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Tis article introduces a new probability model based on refected parameter called the refected Pareto (RP) distribution.Te key
properties of the RP model are investigated. A simulation study of the RP model is conducted to evaluate the performances of its
estimators. A real-life application is considered to examine the performance of proposed model. Te diferent criteria are
discussed numerically as well as graphically to show the fexibility of the RP model. Te exponential weighted moving average
control charts based on the maximum likelihood and modifed maximum likelihood estimators for the shape parameter of the RP
distribution are obtained. Detailed simulation results of proposed charts are performed to examine and analyze the performance
of these charts with three in-control average run length values and two sample sizes. Finally, the application of the proposed
control charts is shown by considering a real-life data set.

1. Introduction

Te applications of Pareto distribution have been discussed in
various applied felds such as actuarial science, medical science,
and engineering. Te estimation methods for the parmeters of
the Pareto distribution is discussed in [1].Te estimation of the
shape and scale parameters of the Pareto model are obtained
through the maximum likelihood (ML) and moment esti-
mations approaches [1]. Te comparison between estimation
methods of the Pareto parameters is addressed in [2]. Te
classical and Bayesian estimation for Pareto distribution is
reported in [3]. Some basic methods for estimation of pa-
rameters of the generalized Pareto distribution are addressed by
[4]. Evaluation of various generalized Pareto probability dis-
tributions for food frequency analysis are discussed in [5].

Several techniques have been used in the literature to
propose new forms of the Pareto model by adding additional

parameters for generating new efcient and fexible Pareto
models. For example, the Pareto alpha-power Pareto (APP)
[6], inverse Pareto (IP) [7], new Kumaraswamy-Pareto
(NKP) [8], beta-Pareto (BP) [9], exponentiated Weibull-
Pareto [10], among others.

In this paper, a new Pareto distribution is introduced
called the refected Pareto (RP) distribution. Te application
of RP model is reported on the access of electricity data. We
addressed its properties. Te proposed model is compared
with some competing models based on goodness-of-ft
measures including the Kolmogorov–Smirnov (KS) test, its
p value, Akaike information criteria (AIC), Bayesian in-
formation criteria (BIC), consistent Akaike information
criteria (CAIC), and Hannan-Quinn information criteria
(HQIC) to verify its superiority. Te estimation of the shape
parameter of the RP distribution is conducted using the ML
and modifed ML (MML) estimators. Some new modifed
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control charts based on the RP model such as exponential
weighted moving average (EWMA) control charts. Visual
presentation of the EWMA control charts is presented in
both usual and 3D plots.

Te new EWMA control chart for monitoring multi-
nomial proportions is suggested in [11]. Te Shewhart and
EWMA control charts for monitoring the shape parameter
of refected power function distribution are studied in [12].
Te are proposed. Te comparison of modifed Shewhart,
EWMA, and HEWMA control charts using Monte Carlo
simulation and real-life applications are presented [13].

Tis article is arranged in the following sections. In
Section 2, the identifcation of the proposed model is in-
troduced. In Section 3, properties of the RP model are
discussed. Estimation of the RP parameters and a simulation
study are presented in Section 4. Section 5 provides a real-life
data application. Te newly proposed control charts are
explored in Section 6. Te conclusion of this study is dis-
cussed in Section 7.

2. Model Identification

Te probability density function (PDF) of the Pareto dis-
tribution has the form

f(y) �
αβα

y
α+1, y≥ β or β≤y≤∞, (1)

where α and are shape and scale parameters respectively.
Te cumulative distribution function (CDF) of Pareto

distribution reduces to

F(y) � 1 −
β
y

 

α

. (2)

If θ is a refected parameter, then by setting y � θ − x, in
the PDF of Pareto distribution (1), we obtain the PDF of the
RP distribution as follows:

f(x) �
αβα

(θ − x)
α+1, − ∞< x< θ − β, α, β, θ≥ 0. (3)

Te CDF of the RP distribution reduces to

F(x) �
βα

(θ − x)
α. (4)

Te survival function (SF) and hazard rate function
(HRF) of the RP distribution are given by

S(x) � 1 −
βα

(θ − x)
α,

h(x) �
αβα(θ − x)

α

(θ − x)
α+1

(θ − x)
α

− βα 
.

