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Suppose that A is a Banach algebra and F(A) is its enveloping dual Banach algebra, we show that F(A) is approximately
contractible (approximately amenable) if A has the same property. Also, we study the relation between the pseudoamenability of
F(A) and the pseudoamenability of the second dual A∗∗ and we also characterize approximate bifatness and approximate
biprojectivity of F(A) associated with approximate bifatness and approximate biprojectivity of the second dual A∗∗.

1. Introduction and Preliminaries

Approximate contractibility and approximate amenability
for Banach algebras were defned and studied by Ghahra-
mani and Loy by [1]. Tey proved that a Banach algebra A is
approximately amenable, if the second dual A∗∗ is ap-
proximately amenable by [1], Teorem 2.3. Tey denoted
that the measure algebra M(G) is approximately amenable if
and only if G is discrete and amenable by [1], Teorem 3.1,
and also they showed that the group algebra L1(G) is ap-
proximately amenable if and only if G is amenable by [1],
Teorem 3.2. As shown in [1], Teorem 3.3, L1(G)∗∗ is
approximately amenable if and only if G is fnite.

Te basic properties of biprojectivity and bifatness are
investigated in [2]. In 1999, Zhang introduced the notion of
approximate biprojectivity for Banach algebras [3]. It is well
known that a Banach algebra A is pseudocontractible if and
only if A is approximately biprojective and has a central
approximate identity ([4], Proposition 3.8).

Te concept of approximate bifatness for Banach al-
gebra was introduced by Samei et al. [5]. Tey showed that
a Banach algebra A is pseudoamenable whenever it is ap-
proximately bifat and has an approximate identity. Also,
they studied approximate bifatness for various classes of
Segal algebras in both group algebra, L1(G), and the Fourier
algebra, A(G), of a locally compact group G [5].

Te module cohomological properties for Banach al-
gebras, namely, module (approximate) biprojectivity and
module (approximate) bifatness for Banach algebras which
are generalizations of the classical cases, were introduced in
[6, 7]. In these articles, the authors found necessary and
sufcient conditions for l1(S) to be approximately module
biprojective and module bifat, where S is an inverse
semigroup.

For a Banach algebra A and a Banach A-bimodule X, the
collection of all elements x ∈ X is such that themodule maps
A⟶ X; a↦ a · x and a↦x · a are weakly compact
denoted by WAPA(X) and the A-bimodule WAPA(X∗) is
denoted by FA(X)∗ [5]. Hence, we can write
FA(X) � (FA(X)∗)

∗ � (WAPA(X∗))∗. Now, ifX � A, then
we write F(A) � (WAP(A∗))∗ and it is well known that
F(A) is a universal canonical dual Banach algebra [5]. F(A)

is called the enveloping dual Banach algebra associated with
A by [8].

Choi et al. defned the concept of WAP-virtual diagonal
for a Banach algebra A [8]. Tey showed that A has a WAP-
virtual diagonal if and only if the dual Banach algebra F(A)

is Connes-amenable. Tey also proved that for the group
algebra L1(G), the existence of a virtual diagonal is equiv-
alent to the existence of a WAP-virtual diagonal [8].

Motivated by the results mentioned above, in this paper,
we study the approximate amenability, approximate
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contractibility, and pseudoamenability of the enveloping
dual Banach algebra. We also investigate the cohomological
properties of the enveloping dual Banach algebra F(L1(G))

and F(M(G)), where G is a locally compact group.We study
the relation between the pseudoamenability of F(A) and the
pseudoamenability of the second dual A∗∗ and we also
characterize approximate bifatness and approximate
biprojectivity of F(A) associated with the approximate
bifatness and approximate biprojectivity of the second dual
A∗∗. By giving examples of some Banach algebras, we in-
vestigate the cohomological properties of these Banach al-
gebras with respect to their enveloping dual Banach algebras.

For a Banach algebra A and a Banach A-bimodule X,
a derivation D: A⟶ X is a linear map such that

D(ab) � D(a) · b + a · D(b), (1)

for every a, b ∈ A. A bounded derivation D: A⟶ X is
called approximately inner, if there exists a net (xα)⊆X such
that D(a) � lim a · xα − xα · a for all a ∈ A.

