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LetG′ be a simple, connected, and undirected (UD) graph with the vertex setM(G′) and an edge setN(G′). In this article, we defne
a function f: M∪N⟶ [0, 1] as a fractional mixed dominating function (FMXDF) if it satisfes f(Rm[x]) � 􏽐yϵRm[x]f(y)≥ 1
for all x ∈M(G′)∪N(G′), where Rm[x] indicates the closed mixed neighbourhood of x, that is the set of all y ∈M(G′)∪N(G′)

such that y is adjacent to x and y is incident with x and also x itself. Here, p(f) � 􏽐x∈M∪Nf(x) is the poundage (or weight) of f.
Te fractional mixed domination number (FMXDN) is denoted by c∗fm(G′) and is designated as the lowest poundage among all
FMXDFs of G′. We compute the FMXDN of some common graphs such as paths, cycles, and star graphs, the middle graph of
paths and cycles, and shadow graphs. Furthermore, we compute upper bounds for the sum of the two fractional dominating
parameters, resulting in the inequality cf1

′ (Τ) + c∗fm(Τ)≤ r + p − rad(Τ) − α, where cf1
′ and c∗fm are the fractional edge

domination number and FMXDN, respectively. Finally, we compare c∗fm to other resolvability-related parameters such as metric
and fault-tolerant metric dimensions on some families of graphs.

1. Introduction

Troughout this article, we use G′ as a graph with vertex set
M(G′) and an edge set N(G′) and Τ is referred to as a tree.
Te maximum degree is indicated by α, which is the degree
of the vertex with the greatest incident edges.Te vertex with
the lowest incidence edges is said to have the smallest degree
β. A vertex of degree one is known as a pendant vertex. In the
case of trees, a pendant vertex is known as leaf because it has
only 1 degree and it is denoted by (l1), while its neighbour is
known as a support vertex (s1). Te greatest distance be-
tween a vertex m1 and any other node in G′ is known as the
eccentricity of m1 (see [1]). Te smallest eccentricity is
represented by the radius rad (G′) of G′. For any
m1 ∈M(G′), the open neighbourhood of m1 is represented

as the set of all vertices adjacent to m1 ∈M(G′), and it is
denoted by R(m1), and the closed neighbourhood of m1 is
denoted by R[m1] � R(m1)∪ m1􏼈 􏼉 (see [2]). Similarly, for
any edge n1 ∈ N(G′), the open and closed neighbourhoods
of n1 are defned as R(n1 ) � {n ∈ N such that n is adjacent to
n1} and R[n1 ] � R(n1 )∪ n1􏼈 􏼉, respectively. Te set of all
edges incident to m as well as the vertices adjacent to m is the
open mixed neighbourhood of a vertex m. Te collection of
incident vertices m1 and m2 as well as all the edges adjacent
to n � m1m2 is described as the open mixed neighbourhood
of an edge n.

Troughout this paper, we choose an element
x ∈M(G′)∪N(G′), and the open mixed neighbourhood of
x is indicated by Rm(x), which is the set of all
y ∈M(G′)∪N(G′) such that y is adjacent to x as well as y is
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incident with x, and the closed mixed neighbourhood of x is
denoted by Rm[x] � Rm(x)∪ x{ }. Recall that a set B⊆M is
called a dominating set of G′ if every vertex of M − B is
adjacent to at least one vertex in B.Teminimum cardinality
of all possible dominating sets in G′ is given by the dom-
ination number c (G′). Haynes et al. [3] presented the
concept of multiple types of graph domination and also gave
some information on fractional dominating function and
mixed domination number. A set R⊆M∪N is said to be
a mixed dominating (MXD) set of G′ if every element not in
R has at least one mixed element in R. Te mixed domi-
nation number cm (G′) of G′ is the minimum cardinality of
all possible MXD sets of G′. In 1992, Sampathkumar and
Kamath [4] worked on the concept of mixed domination
number, in which vertices dominate edges in certain ways
and vice versa.