(5)

2.1. Asymptotic Behavior of RP Distribution. In this section,
some asymptotic behavior of the RP distribution relevant to
PDF, CDF, SF, and HRF are given by

(i) limx⟶0f(x) �∞; if θ � 0, α, β, ≥ 1

(ii) limx⟶∞f(x) � 0; ∀ α, β, θ
(iii) limx⟶0F(x) �∞; if θ � 0, α, β, ≥ 1
(iv) limx⟶∞F(x) � 0; ∀ α, β, θ
(v) limx⟶0S(x) � 1; if β � θ
(vi) limx⟶∞S(x) � 0; if α � 0
(vii) limx⟶0h(x) � 0; if α � 0,∀ β, θ
(viii) limx⟶∞h(x) � 0; if α � 0,∀ β, θ

2.2. Special Cases. In this section, some special cases of the
RP distribution are addressed.

(1) By setting x � θ − y in the PDF of the RP distribu-
tion, we get the Pareto distribution.

f(y) �
αβα

yα+1. (6)

(2) Setting x � θ − y in the RP density and multiply it by
y2α/β2α, gives PDF of the power function
distribution.

f(y) �
αy

α− 1

βα
. (7)

Figure 1 provides the probability distribution loop plot.
In Figure 2, the plots show that the RP distribution is re-
fected image of the Pareto (P) distribution. Figure 3 gives
the plots for the CDF and HRF of the RP distribution. Te
HRF of the RP model is always increasing.

3. Properties

Tis section presents some properties of RP distribution.

3.1. Moments. Te r th moments of the RP distribution
follows as

E x
r

(  � αβαθ− α (− 1)
r θrΓ(1 + r)Γ(− r + θ)

Γ(1 + α)


+
(θ − β)

2+r

(1 + r)θ


∞

j�0

(1 + r)j(1 + α)j

(2 + r)j

(1 − β/θ)
j

j!
⎤⎥⎥⎦.

(8)

3.2.Quantile Function. Te quantile function (QF) of the RP
distribution has the following form:

xp � θ −
β

(p)
1/α, 0<p< 1. (9)

Note that xp can be used to generate random variates
from the RP model.

3.3. Order Statistics. Let X1, X2, . . . , Xn denotes a random
sample of size n and X(1), X(2), . . . , X(n) denote the order
statistics. Te PDF of j th order statistic, X(j), is obtained as
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fX(j)
(x) �

n!

(j − 1)!(n − j)!
[f(x)][F(x)]

j− 1
[1 − F(x)]

n− j
.

(10)

Ten, the PDF of j th order statistic X(j) of the RP
distribution follows as

fX(j)
(x) �

n!

(j − 1)!(n − j)!

αβα

(θ − x)
α+1 

βα

(θ − x)α
 

j− 1

1 −
βα

(θ − x)α
 

n− j

. (11)

RP distribution

By replacing y by
θ – x in PDF of
P distribution

P distribution

By replacing x by
θ – y in PDF of
RP distribution

Figure 1: Probability distribution loop plot.
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Te PDF of largest order statistic X(n) of the RP dis-
tribution is obtained as follows:

fX(n)
(x) � n

αβα

(θ − x)
α+1 

βα

(θ − x)α
 

n− 1

. (12)

Te PDF of smallest order statistics X(1) of the RP
distribution reduces to

fX(1)
(x) � n

αβα

(θ − x)
α+1  1 −

βα

(θ − x)α
 

n− 1

. (13)

4. Estimation of Parameters

Te parameters of the RP distribution are estimated by two
estimation techniques called the maximum likelihood (ML)
and modifed ML (MML) estimation.

4.1. Maximum Likelihood. Te ML estimator (MLE) of the
RP parameter follows as

L(α, β) � 

n

i�1

αβα

θ − xi( 
α+1. (14)

Te MLE of the parameter α takes the form

αMLE �
n


n
i�1ln θ − xi(  − nlnβ . (15)

As when took partial derivative w.r.t to β, it does not
exist so likelihood function is maximize by taking

βMLE � xn where xn is maximum value in the data.

