[10] H. Raza, S. Hayat, M. Imran, and X. F. Pan, “Fault-tolerant
resolvability and extremal structures of graphs,”Mathematics,
vol. 7, no. 1, p. 78, 2019.

[11] H. Raza, S. Hayat, and X. F. Pan, “On the fault-tolerant metric
dimension of certain interconnection networks,” Journal of
Applied Mathematics and Computing, vol. 60, no. 1-2,
pp. 517–535, 2019.

[12] M. Azeem, M. Imran, and M. F. Nadeem, “Sharp bounds on
partition dimension of hexagonal Möbius ladder,” Journal of
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