Defne a dominating function f0: M(G′)⟶ [0, 1]

which is known as a fractional dominating function (FDF) if
f0(R[m]) � 􏽐m1∈R[m]f0(m1)≥ 1 for every m ∈M (G′). Te
fractional domination number cf0

(G′) is the minimum
poundage (weight) among all fractional dominating func-
tions of G′, where the poundage of f0 is p(f0) �

􏽐m∈M(G′)f0(m). Scheinerman and Ullman worked on the
concept of fractional domination number for the minimum
weight among all FDFs of G′ in [5]. Similarly, we defne
a dominating functionf1: N(G′)⟶ [0, 1] which is said to
be fractional edge dominating function if f1(R[n])

� 􏽐n1∈R[n]f1(n1)≥ 1 for every n ∈ N (G′). Te fractional
edge domination number cf1

′ (G′) is the minimum
poundage of all fractional edge dominating functions of G′,
where the poundage of f1 is equal to 􏽐n∈N(G′)f1(n) (see [6]).
We defne a fractional mixed dominating function (FMXDF)
is a function f: M∪N⟶ [0, 1] if f(Rm[x]) � 􏽐y∈Rm[x]

f(y)≥ 1 for all x ∈ M(G′) ∪ N(G′). Te poundage of f is
given by p(f) � 􏽐x∈M∪Nf(x). Te fractional mixed domi-
nation number is used by the symbol of c∗fm (G′), which
represents the function with the least poundage among all
FMXDFs ofG′. For convenience, we takef0,f1, andf as the
fractional dominating function, fractional edge dominating
function, and FMXDF of G′. For every FMXDFs, we write
every closed mixed neighbourhood of an edge of G′ as
Rm[m1m2] � f(m1) + Sm1

+ f(m2) + Sm2
− f(m1m2) for all

m1m2 ∈ N(G′), where star of m1 and m2 is the set of all
incident edges of the vertex m1 and m2, and it is denoted by
Sm1

and Sm2
, and we write every closed mixed neighbourhood

of a vertex of G′ as Rm[m] � R[m] + Sm for every m ∈M(G′).
In [7–13], the authors studied the resolvability-related

parameters like the metric dimension and fault-tolerant
metric dimension of certain families of graphs. Te classi-
fcation of total dominating and fractional dominating pa-
rameters is by removing a vertex from graph G, and its
related concepts are provided in [14, 15]. Te concept of
reinforcement number with respect to half domination

number is given in [16], and Sridharan et al. [17] introduced
the parameter cλ(G), where 0≤ λ≤ 1, with the help of
0, (1/2), 1}{ .

In recent years, various fractional dominating parameters
that defne the function of the domain set as either the vertex
set or an edge set independently have been researched. Here,
we combined the concept of a FDF and MXD set to create
a function with the domain set as both a vertex and an edge set
(V∪E) for the minimum weight with the condition of the
summation of the closed mixed neighbourhood of any ele-
ment x ∈ V∪E, which is at least one. In this paper, we in-
troduce the concept of fractional mixed domination number
and develop some of the results derived from this parameter.
Te fractional mixed domination number is greater than or
equal to the fractional domination number of graph, which is
the signifcance of this article.

In Section 2, we enumerate the FMXDN of some standard
graphs, such as paths, cycles, star graphs, the middle graph of
the path graphs, and the shadow graphs. In Section 3, provides
the upper bound on the sum of the two parameters where
fractional edge domination and FMXDN, whose resultant
graph gives cf1

′ (Τ) + c∗fm(Τ)≤ r + p − rad (Τ) − α.

2. Some Standard Graphs

Tis section discusses the FMXDN of some defnitive graphs
such as paths, cycles, star graphs, the middle graphs of paths
and cycles, and shadow graphs.

Theorem 1. If Pr is a nontrivial path with r≥ 2, then
c∗fm(Pr) � 2r + 3/5⌊ ⌋.

Proof. Let G′ be a path with r≥ 2 vertices, where
m1, m2, ..., mr represent vertices of Pr and n1, n2, ..., nr− 1
represent edges of Pr. Here, |M(Pr)| � r, and |N(Pr)|

� r − 1. Let xi, (1≤ i≤ 2r − 1), represent elements of Pr that
are both either vertices or edges. For P2, obviously
c∗fm(P2) � 1 � 2r + 3/5⌊ ⌋. For P4.