4.2. Modifed Maximum Likelihood. Te MML estimators
(MMLEs) of the RP parameters are given by

βMMLE � (θ − x)(0.5)
1/α

,

αMMLE �
n


n
i�1ln θ − xi(  − nln(θ − x)(0.5)

1/α.
(16)

4.3. Simulation Study. Te three combinations of the RP
distribution parameters used to compare the two estimation
methods, numerically based on simulation results. Te re-
sults are reported for the three samples sizes n �100, 200,
and 400. Te R software is used to obtain the simulation
results based on the following steps.

(1) Random values are obtained from the RP distribu-
tion for three sample sizes and two methods of
estimation.

(2) Step 1 is repeatedN� 5000 times.Te RP parameters
are estimated for each parameter combination and
each sample, using two estimators including the
MML, MMLE.

(3) Te average values (Avg) and mean square errors
(MSE) of estimates are obtained for each parameter
combination with each sample.

Te results are reported in Table 1. Tese results show
that both estimation methods achieved the consistency
property, i.e., the MSE decrease as n increases, for all pa-
rameter combinations.

5. Real Life Application

In this section, the RP model is ftted using a real-life data set
to show its fexibility in modeling real data as compared to
other models.
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Figure 3: Plots for the CDF and HRF of the RP distribution.
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Te real data set is available online through the link: .Te
data refer to “Access to electricity (% of population).”
“Access to electricity is the percentage of population with
access to electricity. Electrifcation data are collected from
industry, national surveys and international sources.” Te
data is available for many countries in that fle. Te data of
country “Tunisia” is selected for this study and the data
values are: 86.8, 88.7, 90.4, 92, 93.2, 94.2, 94.80000305,
97.30000305, 97.80000305, 98.40000153, 99, 99.30000305,
99.40000153, 99.40000153, 99.40000153, 99.5, 99.5, 99.5, 99.5,
99.69999695, 99.80000305, 99.90000153, 100, 100,
99.80000305, 100, 100.

Te proposed model is compared with new Weibull-
Pareto (NWP) [14], exponentiated Pareto (EP) [15] and
tapered Pareto (TP) [16] distributions. Tese models are
compared with each other on the bases of some goodness-
of-ft measures including the Kolmogorov–Smirnov (KS)
test, its p-value (KS p-value), Akaike information criteria
(AIC), Hannan-Quinn information criteria (HQIC),
Bayesian information criteria (BIC), and consistent AIC
(CAIC).

Table 2 reports the MLEs of the parameters of the ftted
distributions along with the above-mentioned measures for
the analyzed real data. Te numerical values in this table
illustrate that the proposed RP model provides a better ft as
compared to competing models.

Te box, Q-Q, TTTand KDE plots are given in Figure 4.
Te estimated PDF, estimated CDF, estimated HRF and PP
plots of the RP model are given in Figure 5. Te 3D plots of
the estimated PDF and HRF for the data are reported in
Figure 6. Te visual comparison based on the AIC, BIC,
CAIC, and HQIC measures are displayed in Figure 7. Tese
plots supports the results in Table 2.

6. EWMA Control Chart

6.1. EWMA Control Chart Based on the MLE. Te EWMA
statistics at time t is given by

Z(t) � λX(t) +(1 − λ)Z(t− 1), (17)

where λ is a weighting constant, whose values lies between
0 and 1 (0 < λ≤ 1).

Now, the MLE of shape parameter αMLE(t) of the RP
distribution used instead of using variable X(t), i.e
X(t) � αMLE(t).

Hence, Z(t) � λαMLE(t) + (1 − λ)Z(t− 1), where Z(t) is the
EWMA statistic on current time and Z(t− 1) is EWMA sta-
tistic on previous time.

Te EWMA control limits based on the MLE are ob-
tained as

UCLZ(t) � α + L

���������������������������

Var αMLE( 
λ

2 − λ
  1 − (1 − λ)

2t
 



,

CLZ(t) � α,

LCLZ(t) � α − L

���������������������������

Var αMLE( 
λ

2 − λ
  1 − (1 − λ)

2t
 



.