Let A be a Banach algebra. We remind that the projective
tensor product A⊗p A is a Banach A-bimodule via the
following actions:

c · (a⊗ b) � ca⊗ b, (a⊗ b) · c � a⊗ bc, (2)

for every a, b, c ∈ A. Also, the map, πA: A⊗p A⟶ A de-
notes the product morphism which is defned by
πA(a⊗ b) � ab.

A Banach algebra A is approximately contractible (ap-
proximately amenable), if for all A-bimodule X, every
bounded derivation D: A⟶ X (D: A⟶ X∗) is ap-
proximately inner by [1]. We remind that A is pseudoa-
menable, if there is a net (uα)⊆A⊗p A, such that
lim
α

(auα − uαa) � 0 and limαπA(uα)a � a for all a ∈ A [4]

and also A is called approximately bifat, if there exists a net
ρα: (A⊗p A)∗ ⟶ A∗ of bounded A-bimodule morphisms
such that W∗OT limα ρα ∘ π∗A � idA∗ , where W∗OT is the
weak∗ operator topology on B(A∗). We recall that the weak∗
operator topology on B(A∗) is a locally convex topology
determined by the seminorms pa,f: a ∈ A, f ∈ A∗􏽮 􏽯, where
pa,f(T) � |〈a, T(f)〉| [5]. A Banach algebra A is called
approximately biprojective if there is a net of bounded
A-bimodule morphism ρα: A⟶ A⊗p A such that
lim πA ∘ ρα(a) � a for all a ∈ A (for more details see [3]).

2. Cohomological Properties of the Dual
Banach Algebras

Troughout this section, F(A) is the enveloping dual Banach
algebra associated with A and we will study the co-
homological properties of F(A) such as approximate
amenability and pseudoamenability.

Theorem 1. Let A be a Banach algebra. If A is approximately
contractible, then F(A) is approximately contractible.

Proof. Suppose that D: F(A)⟶ X is a bounded deriva-
tion, where X is a Banach F(A)-bimodule, then we can
extend D: F(A)⟶ X to a bounded derivation
D∗∗: F(A)∗∗ ⟶ X∗∗ by [9], Lemma 2.2. Suppose that
kF(A) is the canonical inclusion of F(A)⟶ F(A)∗∗ and kA

is the canonical inclusion of A⟶ A∗∗ and qA is the adjoint
of the inclusion map WAP(A∗)⟶ A∗, then, we defne
a map D: A⟶ X∗∗ by D � D∗∗ ∘ kF(A) ∘ qA ∘ kA. However,
kF(A) ∘ qA ∘ kA are the homomorphism algebra, so D is
a derivation. Since A is approximately contractible, there
exists a net (xα)⊆X∗∗ such that

D(a) � D
∗∗

(a) � lim
α

a · xα − xα · a( 􏼁, (3)

for all a ∈ A. Since the module action on X∗∗ is weak∗-
continuous by [9], Lemma 1.1 and by Goldstein’s theorem,
we can imply that

D
∗∗

(h) � wk
∗

− lim
α

h · xα − xα · h( 􏼁, (4)

for h ∈ A∗∗. In particular, we have

D(t) � D
∗∗

(t) � wk
∗

− lim
α

t · xα − xα · t( 􏼁, (5)

for t ∈ F(A). By Goldstein’s theorem, there exists a bounded
net (yα

β)⊆X such that wk∗ − lim
β

yα
β � xα and so

D(t) � wk
∗

− lim
α
 wk
∗

− lim
β

t · y
α
β − y

α
β · t􏼐 􏼑, (6)

for t ∈ F(A).
Suppose that E � J × ΛJ is a directed set with product

ordering which is defned by

(α, β)≤ E α′, β′( 􏼁⇔ α≤ Jα′, β≤ ΛJβ′, (7)

where α, α′ ∈ J, β, β′ ∈ ΛJ and ΛJ are the set of all maps
J⟶Λ. We recall that β≤ ΛJβ′ means that β(j)≤ Λβ′(j) for
all j ∈ J.

