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It is well known that many natural phenomena and human activities do exhibit impulsive efects in the felds of epidemiology. At
the same time, compared with a single control strategy, it is obvious that the multiple control strategies are more benefcial to
restrain the spread of infectious diseases. In this paper, we consider pulse vaccination and pulse elimination strategies at the same
time and establish an SIRS epidemic model with standard incidence. Firstly, according to the stroboscopic mapping method of the
discrete dynamical system, the disease-free T periodic solution of the model under the condition of pulse vaccination and pulse
elimination is obtained. Secondly, the basic reproductive number R0 is defned, and the local asymptotic stability of the
disease-free T periodic solution is proved by Floquet theory for R0 < 1. Finally, based on the impulsive diferential inequality
theory, the global asymptotic stability of the disease-free T periodic solution is given for R0 < 1, and the disease dies out eventually.
Te results show that in order to stop the disease epidemic, it is necessary to choose the appropriate vaccination rate and
elimination rate and the appropriate impulsive period.

1. Introduction

Infectious diseases have been harmful to human health since
too many years ago. Some of them cause pain and panic to
the human and even lead to the destruction of country, such
as the plague and leprosy. So, the impact of infectious
diseases to human beings is quite obvious, and its prevalence
and spread may bring us a great disaster. With the devel-
opment of the society, some infectious diseases that were
extinct or under control are resurgent and spreading. Some
new infectious diseases are also appearing. As we all know,
the new coronavirus-infected pneumonia has brought new
disasters and trials to the global humanity in 2019.Terefore,
in order to control the spread of infectious diseases, the
research on the pathogenesis, the law of infection, and the
strategy of prevention and control is becoming more and
more important. Te study of the spread and control
measures of infectious diseases by establishing mathematical
models is an important research direction in applied
mathematics [1–5]. A lot of results have been achieved in

infectious disease modeling, but most of themodels involved
are ordinary diferential equations or time-lag diferential
equations [6–10]. Methods used in infectious disease
modeling include the method of constructing Lyapunov
functions, the theory of limit equations, matrix theory,
branching theory, the theory of K-sequence monotone
systems, the theory of centralized epidemics, and so on
[11–13].

In order to efectively prevent the epidemic and devel-
opment of infectious diseases, it is often necessary to develop
control strategies according to the diferent transmission laws
of infectious diseases. Vaccination strategy is an efective way
to prevent the outbreak and spread of infectious diseases.
Tere are also many studies on the model of infectious
diseases under the action of vaccination [14–16]. Karand and
Batabyal [14] focused on the study of a nonlinear mathe-
matical SIR epidemic model with a vaccination program and
discussed the existence and the stability of both the disease-
free and endemic equilibrium. Liu et al. [16] built up a novel
SEIRW model with the vaccination to the newborn children
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and analyzed the stability of the model with time-varying
perturbation to predict the evolution tendency of the disease.
In addition, the elimination strategy is also an important
measure to prevent and control infectious diseases [17, 18]. It
has been used to tackle diseases caused by animals or
spreading in animals such as avian infuenza, tuberculosis,
tetanus, and rotavirus infection.

Various continuous kinetic infectious disease models
have been widely used to explain the transmission mecha-
nisms of infectious diseases and are increasingly becoming
important tools for analyzing and controlling disease
transmission. However, in real life, we will encounter the
growth pattern of many populations and the control of
human disease is not continuous but impulsive. Te dy-
namic equation of the infectious disease given in this case is
the impulsive diferential equation. Impulsive diferential
equations are able to describe problems with periodic
motions that change instantaneously at a point, such as
periodic insecticide drops, periodic medication to treat
diseases, and seasonal vaccinations, which are all impulsive
phenomena. Te basic theory and application of impulsive
diferential equation have attracted the attention of many
scholars, and a lot of results have been obtained [19–22].Te
use of infectious disease models with impulsive vaccination
to study the spread of vaccine-controlled diseases can obtain
a more realistic pattern of disease development, which
provides a theoretical basis for the development of disease
control strategies. Terefore, the pulse vaccination models
have been widely concerned [23–29]. Liu et al. [23] proved
the global stability of an age-structured SIR epidemic model
with impulsive vaccination strategy; Sunita and Kuldeep [24]
discussed the stability of an SIRS epidemic model with
nonlinear incidence rate and pulse vaccination; Nie et al.
[25] proposed an SIR epidemic model with state dependent
pulse vaccination; Jiang and Yang [26] studied the dy-
namical behavior of an SIR epidemic model with birth pulse
and pulse vaccination; Nie et al. [27] considered two SIVS
epidemic models, where state-dependent pulse vaccination
control strategies are introduced. Yang et al. [28] formulated
an SIS epidemic model in a patchy environment with pulse
vaccination and quarantine at two diferent fxed moments
by impulsive diferential equations. Hao et al. [29] estab-
lished an SIRS epidemic model with birth pulse, pulse
vaccination, and saturation incidence and discussed the
stability of the infection-free periodic solution and the en-
demic periodic solution.