(18)

Te remaining term after ignoring the term
[1 − (1 − λ)2t] are given by

UCLZ(t) � α + L

����������������

Var αMLE( 
λ

2 − λ
 



,

CLZ(t) � α,

LCLZ(t) � α − L

����������������

Var αMLE( 
λ

2 − λ
 



.

(19)

Table 1: Te Avg and MSE of diferent estimators of the RP parameters with θ �  .

Methods n
Parameters Avg of estimates MSE

α β Avg(α) Avg(β) MSE(α) MSE(β)

MLE

100
1.9 1.8

0.3610 0.1905 2.3688 2.5905
200 0.3640 0.1952 2.3592 2.5754
400 0.3657 0.1976 2.3542 2.5676
100

1.8 1.9
0.2764 0.0892 2.3215 3.2792

200 0.2814 0.0948 2.3063 3.2588
400 0.2835 0.0974 2.2996 3.2494
100

2.1 1.7
0.4467 0.2917 2.7334 1.9832

200 0.4497 0.2960 2.7236 1.9713
400 0.4510 0.2979 2.7193 1.9658

MMLE

100
1.9 1.8

2.2368 1.8085 0.1489 0.0092
200 2.2219 1.8037 0.1215 0.0047
400 2.2152 1.8012 0.1080 0.0023
100

1.8 1.9
2.0242 1.9091 0.0769 0.0120

200 2.0136 1.9036 0.0591 0.0055
400 2.0118 1.9030 0.0517 0.0029
100

2.1 1.7
2.6075 1.7046 0.3084 0.0066

200 2.5934 1.7036 0.2699 0.0034
400 2.5830 1.7010 0.2464 0.0016
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Te random values are generated with n � 500 from the
RP distribution, with parameters (α, β, θ, λ) � (1.5, 1.8,

3, 0.1) as displayed in Figure 8. Te obtained αMLE are
computed from the random values. Repeated this step for
30 times and computed Var (αMLE). Te control limits of
the EWMA control charts based on αMLE are computed
from the above obtained results and plotted Z(t) against
the sample (subgroup).

6.2. EWMA Control Chart Based on MMLE. Te EWMA
statistic at time t is given by

Z(t) � λX(t) +(1 − λ)Z(t− 1), (20)

where λ is a weighting constant, whose values lies between
0 and 1 (0 < λ≤ 1).

Here, the MMLE of shape parameter αMMLE(t) of the RP
distribution used instead of using variable X(t), i.e
X(t) � αMMLE(t).

Z(t) � λαMMLE(t) + (1 − λ)Z(t− 1), where Z(t) is the
EWMA statistics on current time and Z(t− 1) is the EWMA
statistics on previous time.

Te EWMA control limits based on MMLE are obtained
as follows:

UCLZ(t) � α + L

�����������������������������

Var αMMLE( 
λ

2 − λ
  1 − (1 − λ)

2t
 



,

CLZ(t) � α,

LCLZ(t) � α − L

�����������������������������

Var αMMLE( 
λ

2 − λ
  1 − (1 − λ)

2t
 ,



(21)

Table 2: Te MLEs, KS, p value, AIC, BIC, CAIC and HQIC for real data.

Model MLEs KS KS p

value AIC BIC CAIC HQIC − log(θ)

RP 1.9509 104.0001 3.5999 0.187 0.301 118.459 122.347 119.502 119.615 56.229
NWP 43.3155 108.1888 51.1459 0.3053 0.013 141.228 145.115 142.271 142.384 67.614
EP 23.5278 104.8216 53.8774 0.313 0.010 142.508 146.396 143.552 143.664 68.254
TP 2.65937 84.2161 20.1693 0.384 0.0006 200.177 204.064 201.221 201.333 97.0885
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Te remaining term after ignoring the term
[1 − (1 − λ)2t] are given as follows:

UCLZ(t) � α + L

�����������������

Var αMMLE( 
λ

2 − λ
 



,

CLZ(t) � α,

LCLZ(t) � α − L

�����������������

Var αMMLE( 
λ

2 − λ
 



.