In Figure 1, frst we assign the value 1 to f(m2) and
f(n3) and 0 to the rest of the elements. In another way, we
assign s/t to f(n1) and f(m4) and (1 − s/t) to f(m2) and
f(n3) and 0 to the remaining elements, where s< t, s

� 1, 2, ...t − 1, and t≥ 2. For example, we assign the frac-
tional value f(n1), f(m4) � (1/2) and f(n3), f(m2) � (1 −

(1/2)), and the remaining elements are assigned the value of
zero. Next, we set the fractional value f(n1), f(m4) � (1/3)

or (2/3) and f(n3), f(m2) � (1 − (1/3)) or (1 − (2/3)) and
the remaining elements are assigned the value of zero. Again,
we set the fractional values f(n1), f(m4) � (1/4) or (2/4) or
(3/4) and f(n3), f(m2) � (1 − (1/4)) or (1 − (2/4)) or (1 −

(3/4)) and the remaining elements are assigned the value of
zero. We assign the values in this way. Te only condition is
when to give (s/t) to f(n1) and f(m4), and other f(m2) and
f(n3) must have (1 − (s/t)). For the possibilities listed
above, we have c∗fm(P4) � 2 � 2r + 3/5⌊ ⌋.
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Case (i): For r � 5k + 3, where k ∈ Z+ and Z+ is the
positive integer. Let x be any element that is either
a vertex or an edge. In this case, we defne a function
f: M∪N⟶ [0, 1] by

f(x) �
1 if m5q+2 and n5q+4
0 otherwise􏼨 .

For an integer q, (0≤ q< ⌈r/2⌉ − r − 2/4⌊ ⌋). Tus, the
poundage of f is p(f) � c∗fm (G′)� 􏽐x∈M∪Nf(x) �

2r + 3/5⌊ ⌋.
Case (ii): for r � 5k, 5k + 1, where k ∈ N, where N as
a natural number.

Subcase (i): when r � 5k.
Similarly, we assign the value 1 to f(m5q+2) and f

(n5q+4) and we give 0 to the remaining elements. Tis
means that p(f) � c∗fm (G′)� 􏽐x∈M∪Nf(x) �

2r + 3/5⌊ ⌋ is the poundage of f.
Another way: Alternately, to provide the function
values for P5, we assign (s/t) to f(n1) and f(m4) and
(1 − (s/t)) to f(m2) and f(n4) and 0 to the remaining
elements, where s< t, s � 1, 2, ..., t − 1, and t≥ 2. In
this way, we proceed with the paths P10, P15, . . . to get
the poundage of Pr, where r � 5k. Generally, we as-
sign the values of the paths P10, P15, . . . as (s/t) to the
elements m5q+2 and n5q+4, and assign 1 − (s/t) to the
elements m5q+4 and n5q+1, and 0 to the remaining
elements, where q ∈ Z, and (0≤ q< ⌈r/2⌉ − r − 2/⌊

4⌋). Tis implies that poundage of f is p(f) � c∗fm

(G′)� 􏽐x∈M∪Nf(x) � 2r + 3/5⌊ ⌋.
Subcase (ii): when r � 5k + 1.
We assign the value 1 to f(m5q+2), f(n5q+4),

andf(mr) and we give 0 to the remaining elements.
Another way: Alternately, to provide the function
values for P6, we assign f(n1), f(m4) � (s/t) and
f(n4), f(m2) � (1 − (s/t)), f(m6) � 1 and the
remaining elements are assigned a value of zero. In
this way, we proceed with the paths P11, P16, . . . to get
the poundage of Pr, where r � 5k + 1. In general, we
assign the values of the paths P11, P16, . . . as (s/t) to
the elements m5q+2 and n5q+4, and assign 1 − (s/t) to
the elements m5q+4 and n5q+1, f(mr) � 1, and 0 to the
remaining elements. Tis implies that poundage of f is
p(f) � c∗fm (G′)� 􏽐x∈M∪Nf(x) � 2r + 3/5⌊ ⌋.

Case (iii): for r � 5k + 2,5k + 4, where k ∈ N.

Subcase (i): In the similar process of the above cases,
for r � 5k + 2, we assign 1 to m5q+2 and n5q+4, and 0 to
the rest of the elements. For r � 5k + 4, we assign 1 to
m5q+2, n5q+4, and nr− 1 and 0 to the rest of the elements.
Tus, the poundage of f is p(f) � c∗fm

(G′)� 􏽐x∈M∪Nf(x) � 2r + 3/5⌊ ⌋.

Another way: For r � 5k + 2, the values (s/t) are
assigned tom5q+2 and n5q+4, and 1 − (s/t) is assigned to
m5q+4 and n5q+1, and 0 is assigned to the remaining
elements. For r � 5k + 4, the values (s/t) are assigned
to m5q+2, n5q+4, and nr− 1 and 1 − (s/t) is assigned to

m5q+4 and n5q+1, and 0 is assigned to the remaining
elements, where s< t, s � 1, 2, ..., t − 1, and t≥ 2, and
(0≤ q< ⌈r/2⌉ − r − 2/4⌊ ⌋). Tis implies that the
poundage of f is p(f) � c∗fm (G′)� 􏽐x∈M∪Nf(x) �

2r + 3/5⌊ ⌋. □

Theorem 2. For any cycle Cr with r≥ 3, we have
c∗fm(Cr) � (2r/5).