However, there are few literature studies about the in-
fectious models considering both pulse vaccination and
pulse elimination. Terefore, motivated by the above works
and [17, 18, 23–29], in this paper, we will consider pulse
vaccination and pulse elimination strategies at the same time
and establish an SIRS epidemic model with standard in-
cidence. Our paper is organized as follows. In Section 2, we
formulate an SIRS model under pulse vaccination and
impulsive elimination disturbance. In Section 3, we discuss
the existence of the disease-free periodic solution. In Section
4, we prove the local stability and the global stability of the
disease-free periodic solution.

2. Model Formulation

In this section, an SIRS model under pulse vaccination and
elimination disturbance is proposed.

Assume that the total host population is partitioned into
three classes: the susceptible, the infected, and the recovered
individuals, denoted by S, I, and R, respectively. Te total
host population size at time t is denoted by (t), with
N(t) � S(t) + I(t) + R(t). According to the modeling idea
of infectious disease dynamics warehouse, an SIRS epidemic
model with pulse vaccination and elimination disturbance
can be established:

S′ � aN − λ
SI
N

− dS + δR,

I′ � λ
SI
N

− (c + α + d)I, t≠ tn, tn+1 � tn + T,

R′ � cI − (δ + d)R,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

and

S t
+

( 􏼁 � (1 − p)S t
−

( ),

I t
+

( 􏼁 � (1 − k)I t
−

( ), t � tn, n � 0, 1, 2, . . . ,

R t
+

( 􏼁 � R t
−

( ) + pS t
−

( ),

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(2)

where f(t+) � limt⟶ t+
n
f(t), f(t− ) � limt⟶ t−

n
f(t). Te

parameters of the systems (1) and (2) are illustrated in Table 1.
Te equation set and a set of variables above defne

connections between the variables that make up a mathe-
matical model, which often explains the system under study.
Following Animasaun et al. [30], mathematical modeling
ofers precision and a strategy for problem resolution and
allows for a systematic understanding of the system being
studied. Mathematical models are groups of variables,
equations, and beginning values that logically describe
a process or behavior. Mathematical models are also ex-
perimental tools for testing theories and theorems to assess
conjectures and conclusions. In this paper, the stability of
the SIRS mathematical model is studied to reveal the epi-
demic pattern of infectious diseases, predict the epidemic
trend, and provide certain theoretical basis and strategies for
the detection, prevention, and control of infectious disease
epidemics.

3. The Existence of the Disease-Free
Periodic Solution

In this section, the existence and the stability of the disease-free
T periodic solution for the systems (1) and (2) are obtained.

Summing system (1), we have that the total population
N(t) satisfes the diferential equation:

N′(t) � (a − d)N − αI. (3)

2 Journal of Mathematics



Let s � S/N, i � I/N, r � R/N, and the systems (1) and
(2) then become

s′ � a − as + δr − (λ − α)si,

i′ � λsi − (a + c + α)i + αi
2
, t≠ tn, tn+1 � tn + T,

r′ � ri − (a + δ)r + αri,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(4)

and

s t
+

( 􏼁 � (1 − p)s t
−

( ),

i t
+

( 􏼁 � (1 − k)i t
−

( ), t � tn, n � 0, 1, 2, · · · .

r t
+

( 􏼁 � r t
−

( ) + ps t
−

( ).