We set c � (α, β) ∈ E and ζc � yα
β . By iterated limit

theorem ([10], page 69) and by the equation (6), we see that

D(t) � wk
∗

− lim
c

t · ζc − ζc · t􏼐 􏼑, (8)

for t ∈ F(A). On the other hand, (t · ζc − ζc · t) ∈ X and
D(t) ∈ X. So,

D(t) � wk − lim
c

t · ζc − ζc · t􏼐 􏼑, (9)

for t ∈ F(A). Tis follows that D is weakly approximately
inner and equivalently, approximately inner. Tus, F(A) is
contractible. □

Corollary 2. Let A be an approximately amenable Banach
algebra. Ten, F(A) is approximately amenable.

Proof. We know that a Banach algebra A is approximately
amenable if and only if A is approximately contractible ([4],
Teorem 3.1). Since A is approximately amenable, A is
approximately contractible. So, by the previous theorem,
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F(A) is approximately contractible, and hence F(A) is
approximately amenable.

Te following example shows us that the converse of
Corollary 2 is not true. □

Example 1. Let G be an amenable locally compact group
which is not discrete ([11], Chapter 2). If the converse of
Corollary 2 is true, then, we have that L1(G) is approxi-
mately amenable if and only if F(L1(G)) is approximately
amenable. Since L1(G) has a bounded approximate identity,
F(L1(G)) is unital ([12], Lemma 2.9) and so the authors in
[4], Proposition 3.2 show that L1(G) is pseudoamenable if
and only if F(L1(G)) is pseudoamenable. However, the
measure algebra M(G) is the quotient of F(L1(G)) [13].
Hence, M(G) is pseudoamenable ([4], Proposition 2.2). On
the other hand, the authors in [4], Proposition 4.2 show that
M(G) is pseudoamenable if and only if G is amenable and
discrete. So, we can imply that G must be amenable and
discrete which is a contradiction. Terefore, the converse of
Corollary 2 is not true.

Theorem 3. Let A be a Banach algebra with a bounded
approximate identity and let A be approximately amenable.
Ten, F(A) is pseudoamenable.

Proof. Since A has a bounded approximate identity, F(A) is
unital by ([12], Lemma 2.9). However, a unital Banach al-
gebra is pseudoamenable if and only if it is approximately
amenable ([4], Proposition 3.2). Since A is approximately
amenable, Corollary 2 follows that F(A) is approximately
amenable. However, F(A) is a unital Banach algebra. So,
F(A) is pseudoamenable. □

Theorem 4. Let A be a unital Banach algebra and let A be
pseudoamenable. Ten, F(A) is pseudoamenable.

Proof. Since A has an identity, F(A) is unital ([12],
Lemma 2.9). However, a unital Banach algebra is pseu-
doamenable if and only if it is approximately amenable
([4], Proposition 3.2). Since A is unital and pseudoa-
menable, A is approximately amenable. So, by Corollary 2,
we imply that F(A) is approximately amenable. Hence,
F(A) is pseudoamenable. □

Theorem 5. Let A be a Banach algebra and let the second
dualA∗∗ be pseudoamenable.Ten, F(A) is pseudoamenable.

Proof. Let qA: A∗∗ ⟶ F(A) be the adjoint of the inclusion
map WAP(A∗)⟶ A∗, which is a continuous epi-
morphism. Ten, by hypothesis, F(A) is pseudoamenable
([4], proposition 2.2).

In the following example, we show that there is a Banach
algebra A such that F(A) is pseudoamenable but A∗∗ is not
pseudoamenable. □

Example 2. Note that, the second dual L1(G)∗∗ is pseu-
doamenable if and only if G is fnite ([4], proposition 4.2).
Let G be an infnite amenable locally compact group. Ten,
Teorem 3 follows that F(L1(G)) is pseud amenable, but
L1(G)∗∗ is not pseudoamenable.

3. Algebras Related to Locally Compact Groups

In this section, we study pseudoamenability and approxi-
mate amenability of the enveloping dual Banach algebra
F(L1(G)) and F(M(G)), where G is a locally
compact group.

Proposition  . Let G be a locally compact group. Ten,
F(L1(G)) is pseudoamenable if G is amenable.