Proof. Let G′� Cr be a cycle graph with r≥ 3 vertices. Let
m1, m2, ..., mr be the vertices of Cr and n1, n2, ..., nr be the
edges of Cr. Here, |M(Cr)| � r � |N(Cr)|. Let x be an el-
ement of Cr, which is either a vertex or edge. We defne
a function f: M(Cr)∪N (Cr)⟶[0. 1] by f(xi) � (1/5)

for all i, where x ∈M∪N. In this graph, we have f(R[xi]) �

1 for every i, and its poundage is the minimum among all the
FMXDFs of Cr. Tus, the poundage of f is p(f) � c∗fm

(Cr)� 􏽐x∈M∪Nf(x) � (2r/5). □

Theorem 3. For r≥ 2, c∗fm (K1,r) � 1.

Proof. Let G′ be a star graph and m, mi(1≤ i≤ r) be vertices
of G′� K1,r, where m is the central vertex of K1,r. Now, we
defne a function f1: M∪N⟶ [0, 1] by f1(m) � 1,

f1(mi) � 0 and f1(mmi) � 0. Tis implies that the
poundage of f1 is p(f1) � 􏽐x∈M∪Nf1(x) � 1. Suppose if we
defne another function f2: M∪N⟶ [0, 1] by f2(m) �

0, f2(mmi) � 0 and f2(mi) � 1 for all i; then, obviously
p(f2) � f2(m) + f2(mi) + f2(mmi)> 1 � p(f1). As a re-
sult, p(f1) is the smallest when compared to (f2). Hence,
c∗fm (K1,r) � 1. □

Theorem 4. For any complete graph Kr with r≥ 2, then c∗fm

(Kr) � (r + s/r + t), where s and r are size and order, re-
spectively, and t≥ 1.

Proof. Let G′� Kr be a complete graph with r≥ 2. Consider
that r and s represent the order and size of G′, and t� 2, 3, 4,
. . . Here, we defne a function f: M∪N⟶ [0, 1] by
f(xi) � (1/|Rm[x]|) for all i, where x ∈M∪N. Ten, the
poundage of f is c∗fm (G′)� 􏽐x∈M∪Nf(x) � (r + s/r + t).
Tus, c∗fm (G′)� (r + s/r + t). □

Observation 5 (see [6]). For any graph G, we have
cf
′ (G) � c(L(G)). Hence, it follows that cf

′ (Cn) � cf(Cn) �

n/3 and cf
′ (Pn) � cf(Pn− 1) � ⌈n − 1/3⌉.

Corollary  . If cf0
(Pr) � ⌈r/3⌉ and c∗fm(Pr) � 2r + 3/5⌊ ⌋

for any path graph Pr, then cf0
(Pr)≤ c∗fm(Pr).

Proof. From Observation 5, we have cf(Pn− 1) � ⌈n − 1/3⌉

and in this paper, for our convenience, we take the notation
of FDF as cf0

. Ten, cf0
(Pr) � ⌈r/3⌉. ByTeorem 1, we have

c∗fm(Pr) � 2r + 3/5⌊ ⌋. Terefore, we get cf0
(Pr)≤ c∗fm

(Pr). □
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Corollary 7. For any cycle Cr with r≥ 3, we have
cf0

(Cr) � r/3, which is always less than (2r/5) � c∗fm(Cr).

Proof. From Observation 5, we have cf0
(Cr) � r/3 and by

Teorem 2, we have c∗fm(Cr) � 2r/5. Tus, cf0
(Cr) � r/3<

(2r/5) � c∗fm(Cr). □

Defnition 8 (see [18]). Te shadow graph of a connected
graph G is constructed by taking two copies of G, say G′ and
G″. Join each vertex of u′ of G′ to the neighbours of the
corresponding vertex u″ of G″. Te shadow graph of G is
denoted by D2(G).

Defnition 9 (see [18]). Te middle graph of a connected
graph G denoted by M(G) is the graph whose vertex set is
V(G)∪E(G) where two vertices are adjacent if

(i) Tey are adjacent edges of G
(ii) One is a vertex of G and the other is an edge incident

with it

Theorem 10. For r≥ 3, the shadow graph of Pr is
c∗fm(D2(Pr)) � r − 1.