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(5)

Since s + i + r � 1, only the following systems need to be
considered:

i′ � λ(1 − i − r)i − (a + c + α)i + αi
2
,

r′ � ri − (a + δ)r + αir, t≠ tn, tn+1 � tn + T,

⎧⎨

⎩ (6)

and

i t
+

( 􏼁 � (1 − k)i t
−

( ),

r t
+

( 􏼁 � r t
−

( ) + p 1 − i t
−

( ) − r t
−

( )( ), t � tn, n � 0, 1, 2, · · · .

⎧⎨

⎩ (7)

To study the existence of disease-free T periodic solution,
we need to fnd the T periodic solution which satisfes
systems (6) and (7) when i � 0. When i � 0, the systems (6)
and (7) then become

r′(t) � − (a + δ)r, t≠ tn,

r t
+

( 􏼁 � r t
−

( ) + p 1 − r t
−

( )( ), t � tn.

⎧⎨

⎩ (8)

When tn ≤ t< tn+1, the solution of system (8) is

r(t) � r t
+
n( 􏼁e

− (a+δ) t− tn( ). (9)

When t � tn+1, the solution of system (8) is

r(t) � r t
+
n+1( 􏼁 � p +(1 − p)r t

−
n+1( 􏼁. (10)

Let r(t+
n+1) � rn+1; by solving the above equation, it can

be obtained that

rn+1 � p +(1 − p)rne
− (a+δ)T

. (11)

Set F: rn⟶rn+1; F is a mapping, satisfying

rn+1 � F rn( 􏼁 � p +(1 − p)rne
− (a+δ)T

. (12)

Te map F has a unique fxed point r0; it follows that

r0 � F r0( 􏼁 �
pe

(a+δ)T

e
(a+δ)T

+ p − 1
. (13)

Since |dF(rn)/ dr|r�r0
� (1 − p)e− (a+δ)T < 1, this fxed

point r0 is stable and rn must converge to r0. Terefore, the
systems (6) and (7) have the disease-free T periodic solution
(􏽥i(t), 􏽥r(t)), where

􏽥r(t) �

pe
(a+δ)T

e
(a+δ)T

+ p − 1
e

− (a+δ) t− tn( ), tn < t≤ tn+1,

􏽥r(t) � r0, t � tn,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

􏽥i(t) � 0.

(14)

4. The Stability of the Disease-Free
Periodic Solution

In this section, the stability of the disease-free T periodic
solution (􏽥i(t), 􏽥r(t)) is considered.

Firstly, the local stability of the disease-free T periodic
solution is discussed.

Let i(t) � 􏽥i(t) + x(t), r(t) � 􏽥r(t) + y(t). When ≠ tn, the
linearized system of the system (6) with respect to the pe-
riodic solution (􏽥i(t), 􏽥r(t)) is

Table 1: Description of the system parameters.

Parameters Description
a Te birth rate

λ Te efective contact rate between the susceptible
class and the infective class

d Te natural death rate of the population
α Te disease-related death rate of the infective class
c Te natural recovery rate of the infective class
p Te vaccination rate of the susceptible class
δ Te loss immunity rate of the recovered class
k Te elimination rate of the infective class
tn Te time for vaccination and elimination
T Te impulsive period
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x′(t)

y′(t)
􏼠 􏼡 �

λ − (α + c + a) 0

c + α􏽥r(t) − (a + δ)
􏼠 􏼡

x(t)

y(t)
􏼠 􏼡. (15)

Let A(t) be the basis solution matrix of the linearized
system, and A(0) � E. E is the unit matrix. A(t) is the
following matrix:

A(t) �
a11(t) 0

a21(t) a22(t)
􏼠 􏼡, (16)

where

a11(t) � e
λ− (α+c+a)t− λ􏽒

u

0
􏽥r(u)du􏼐 􏼑

,

a21(t) � e
− (a+δ)t 􏽒

u

0
(c+α􏽥r(u))a11ea+δdu

,

a22(t) � e
− (a+δ)t

.