(22)

Te random values are generated with n � 500 from the
RP distribution with parameter values (α, β, θ, λ) �

(3, 1, 2, 0.25) as given in Figure 9. Ten, αMMLE is obtained
by computing the random values. Repeated this step for
30 times and computed Var (αMMLE). Te control limits of
the EWMA control charts based on αMMLE are computed
from the above obtained results and plotted Z(t) against the
sample (subgroup).

6.3. Simultaneous Study. For checking the performance of
the EWMA control chart based on α∗, a Monte Carlo
simulation study is performed, where ∗ �MLE or MMLE.
Simulations are performed based on the following steps.

(1) Te random values are generated with n � 200 from
the RP distribution, with parameters (α, β, θ, λ) �

(1.6, 2.3, 4.7, 0.92).

(2) Te estimate α∗ are computed from the random
values that obtained in step 1.

(3) For both types of estimators, the above two steps are
repeated 2000 times and Var (α∗) is computed.

(4) Te control limits of the EWMA control charts based
on α∗ are computed from the results obtained in 3rd
step.

(5) Te ARL0 � 370 is fxed for in-control state of the
process and found that value of L at which ARL0 �

370 for in-control state for both type of estimator.
Same procedure is repeated for ARL0 � 300 and
ARL0 � 200.

(6) Te diferent shifts i.e., shifts � 0, 3.05, 3.1, 3.2,

3.4, 3.6, 3.8, 4, 4.2, 4.4, 4.6 are used and the ARL1 is
computed against the values of shifts for both types
of estimators.

(7) Te values of SDRL, P10 P30 P50 P70 P90 are also
reported.

(8) All above steps are repeated for n � 100.

In Tables 3–8 and Figures 10–15, the comparison of the
ARL( αMLE) and ARL( αMMLE) are obtained. By using the ARL0 �

370, 300, 200 it is noted that the ARL( αMMLE) provided
a smaller ARL1 as compared to the ARL( αMLE) for all shifts.
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Table 4: Comparison of the ARL(αMLE) and ARL(αMMLE) when ARL0(αMLE) � ARL0(αMMLE) � 370 by using the EWMA control charts with
n � 100.

Methods Shifts ARL SDRL P10 P30 P50 P70 P90

MLE

0 370.21 361.8405 39 128 254 454.6 889.3
2.5 43.8005 42.78773 5 16 31 54 101
3.1 38.4295 38.852 4 14 27 46 87
3.2 28.168 28.55776 3 10 20 33 63
3.4 17.0265 16.57206 2 6 12 21 38
3.6 10.8385 10.2469 1 4 8 13 24
3.8 7.2875 6.797569 1 3 5 9 16
4 5.1535 4.82012 1 2 4 6 11
4.2 3.908 3.418242 1 2 3 5 8
4.4 2.968 2.531834 1 1 2 3 6
4.6 2.4395 1.964248 1 1 2 3 5

Z (t)

3.5

3.0

2.5

Z(t)
UCL

CL
LCL

samples
0 5 10 15 20 25 30

Figure 9: Te EWMA control chart based on MMLE.

Table 3: Comparison of the ARL(αMLE) and ARL(αMMLE) when ARL0(αMLE) � ARL0(αMMLE) � 370 by using the EWMA control charts with
n � 200.

Methods Shifts ARL SDRL P10 P30 P50 P70 P90

MLE

0 370.7605 345.6954 38 145 269.5 457 846.1
3.05 93.779 90.54939 10 35 66 114 214.1
3.1 80.6275 79.8897 8 28.7 55.5 99 192.1
3.2 57.957 56.3122 7 23 42 68 132
3.4 33.1595 31.81401 4 12 23 41 75
3.6 19.0685 18.47862 3 7 13 24 42
3.8 12.4265 11.68139 2 5 9 15 28
4 8.189 7.953924 1 3 6 10 18.1
4.2 5.7065 5.359545 1 2 4 7 13
4.4 4.2545 3.961133 1 2 3 5 9
4.6 3.184 2.736401 1 1 2 4 7