Proof. Consider two copies of Pr and assume that
G′� D2(Pr) is a shadow graph with r≥ 3. Let m1, m2, ..., mr

represent the vertices of the frst copy of Pr andm1′, m2′ , ..., mr
′

represent the vertices of a second copy of Pr. Let
n1, n2, ..., nr− 1 be the edges of the frst copy of Pr and
n1′, n2′ , ..., nr− 1′ be the edges of a second copy of Pr, with ni

connecting mi
′ andmi+1′ and ni

′ connecting mi andmi+1. Here,
|M(G′)|� 2r and |N(G′)|� 4 (r − 1). Assume f(q) � 1/5 for
all q ∈M∪N when r� 2. Ten, the poundage of f is
p(f) � 8/5. For r≥ 3, the function f: M∪N⟶ [0, 1] is
defned by the following types of possibilities:

(i) If r � 3k, where k ∈ N, then we assign a value of 1 to
f(n3s+1), f(m3s+2′ ), and f(n3s+3′ ), and a value of 0 to
the remaining elements of G′.

(ii) If r � 3k + 1, where k ∈ N, then we assign a value of
1 to f(n3s+2), f(m3s+2′ ), and f(m3s+3′ ), and a value of
0 to the remaining elements of G′.

(iii) If r � 3k + 2, where k ∈ N, then we assign a value of
1 to f(n3s+1), f(m3s+2′ ), f(n3s+3′ ), and f(mr− 1), and
a value of 0 to the remaining elements of G′, where
s ∈ Z, (0≤ s≤ ⌈r − 3/2⌉). Ten, the poundage of f is
c∗fm (G′)� 􏽐x∈M∪Nf(x) � r − 1. Hence, c∗fm(D2
(Pr)) � r − 1. □

Theorem 11. Temiddle graph of path Pr for r≥ 2 is cf0
(M′

(Pr))� ⌈r/2⌉.

Proof. Let m1, m2, ..., mr be the vertices of the path and
n1, n2, ..., nr− 1 be the edges of Pr.

In this proof, we build the middle graph of path Pr, that
is, G′�M′ (Pr), with the vertex set M(G′)� qs � (mi􏼈

∪ nj): (1≤ s≤ 2r − 1)} and an edge set N(G′)� m1n1, n1􏼈

m2, m2n2, n2m3, ..., nr− 1mr}∪ n1n2, n2n3, ..., nr− 2nr− 1􏼈 􏼉. Here,
r � |mi|. In Figure 2, for M′ (P4), we set f0(n1) � 1 and
f0(n3) � 1, and all other remaining vertices are set to 0. In
M′ (P5) has f0(n1) � 1, f0(n3) � 1 andf0(m5) � 1, with the
remaining vertices all being 0. Now, we defne a function
f0: M(M′ (Pr))⟶ [0, 1] by

f0 qs( 􏼁 �
1, for n3t+1 or n3t+1 andmr,

0, otherwise,
􏼨 (1)

where t ∈ Z, (0≤ t< ⌈r/2⌉ − 1). Ten, the poundage of f0 is
p(f0) � 􏽐m∈M(G′)f0(m) � ⌈r/2⌉. Hence, cf0

(M′(Pr))� ⌈r/
2⌉. □

Theorem 12. For r≥ 3, cf0
(M′ (Cr))� ⌈r/2⌉.

Proof. Consider the graph G′�M′ (Cr) with r≥ 3. A frac-
tional dominating function f0 is defned as f0: M(G′)⟶
[0, 1] by f0 (mi)� 1/5 for all i, where 1≤ i≤ 2r. Tus, the
poundage of f0 is p(f0) � 􏽐m∈M(G′)f0(m) � ⌈r/2⌉. Hence,
cf0

(M′ (Cr))� ⌈r/2⌉. □

Corollary 13. For any graph G′, the following holds true:

(i) cf0
(G′)≤ c∗fm (G′).

(ii) cf1
′ (G′)≤ c∗fm (G′), where f0 and f1 are fractional

dominating and fractional edge dominating functions
of G′.

Proof. Assume G′ as connected graph and f as FMXDF of
G′. Te fractional domination number cf0

(G′)� 􏽐m∈M
f0(m)≤􏽐x∈M∪Nf(x) � c∗fm(G′).

Similarly, the fractional edge domination number cf1
′

(G′)� 􏽐n∈Nf1
′ (n)≤􏽐x∈M∪Nf(x) � c∗fm(G′). □

Corollary 14. For any path graph, cf0
(M′ (Pr))≤ c∗fm (M′

(Pr)).