(17)

When � tn, obtaining

x t
+
n( 􏼁

y t
+
n( 􏼁

⎛⎝ ⎞⎠ �
1 − k 0

p 1 − p
􏼠 􏼡

x

y
􏼠 􏼡,

M �
1 − k 0

p 1 − p
􏼠 􏼡

a11(t) 0

a21(t) a22(t)
􏼠 􏼡 �

(1 − k)a11(T) 0

− pa11(T) +(1 − p)a21(T) (1 − p)e
− (a+δ)

⎛⎝ ⎞⎠.

(18)

According to the Floquet theorem, the necessary and
sufcient condition for the stability of the disease-free T

periodic solution is that the modulus of the eigenvalues of
the matrix M is all less than 1, i.e., only a11(T)< 1. Te
following inequality is obtained:

1
T

􏽚
T

0
􏽥r(t)dt> 1 −

d + c + a

λ
+
ln(1 − k)

T
. (19)

Using 􏽥s(t) � 1 − 􏽥r(t), the above inequality is equiva-
lently written as

1
T

􏽚
T

0
􏽥s(t)dt<

d + c + a

λ
−
ln(1 − k)

T
. (20)

Defne the basic reproductive number R0 as follows:

R0 �
λ

d + c + a

ln(1 − k) + 􏽒
T

0 􏽥s(t)dt

T
, (21)

where T is the pulse vaccination and pulse elimination cycle.
Teorem 1 is obtained by the above analysis.

Theorem 1. For systems (1) and (2), the disease-free T pe-
riodic solution is locally asymptotically stable if R0 < 1.

Now, we will prove the global stability of the disease-free
T periodic solution. In order to facilitate the global stability
of the disease-free T periodic solution, we need to introduce
Lemma 2.

Lemma  . Let f(t), g(t) ∈ C1[0, +∞), and limt⟶+∞ef(t)

� 0, limt⟶+∞f′(t) � A≠ 0, g(t)> 0, limt⟶+∞g(t) � 0.
Ten, limt⟶+∞ef(t) 􏽒

t

0 e− f(u)g(u)du � 0.

Proof. Because of the product function exp(− f(t))g(t) ≥ 0,
the generalized integral 􏽒

+∞
0 exp(− f(u))g(u)du ≥ 0. If the

generalized integral converges, let it converge to some
positive number, then having

lim
t⟶+∞

e
f(t)

􏽚
t

0
exp(− f(u))g(u)du

� lim
t⟶+∞

exp(f(t))A � 0.

(22)

If the generalized integral diverges, then by L’Hospital
law, it follows that

lim
t⟶+∞

e
f(t)

􏽚
t

0
exp(− f(u))g(u)du � lim

t⟶+∞

􏽒
t

0 exp(− f(u))g(u)du

exp(− f(t))

� lim
t⟶+∞

g(t)

− f′(t)
� 0.

(23)

□
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Theorem 3. For systems (1) and (2), the disease-free T pe-
riodic solution is globally asymptotically stable if R0 < 1.

Proof. Firstly, when R0 < 1, we will prove limt⟶+∞i(t) � 0.

From the frst equations of the systems (4) and (5), it
follows that

s′(t)≤ (a + δ)(1 − s), t≠ tn,

s t
+

( 􏼁 � (1 − p)s t
−

( ), t � tn.

⎧⎨

⎩ (24)

For system (24), by the impulsive diferential inequality,
it is obtained that

s(t)≤ s 0+
( 􏼁 􏽙

0<nT<t
(1 − p)e

− (a+δ)t
+ 􏽚

t

0
􏽙

u<nT<t
(1 − p)(a + δ)e

− d(t− u)du

≤ s 0+
( 􏼁 􏽙

0<nT<t
(1 − p)e

− (a+δ)t
+(a + δ)e

− (a+δ)t

· 􏽚
T

0
(1 − p)

n
e

(a+δ)udu + 􏽚
2T

T
(1 − p)