MMLE

0 370.666 359.6461 35 129 265.5 451.3 856.4
2.5 1.6835 1.10993 1 1 1 2 3
3.1 1.6525 1.086892 1 1 1 2 3
3.2 1.5835 0.951042 1 1 1 2 3
3.4 1.4025 0.75085 1 1 1 1 2
3.6 1.3025 0.645137 1 1 1 1 2
3.8 1.2205 0.546836 1 1 1 1 2
4 1.1365 0.391081 1 1 1 1 2
4.2 1.1085 0.350413 1 1 1 1 1
4.4 1.06 0.251857 1 1 1 1 1
4.6 1.0535 0.235936 1 1 1 1 1
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Table 6: Comparison of the ARL(αMLE) and ARL(αMMLE) when ARL0(αMLE) � ARL0(αMMLE) � 300 by using the EWMA control charts with
n � 100.

Methods Shifts ARL SDRL P10 P30 P50 P70 P90

MLE

0 300.193 301.5449 31 100 205 355.3 719.5
3.05 32.849 33.87167 4 12 23 38 76
3.1 28.986 28.88993 4 11 20 34 65
3.2 21.1835 20.59726 3 8 15 25 48
3.4 13.197 12.8232 2 5 9 15 30
3.6 8.569 8.194377 1 3 6 10 19
3.8 6.0215 5.70897 1 2 4 7 13
4 4.401 3.925163 1 2 3 5 10
4.2 3.459 2.938475 1 1 3 4 7
4.4 2.7215 2.25754 1 1 2 3 6
4.6 2.2955 1.788793 1 1 2 3 5

Table 4: Continued.

Methods Shifts ARL SDRL P10 P30 P50 P70 P90

MMLE

0 370.873 346.3069 39 135 270 450 857
2.5 1.775 1.17135 1 1 1 2 3
3.1 1.69 1.156533 1 1 1 2 3
3.2 1.616 1.076161 1 1 1 2 3
3.4 1.45 0.844901 1 1 1 2 2
3.6 1.3195 0.666815 1 1 1 1 2
3.8 1.2245 0.523676 1 1 1 1 2
4 1.1655 0.445207 1 1 1 1 2
4.2 1.1115 0.355149 1 1 1 1 1
4.4 1.082 0.307121 1 1 1 1 1
4.6 1.0555 0.249902 1 1 1 1 1

Table 5: Comparison of the ARL(αMLE) and ARL(αMMLE) when ARL0(αMLE) � ARL0(αMMLE) � 300 by using the EWMA control charts with
n � 200.

Methods Shifts ARL SDRL P10 P30 P50 P70 P90

MLE

0 300.671 292.3798 32 111 210.5 369.3 701.4
3.05 67.3875 66.62309 7 26 47 80 155.1
3.1 55.5485 54.39414 6 20 38 67 129
3.2 42.8245 42.40573 5 14 30 52 100
3.4 24.75 24.25493 3 9 17 29 57
3.6 15.174 15.34531 2 6 10 18 34
3.8 10.0275 9.719001 1 4 7 12 23
4 6.722 6.40728 1 3 5 8 15
4.2 5.0665 4.511125 1 2 4 6 11
4.4 3.542 3.130037 1 1 3 4 8
4.6 2.8505 2.235542 1 1 2 3 6

MMLE

0 300.4515 299.5582 30.9 107 206.5 360.3 693.1
2.5 1.629 1.03629 1 1 1 2 3
3.1 1.563 0.918397 1 1 1 2 3
3.2 1.483 0.888316 1 1 1 2 3
3.4 1.371 0.72844 1 1 1 1 2
3.6 1.253 0.582375 1 1 1 1 2
3.8 1.181 0.486166 1 1 1 1 2
4 1.1255 0.380555 1 1 1 1 2
4.2 1.0945 0.345875 1 1 1 1 1
4.4 1.0575 0.245406 1 1 1 1 1
4.6 1.038 0.206343 1 1 1 1 1
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Table 6: Continued.