Proof. Let G be amenable. Ten, L1(G) is approximately
amenable. By Corollary 2, we imply that F(L1(G)) is ap-
proximately amenable. Since L1(G) has a bounded ap-
proximate identity, F(L1(G)) is unial ([12], Lemma 2.9). So,
F(L1(G)) is pseudoamenable if and only if F(L1(G)) is
approximately amenable ([4], Proposition 3.2). Hence,
F(L1(G)) is pseudoamenable. □

Proposition 7. Let G be a locally compact group. Ten,
F(M(G)) is pseudoamenable if G is discrete and amenable.

Proof. Let G be amenable and discrete. Ten, M(G) is
approximately amenable by ([1], Teorem 3.1). By Corollary
2, F(M(G)) is approximately amenable. Since M(G) has an
identity, F(M(G)) is unital ([12], Lemma 2.9). Hence,
F(M(G)) is pseudoamenable if and only if F(M(G)) is
approximately amenable ([4], Proposition 3.2). Hence,
F(M(G)) is pseudoamenable. □

Proposition 8. Let G be a locally compact group. Ten,
F(L1(G)) is approximately amenable if G is amenable.

Proof. Let G be an amenable group. Ten, L1(G) is ap-
proximately amenable by ([1], Teorem 3.2). So, by Cor-
ollary 2, one can show that F(L1(G)) is approximately
amenable. □

Proposition 9. Let G be a locally compact group. Ten,
F(M(G)) is approximately amenable if G is amenable and
discrete.

Proof. We know that M(G) is approximately amenable if
and only if G is amenable and discrete ([1], Teorem 3.1).
Hence, Corollary 2 follows that F(M(G)) is approximately
amenable. □

Corollary 10. Let G be a locally compact group. Ten,
F(L1(G)∗∗) is approximately amenable if G is fnite.
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Proof. We know that L1(G)∗∗ is approximately amenable if
and only if G is fnite ([1], Teorem 3.3). So, we can imply
that F(L1(G)∗∗) is approximately amenable by Corollary 2.

In the following example, we show that there is a Banach
algebra A such that A is pseudoamenable but A∗∗ is not
pseudoamenable. □

Example 3. Let G be an infnite amenable locally compact
group. Ten, L1(G) is pseudoamenable by [4], Proposition
4.1. However, since G is infnite, L1(G)∗∗ is not pseudoa-
menable ([4], Proposition 4.2).

4. Approximate Biflat and
Approximate Biprojective

Now, we study approximate bifatness and approximate
biprojectivity of the enveloping dual Banach algebra F(A),
associated with the second dual A∗∗.

Remark 11. By [14], we suppose that A is a Banach algebra
and X is a subspace of A∗.Ten, X is called a A-left invariant
if X · a⊆X for every a ∈ A. We suppose that X⊆A∗ is a left
invariant subspace. If X∗ · X⊆X, then the subspace X is
called A-left introverted. Te notation A-will often be
omitted to simplify.

Remark 12. We consider the left introverted subspaces X

and Y of A∗ such that Y⊆X and defne the map
H: X∗ ⟶ Y∗ by H(g) � f|Y, for every g ∈ X∗, which is
a continuous homomorphism from X∗ onto Y∗ and its
kernel is weak∗-closed ideal Y⊥ of X∗ by [14], Lemma 1.1,
where Y⊥ � x∗ ∈ X∗; <x∗, y> � 0  for  every y ∈ Y􏼈 􏼉. In-
deed, we have the hollowing direct sum decomposition
X∗ � Y∗ ⊕Y⊥.

Since WAP(A∗) is an introverted subspace of A∗ [14],
there is a direct sum decomposition A∗∗ � (WAP(A∗))∗ ⊕
WAP(A∗)⊥, where (WAP(A∗))∗ � F(A) is the enveloping
dual Banach algebra associated to A by [15], Remark 3.4.

Te following result is given in [5], Proposition 2.8.

Proposition 13. Let Ai: i ∈ I􏼈 􏼉 be a family of (quantized)
Banach algebras.