n− 1
e

(a+δ)udu + · · · + 􏽚
nT

(n− 1)T
(1 − p)e

(a+δ)udu + 􏽚
t

nT
e

(a+δ)udu􏼢 􏼣

≤ s 0+
( 􏼁 􏽙

0<nT<t
(1 − p)e

− (a+δ)t
+(a + δ)e

− (a+δ)t

· (1 − p)
n

􏽚
T

0
e

(a+δ)udu +(1 − p)
n− 1

􏽚
2T

T
e

(a+δ)udu + · · · +(1 − p) 􏽚
nT

(n− 1)T
e

(a+δ)udu + 􏽚
t

nT
e

(a+δ)udu􏼢 􏼣

≤ s 0+
( 􏼁 􏽙

0<nT<t
(1 − p)e

− (a+δ)t
+(a + δ)e

− (a+δ)t

· (1 − p)
ne

(a+δ)T
− 1

a + δ
+(1 − p)

n− 1e
(a+δ)2T

− e
(a+δ)T

a + δ
+ · · · +(1 − p)

e
(a+δ)nT

− e
(a+δ)(n− 1)T

a + δ
+

e
(a+δ)t

− e
(a+δ)nT

a + δ
􏼢 􏼣

≤ s 0+
( 􏼁 􏽙

0<nT<t
(1 − p)e

− (a+δ)t
+(1 − p)

n
e

− (a+δ)t

· e
(a+δ)T

− 1􏼐 􏼑 +
e

(a+δ)T

1 − p
e

(a+δ)T
− 1􏼐 􏼑 + · · · +

e(a+δ)T

1 − p
􏼠 􏼡

n− 1

e
(a+δ)T

− 1􏼐 􏼑 + e
(a+δ)t

− e
(a+δ)[t/T]t⎡⎣ ⎤⎦

≤ s 0+
( 􏼁 􏽙

0<nT<t
(1 − p)e

(a+δ)T
+(1 − p)

n
e

− (a+δ)t
e

(a+δ)T
− 1􏼐 􏼑 1 − e

(a+δ)T/1 − p􏼐 􏼑
n

􏼐 􏼑

1 − e
(a+δ)T/1 − p

+ e
(a+δ)t

− e
(a+δ)[t/T]t

≤ s 0+
( 􏼁e

− (a+δ)T
(1 − p)

[t/T]
−

e
(a+δ)T

− 1􏼐 􏼑(1 − p)
[t/T]+1

e
(a+δ)T

+ p − 1
+ 1 −

pe
(a+δ)([t/T]T+1− t)

e
(a+δ)T

+ p − 1
􏼠 􏼡

≤ r(t) + 1 −
pe

(a+δ)([t/T]T+1− t)

e
(a+δ)T

+ p − 1
􏼠 􏼡.

(25)

And we have

s(t)≤ r1(t) + 1 −
pe

(a+δ)T
([t/T]T + 1 − t)

e
(a+δ)T

+ p − 1
􏼠 􏼡, (26)

where

r1(t) � e
− (a+δ)t exp s 0+

( 􏼁(1 − p)
[t/T]

−
(1 − p)

[t/T]+1
e

(a+δ)T
− 1􏼐 􏼑

e
(a+δ)T

+ p − 1
⎡⎢⎣ ⎤⎥⎦. (27)
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From the second equations of the systems (4) and (5), it
follows that

i′(t)≤ i λ − (α + c + a) + λr1(t) + αi −
λpe

(a+δ)T(1+[t/T]− (a+δ)t)

e
(a+δ)T

+ p − 1
􏼠 􏼡,

i t
+

( 􏼁 � (1 − k)i t
−

( ).

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(28)

Obviously, system (28) does not satisfy the form of the
diferential equation inequality. Terefore, let (t) � − 1/i(t);

system (28) becomes the following impulsive diferential
equation:

x′(t)≤ − λ − (α + c + a) + λr1(t) + α −
λpe

(a+δ)T(1+[t/T]− (a+δ)t)

e
(a+δ)T

+ p − 1
􏼠 􏼡,

x t
+

( 􏼁 �
1

1 − k
x t

−
( ).