Methods Shifts ARL SDRL P10 P30 P50 P70 P90

MMLE

0 300.2065 294.8528 32 106 204 362 714.3
2.5 1.6965 1.123841 1 1 1 2 3
3.1 1.6095 1.021534 1 1 1 2 3
3.2 1.525 0.926177 1 1 1 2 3
3.4 1.4185 0.79792 1 1 1 1 2
3.6 1.2705 0.592879 1 1 1 1 2
3.8 1.231 0.564622 1 1 1 1 2
4 1.1455 0.423579 1 1 1 1 2
4.2 1.106 0.334395 1 1 1 1 1
4.4 1.0635 0.251991 1 1 1 1 1
4.6 1.0455 0.220123 1 1 1 1 1

Table 7: Comparison of the ARL(αMLE) and ARL(αMMLE) when ARL0(αMLE) � ARL0(αMMLE) � 200 by using the EWMA control charts with
n � 200.

Methods Shifts ARL SDRL P10 P30 P50 P70 P90

MLE

0 200.367 198.1372 22.9 70 141 245 466.2
3.05 37.7055 37.42263 4 14 27 45 86
3.1 33.03 31.90847 4 12 23 40 72.1
3.2 26.1705 26.39126 3 9 18 31 61
3.4 15.2635 14.66512 2 6 11 18 35
3.6 10.083 9.665703 1 4 7 12 23
3.8 7.1215 7.006374 1 3 5 8 16
4 4.99 4.716887 1 2 4 6 11
4.2 3.6355 3.16317 1 1 3 4 8
4.4 2.9295 2.433617 1 1 2 3 6
4.6 2.3615 1.892249 1 1 2 3 5

MMLE

0 200.367 193.8012 21 72.7 139 246 462.1
2.5 1.5 0.917835 1 1 1 2 3
3.1 1.4725 0.866383 1 1 1 2 3
3.2 1.3995 0.772138 1 1 1 1 2
3.4 1.2715 0.599973 1 1 1 1 2
3.6 1.187 0.476597 1 1 1 1 2
3.8 1.143 0.40575 1 1 1 1 2
4 1.097 0.338598 1 1 1 1 1
4.2 1.0645 0.26339 1 1 1 1 1
4.4 1.0435 0.213613 1 1 1 1 1
4.6 1.028 0.17097 1 1 1 1 1

Table 8: Comparison of the ARL(αMLE) and ARL(αMMLE) when ARL0(αMLE) � ARL0(αMMLE) � 200 by using the EWMA control charts with
n � 100.

Methods Shifts ARL SDRL P10 P30 P50 P70 P90

MLE

0 200.16 203.1541 20 67 133 241 472.3
3.05 17.7035 17.11707 2 7 13 21 40
3.1 16.176 15.82451 2 6 11 19 38
3.2 12.7665 12.65631 2 5 9 15 30
3.4 8.414 8.080857 1 3 6 10 18
3.6 5.9335 5.406819 1 2 4 7 13
3.8 4.3285 3.860057 1 2 3 5 10
4 3.3525 2.903008 1 1 2 4 7
4.2 2.6075 2.216958 1 1 2 3 5
4.4 2.2005 1.661228 1 1 2 2 4
4.6 1.835 1.273808 1 1 1 2 4
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Table 8: Continued.

Methods Shifts ARL SDRL P10 P30 P50 P70 P90

MMLE

0 200.542 198.8219 21 73.7 139.5 240.3 450.5
2.5 1.5635 0.943617 1 1 1 2 3
3.1 1.5345 0.932333 1 1 1 2 3
3.2 1.451 0.833634 1 1 1 2 3
3.4 1.2935 0.665266 1 1 1 1 2
3.6 1.2135 0.532033 1 1 1 1 2
3.8 1.1645 0.459941 1 1 1 1 2
4 1.103 0.344166 1 1 1 1 1
4.2 1.0825 0.296205 1 1 1 1 1
4.4 1.0455 0.21553 1 1 1 1 1
4.6 1.039 0.208568 1 1 1 1 1
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Figure 10: Comparison of the ARL(αMLE) and ARL(αMMLE) when ARL0(αMLE) � ARL0(αMMLE) � 370 by using the EWMA control charts with
n � 200.
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Figure 11: Comparison of the ARL(αMLE) and ARL(αMMLE) when ARL0(αMLE) � ARL0(αMMLE) � 370 by using the EWMA control charts with
n � 100.
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6.4. Application of the EWMA Control Charts. A data set is
adopted from Tables 9 and 10 in [17] and the proposed
EWMA control charts by using the MLE and MMLE. Te
results are listed in Tables 9 and 10. Te results also are
displayed visually in Figures 15 and 16.