(i) If each Ai is (operator) approximately bifat, then for
1≤p<∞, ⊕ p

i∈IAi is (operator) approximately bifat.
(ii) If A1 and A2 are (operators) approximately bifat

quantized Banach algebras and A � A1 ⊕A2 has an
operator space structure such that the projection
maps A⟶ Ai are completely bounded, then A is
also an operator approximately bifat.

(iii) If each Ai is (operator) bifat and supi BFAi
<∞

(respectively, supi BF
op

Ai
<∞), then ⊕ 1i∈IAi is (op-

erator) bifat.

Proposition 14. Let A be a Banach algebra. If F(A) and
WAP(A∗)⊥ are approximately bifat, then
A∗∗ � F(A)⊕WAP(A∗)⊥ is approximately bifat.

Proof. It is clear from the previous proposition. □

Theorem 15. Let A∗∗ � F(A)⊕WAP(A∗)⊥ be approxi-
mately bifat. Ten, F(A) is approximately bifat.

Proof. Since A∗∗ is approximately bifat, there is a net
λα: ((A∗∗)⊗p (A∗∗))∗ ⟶ (A∗∗)∗ of bounded
A∗∗-bimodule morphisms such that W∗OT − limα  λα ∘
π∗A∗∗ � id(A∗∗)∗ .

Let PF(A): F(A)⊕WAP(A∗)⊥ ⟶ F(A) be the pro-
jection map and let σF(A): F(A)⟶ F(A)⊕WAP(A∗)⊥ be
defned by σF(A)(a) � (a, 0) for every a ∈ F(A). Now, we
defne 􏽥λα: (F(A)⊗p F(A))∗ ⟶ F(A)∗ by 􏽥λα � σ∗F(A) ∘ λα ∘
(PF(A) ⊗PF(A))

∗, which is a net of bounded F(A)-bimodule
morphisms such that W∗OT − limα  􏽥λα ∘ π∗F(A) � idF(A)∗ . To
see this, suppose that ψ ∈ F(A)∗ and b ∈ F(A), then, we
have (PF(A) ⊗PF(A))

∗ ∘ π∗F(A)(ψ) � π∗A∗∗ ∘P
∗
F(A)(ψ). Since

W∗OT − limα λα ∘ π∗A∗∗ � id(A∗∗)∗ , we have

lim
α

􏽥λα ∘ π
∗
F(A)(ψ), b􏽄 􏽅 � lim

α
σ∗F(A) ∘ λα ∘ PF(A) ⊗PF(A)􏼐 􏼑

∗
∘ π∗F(A)(ψ), b􏽄 􏽅

� lim
α

σ∗F(A) ∘ λα ∘ π
∗
A∗∗ ∘P

∗
F(A)(ψ), b􏽄 􏽅

� lim
α

σ∗F(A) ∘P
∗
F(A)(ψ), b􏽄 􏽅 � 〈ψ, b〉.

(10)
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Hence, F(A) is approximately bifat. □

Theorem 1 . If F(A) and WAP(A∗)⊥ are approximately
biprojective, then A∗∗ � F(A)⊕WAP(A∗)⊥ is approxi-
mately biprojective.

Proof. Since F(A) and WAP(A∗)⊥ are approximately
biprojective, there exists a net of bounded F(A)-bimodule
morphisms ρλ: F(A)⟶ F(A)⊗p F(A) and a net of
bounded WAP(A∗)⊥-bimodule morphisms μc: WAP

(A∗)⊥⟶WAP(A∗)⊥ ⊗p WAP(A∗)⊥ such that limλπF(A) ∘
ρλ � idF(A) and limcπWAP(A∗)⊥ ∘ μc � idWAP(A∗)⊥ , respectively.

Suppose that PF(A): A∗∗ � F(A)⊕WAP(A∗)⊥

⟶ F(A) and PWAP(A∗)⊥ : A∗∗ � F(A)⊕WAP(A∗)⊥ ⟶

WAP(A∗)⊥ are the projection map and
σF(A): F(A)⟶ A∗∗ � F(A)⊕WAP(A∗)⊥ and σWAP(A∗)⊥ :

WAP(A∗)⊥ ⟶ A∗∗ � F(A)⊕WAP(A∗)⊥ are defned by
σF(A)(a) � (a, 0) and σWAP(A∗)⊥(b) � (0, b), respectively, for
every a ∈ F(A) and b ∈WAP(A∗)⊥, then, we have

σF(A) ∘ πF(A) � πA∗∗ ∘ σF(A) ⊗ σF(A)􏼐 􏼑,

σWAP A∗( )⊥ ∘ πWAP A∗( )⊥ � πA∗∗ ∘ σWAP A∗( )⊥ ⊗ σWAP A∗( )⊥􏼐 􏼑.