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(29)

For system (29), by the impulsive diferential inequality,
we obtain

x(t)≤x 0+
( 􏼁 􏽙

0<nT<t

1
1 − p

exp 􏽚
t

0
− λ − (α + c + a) + λr1(u) −

λpe
(a+δ)T(1+[u/T]− (a+δ)u)

e
(a+δ)T

+ p − 1
􏼠 􏼡du⎡⎣ ⎤⎦

+ ε􏽚
t

0
􏽙

s<nT<t

1
1 − p

exp 􏽚
t

s
− λ − (α + c + a) + λr1(u) −

λpe
(a+δ)T(1+[u/T]− (a+δ)u)

e
(a+δ)T

+ p − 1
􏼠 􏼡du⎡⎣ ⎤⎦ds.

(30)

Making the inverse substitution (t) � − 1/x(t), with the
help of the comparison principle, it follows that

i(t)≤
i(0)e

ln(1− k)[t/T]+ 􏽒
t

0 f(s)ds

1 − αi(0)e
ln(1− k)[s/T]+ 􏽒

s

0 f(u)du
, (31)

where

f(t) � λ − (α + c + a) + λr1(t) −
λpe

(a+δ)T(1+[t/T]T− t)

e
(a+δ)T

+ p − 1
􏼠 􏼡t.

(32)

Next, when R0 < 1, we will prove limt⟶+∞e
􏽒

t

0
f(s)ds

� 0.
Since

􏽚
t

0
f(s)ds � − (λ − (α + c + a))t + 􏽚

t

0
λr1(u)du −

λpe
(a+δ)T

e
(a+δ)T

+ p − 1

· 􏽚
t

0
e

(a+δ)([u/T]T− u)du,

(33)
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where

􏽚
t

0
λr1(u)du≤ 􏽚

t

0
λs(0)e

− (a+δ)udu � λs(0)
1 − e

− (a+δ)t

a + δ
≤

λs(0)

a + δ
,

􏽚
t

0
e

(a+δ)([u/T]T− u)du �
1 − e

(a+δ)T

a + δ
t

T
􏼔 􏼕 +

1 − e
− (a+δ)(t− [t/T]T)

a + δ
.

(34)

Substituting (7) and (24) into (6), we have

􏽚
t

0
f(s)ds � (λ − (α + c + a))t +

λs(0)

a + δ
−

λpe
(a+δ)T

e
(a+δ)T

+ p − 1
1 − e

(a+δ)T

a + δ
t

T
􏼔 􏼕 +

1 − e
− (a+δ)(t− [t/T]T)

a + δ
􏼠 􏼡

� (λ − (α + c + a))t −
λpe

(a+δ)T

e
(a+δ)T

+ p − 1
1 − e

(a+δ)T

a + δ
t

T
􏼔 􏼕

−
λpe

(a+δ)T

e
(a+δ)T

+ p − 1
1 − e

− (a+δ)(t− [t/T]T)

a + δ
+
λs(0)

a + δ

≤ λ 1 −
λpe

(a+δ)T

e
(a+δ)T

+ p − 1
1 − e

(a+δ)T

a + δ
􏼠 􏼡 − (α + c + a)⎡⎣ ⎤⎦

t

T
􏼔 􏼕

+
λs(0)

a + δ
− (λ − (α + c + a)) t −

t

T
􏼔 􏼕T􏼒 􏼓 −

λpe
(a+δ)T

e
(a+δ)T

+ p − 1
1 − e

− (a+δ)(t− [t/T]T)

a + δ
,

e
ln(1− k)[t/T]T+ 􏽒

t

0
f(s)ds ≤D1(t)e

(α+c+a)[t/T]T R0− 1( ),

(35)

where

exp − (λ − (α + c + a)) t −
t

T
􏼔 􏼕T􏼒 􏼓 +

λs(0)

a + δ
−

λpe
(a+δ)T

e
(a+δ)T

+ p − 1
1 − e

− (a+δ)(t− [t/T]T)

a + δ
⎡⎣ ⎤⎦, (36)

and D1(t) is positive and has an upper bound. Tus,
i(t)⟶ 0(t⟶ +∞) for R0 < 1.