Te simulated results of EWMA control chart based on
theMLE from real data are reported in Table 9 and Figure 15.

Te simulated results of the EWMA control chart based
on the MMLE from real data are reported in Table 10 and
Figures 16 and 17.
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Figure 12: Comparison of the ARL(αMLE) and ARL(αMMLE) when ARL0(αMLE) � ARL0(αMMLE) � 300 by using the EWMA control charts with
n � 200.
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Figure 13: Comparison of the ARL(αMLE) and ARL(αMMLE) when ARL0(αMLE) � ARL0(αMMLE) � 300 by using the EWMA control charts with
n � 100.
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Figure 14: Comparison of the ARL(αMLE) and ARL(αMMLE) when ARL0(αMLE) � ARL0(αMMLE) � 200 by using the EWMA control charts with
n � 200.
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Figure 15: Comparison of the ARL(αMLE) and ARL(αMMLE) when ARL0(αMLE) � ARL0(αMMLE) � 200 by using the EWMA control charts with
n � 100.

Table 9: Simulated results of the EWMA control chart based on the MLE from real data.

Serial no Subgroups (i) xi

EWMA by using MLE
Z UCL LCL

1 1 9.45 1.907597 1.976067 1.823933
2 2 7.99 1.91049 2.007038 1.792962
3 3 9.29 1.917361 2.030443 1.769557
4 4 11.66 1.939393 2.049876 1.750124
5 5 12.16 1.967641 2.066739 1.733261
6 6 10.18 1.977915 2.081755 1.718245
7 7 8.04 1.980231 2.095355 1.704645
8 8 11.46 1.999566 2.107823 1.692177
9 9 9.2 2.005212 2.119356 1.680644
10 10 10.34 2.015984 2.130099 1.669901
11 11 9.03 2.020861 2.140163 1.659837
12 12 11.47 2.039888 2.149632 1.650368
13 13 10.51 2.05131 2.158578 1.641422
14 14 9.4 2.057196 2.167054 1.632946
15 15 10.08 2.066057 2.175109 1.624891
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Table 10: Simulated results of the EWMA control chart based on the MMLE from real data.

Serial no Subgroups (i) xi

EWMA by using MMLE
Z UCL LCL

1 1 9.45 1.901503 1.920534 1.879466
2 2 7.99 1.900126 1.928895 1.871105
3 3 9.29 1.901256 1.935213 1.864787
4 4 11.66 1.910456 1.94046 1.85954
5 5 12.16 1.922439 1.945012 1.854988
6 6 10.18 1.925654 1.949065 1.850935
7 7 8.04 1.924117 1.952737 1.847263
8 8 11.46 1.932104 1.956102 1.843898
9 9 9.2 1.932712 1.959216 1.840784
10 10 10.34 1.936312 1.962116 1.837884
11 11 9.03 1.936511 1.964833 1.835167
12 12 11.47 1.944421 1.967389 1.832611
13 13 10.51 1.94845 1.969804 1.830196
14 14 9.4 1.94935 1.972092 1.827908
15 15 10.08 1.952004 1.974267 1.825733
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Figure 16: Simulated results of EWMA control chart based on MMLE from real data.
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Figure 17: Simulated results of the EWMA control chart based on MLE from real data.
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7. Conclusions

A new probabilistic model is introduced by adding a new
parameter to the Pareto distribution called the refected
Pareto (RP) distribution. Some properties of the RP dis-
tribution are discussed. Moreover, the RP distribution pa-
rameters are estimated by using two estimation methods.
Te performance of the two methods is explored through
simulations. A real-life data set is ftted using the RP model
to prove its superiority as compared to some competing
models. Additionally, the EWMA control chart based on the
maximum likelihood and modifed maximum likelihood
estimators are discussed in detail. Finally, simulations and
real-life data analysis are discussed to validate the results of
the EWMA control chart.
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