(11)

So,

lim
c

lim
λ

πA∗∗ ∘ σF(A) ⊗ σF(A)􏼐 􏼑 ∘ ρλ ∘PF(A) + σWAP A∗( )⊥ ⊗ σWAP A∗( )⊥􏼐 􏼑 ∘ μc ∘PWAP A∗( )⊥􏼐 􏼑

� lim
c

lim
λ

πA∗∗ ∘ σF(A) ⊗ σF(A)􏼐 􏼑 ∘ ρλ ∘PF(A)

+ lim
c

lim
λ

πA∗∗ ∘ σWAP A∗( )⊥ ⊗ σWAP A∗( )⊥􏼐 􏼑 ∘ μc ∘PWAP A∗( )⊥

� lim
c

lim
λ

σF(A) ∘ πF(A) ∘ ρλ ∘PF(A) + lim
c

lim
λ

σWAP A∗( )⊥ ∘ πWAP A∗( )⊥ ∘ μc ∘PWAP A∗( )⊥

� σF(A) ∘ idF(A) ∘PF(A) + σWAP A∗( )⊥ ∘ idWAP A∗( )⊥ ∘PWAP A∗( )⊥

� idA∗∗ .

(12)

Let Z � Λ × ΓΛ be directed by the product ordering. For
every β � (λ, (cλ′)λ′∈Λ) ∈ Z, we defne ψβ � ((σF(A) ⊗
σF(A))∘ ρλ ∘PF(A) +(σWAP(A∗)⊥ ⊗ σWAP(A∗)⊥) ∘ μcλ

∘PWAP(A∗)⊥).
By iterated limit theorem ([10], P. 69), equation (12), implies
the following:

lim
β

πA∗∗ ∘ψβ � idA∗∗ (13)

and certainly ψβ: A∗∗ ⟶ A∗∗ ⊗p A∗∗ is a net of bounded
A∗∗-bimodule morphisms. Hence, A∗∗ is approximately
biprojective. □

Theorem 17. Let A∗∗ � F(A)⊕WAP(A∗)⊥ be approxi-
mately biprojective, then, F(A) is approximately biprojective.

Proof. Since A∗∗ is approximately biprojective, there is a net
of bounded A∗∗-bimodule morphism λα: A∗∗

⟶ A∗∗ ⊗p A∗∗ such that lim
α

πA∗∗ ∘ λα � idA∗∗ . We defne
μα: F(A)⟶ F(A)⊗p F(A) by μα � (PF(A) ⊗PF(A)) ∘ λα ∘
σF(A), where σA and PA are defned by Teorem 15.
Certainly, μα is a net of bounded F(A)-bimodule mor-
phisms. Now, we prove that lim

α
πF(A) ∘ μα � idF(A).

We have πF(A) ∘ (PF(A) ⊗PF(A)) � PF(A) ∘ πA∗∗ . Hence,

lim
α

πF(A) ∘ μα � lim
α

πF(A) ∘ PF(A) ⊗PF(A)􏼐 􏼑 ∘ λα ∘ σF(A)

� lim
α

PF(A) ∘ πA∗∗ ∘ λα ∘ σF(A)

� PF(A) ∘ idA∗∗ ∘ σF(A)

� idF(A).

(14)

So, F(A) is approximately biprojective. □

Example 4. Let G be a commutative compact group. Ten,
L2(G) with convolution multiplication is an approximately
biprojective Banach algebra by [3] and so it is approximately
bifat. Since L2(G) is a Hilbert space, we have
L2(G)∗∗ � L2(G). Hence, Teorems 15 and 17 imply that
F(L2(G)) is approximately bifat and approximately
biprojective, respectively.
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