Finally, when R0 < 1, for the disease-free periodic so-
lution (s(t), i(t), r(t)) of the systems (4) and (5), we will
prove s(t)⟶ 􏽥s(t), r(t)⟶ 􏽥r(t)(t⟶ +∞).

Let

V(t) � |s(t) − 􏽥s(t)|. (37)

When ≠ tn, we obtain

D
+
(V(t)) � sign(s(t) − 􏽥s(t)) s′(t) − s(t)( 􏼁

� − (a + δ)|s(t) − 􏽥s(t)| +|λ − α|si

≤ − (a + δ)|s(t) − 􏽥s(t)| + r3(t),

(38)
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where r3(t) � |λ − α|a/ di(t). According to i(t)⟶ 0
(t⟶ +∞), we obtain

r3(t)⟶ 0(t⟶ +∞). (39)

When t � tn, we have

V t
+
n( 􏼁 � (1 − p)V t

−
n( 􏼁. (40)

Since V(t) ∈ PC′[R+, R], and V(t) is left continuous at
t � tn, by using the diferential equation inequality for (38)
and (40), it follows that

V(t)≤V 0+
( 􏼁 􏽙

0<nT<t
(1 − p)e

− (a+δ)t
+ 􏽚

t

0
􏽙

s<nT<t
(1 − p)e

􏽒
t

s
(a+δ)ududs. (41)

Obviously, the frst term of (41) has the following result:

V 0+
( 􏼁 􏽙

0<nT<t
(1 − p)e

− (a+δ)t⟶ 0(t⟶ +∞). (42)

For the second item of (41), we have

􏽚
t

0
􏽙

s<nT<t
(1 − p)e

􏽒
t

s
(a+δ)ududs � e

− (a+δ)t
􏽚

t

0
􏽙

s<nT<t
(1 − p)e

􏽒
s

0
(a+δ)ududs. (43)

Defne f(t) � − (a + δ)t, g(t) � r3(t). According to
Lemma 2, we obtain V(t)⟶ 0(t⟶ +∞), namely,
s(t)⟶ 􏽥s(t)(t⟶ +∞). And by (t) � 1 − s(t) − i(t),
hence, r(t)⟶ 􏽥r(t)(t⟶ +∞).

In summary, we complete the proof of Teorem 3. □

5. Conclusions

Nowadays, the vaccination strategy has become one of the
most efective ways to control infectious diseases. Te de-
velopment of vaccination has saved countless lives. Te
elimination strategy is the most direct control measure when
the disease is found. Terefore, it is of practical signifcance
to study the efect of vaccination and elimination on the
spread of infectious diseases and the prevention and control
of infectious diseases. Based on this, we study the dynamical
behavior of an SIRS epidemic model with pulse vaccination,
pulse elimination, and standard incidence. We defne the
basic reproductive number R0 � λ/d + c + a ln(1 − k) + 􏽒

T

0 􏽥s

(t)dt/T which determines whether a disease is extinct or not.
If R0 < 1, the disease-free T periodic solution is locally as-
ymptotically stable by Floquet theory and the disease-free T

periodic solution is globally asymptotically stable based on
the impulse diferential inequality. It is shown that the
disease will be extinct when the average number of patients
in each period is less than 1 after subtracting the number of
people who are eliminated. From the expression of R0, it can
be seen that R0 is a monotone decreasing function of the
vaccination rate p and the elimination rate k. Terefore,
increasing the pulse vaccination rate p and the elimination

rate k is the most efective measure to stop the disease
epidemic. Of course, in order to prevent the epidemic of
infectious diseases, it is necessary to choose the appropriate
impulsive period T. If the impulsive period T is large or the
pulse vaccination rate p and the elimination rate k are too
small so that R0 > 1, then the disease will persist.

Interestingly, the stability of the model is under the
infuence of impulsive vaccination and impulsive elimina-
tion strategies. We believe that our study fndings help the
public health department mitigate disease by providing
some theoretical guidance. In addition, there is a lot of work
waiting for us to study in this feld, such as the disease
incidence of other forms or the numerical simulations of the
stability, and we leave these for future work.
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