Proof. From Teorem 11 and Corollary 13, we get cf0
(M′

(Pr))≤ c∗fm (M′ (Pr)). □

Corollary 15. For r≥ 3, we have cf0
(M′ (Cr))< c∗fm (M′

(Cr)).

Proof. From Teorem 12 and Corollary 13, we get cf0
(M′

(Cr))< c∗fm (M′ (Cr)). □

3. Bounds

In this section, we provide some bounds on gamma c∗fm (G′)
in terms of fractional domination, fractional edge domi-
nation, maximum degree α, minimum degree β, support s′,
and leaves l′ and compare c∗fm to other resolvability-related
parameters.

m1 m2 m3 m4

n1 n2 n3

Figure 1: Path P4.
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Theorem 1 . For each tree, we have 3 cf0
(Τ) + c∗fm(Τ)􏽮 􏽯 +

2≤ r + 2(l′ − s′) + 4 + 2p and this bound is sharp.

Proof. Let Τ be a tree with the number of vertices r, the
number of edges p, the number of leaves l′, and the number
of supporting vertices s′. For our convenience, we take the
notation as |M(G′)| � r and r − 1 � p � |N(G′)|. In this
theorem, f is the least FMXDF of G′. A set of support
vertices and leaves in a tree Τ is represented by s′ (Τ) and
l′(Τ). Here, α (β) is the maximum (minimum) degree of
the vertex. Te vertex set can be divided into the following

sets: Ms1 � m ∈M: f(m) � 1, m ∈ s′(Τ), and deg(m)􏽮

≤ α(Τ)}, Ms0 � m ∈M: f(m) � 0, m ∈ s′(Τ), and deg􏽮

(m)≥ β(Τ)}, Ml1 � m ∈M: f(m) � 1, andm ∈ l′(Τ)􏽮 􏽯, M

l0 � m ∈M: f(m) � 0, andm ∈ l′(Τ)􏽮 􏽯, Mt1 � m ∈M: f􏼈

(m) � 1, andm is neither leaf nor support vertex}, and M

t0 � m ∈M: f(m) � 0,􏼈 andm is neither leaf nor support
vertex}. Also, the edge set can be partitioned into two sets,
where N0 � n ∈ N: f(n) � 0􏼈 􏼉 and N1 � n ∈ N: f(n)􏼈

� 1}. Ten, the poundage of f is

c
∗
fm(Τ) � 􏽘

x∈M∪N
f(x)

� 􏽘
m∈M

f(m) + 􏽘
n∈N

f(n)

� 􏽘
m∈Ml1 ∪Ml0

f(m) + 􏽘
m∈Ms1 ∪Ms0

f(m) + 􏽘
m∈Mt1 ∪Mt0

f(m) + 􏽘
N1∈∪N0

f(n)

<
M G

′
􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ + N1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 �
r

2
􏼖 􏼗 + N1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌.

(2)

By Corollary 13, we have cf0
(G′)≤ c∗fm (G′). Terefore,

we have two cases here.

m1 m2 m3 m4

m1 m2 m3 m4 m5

n1 n2 n3

n1 n2 n3 n4

M´ (P4)

M´ (P5)

Figure 2: Middle graph of P4 and P5.
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Case (i): if cf0
< c∗fm, then

cf0
+ c
∗
fm � 2 􏽘

m∈M
f(m)⎡⎣ ⎤⎦ + 􏽘

n∈N
f(n)

< 2
r

2
􏼖 􏼗􏼒 􏼓 + N1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

< 2
r

2
􏼖 􏼗􏼒 􏼓 + l

′
− s
′

􏼒 􏼓

≤
3r + 2(l’ − s’)

3

�
r + 2(r − 1 + 1) + 2(l’ − s’)

3

�
r + 2(p + 1) + 2(l’ − s’)

3
.

(3)

Case (ii): if cf0
� c∗fm, then

cf0
+ c
∗
fm � 2 􏽘

m∈M
f(m)⎡⎣ ⎤⎦ + 􏽘

n∈N
f(n)

< 2
r

2
􏼖 􏼗􏼒 􏼓 + 0

< 2
r

2
􏼖 􏼗􏼒 􏼓 +(l’ − s’)

≤
3r + 2(l’ − s’)

3

�
r + 2(r − 1 + 1) + 2(l’ − s’)

3

�
r + 2(p + 1) + 2 l′ − s

′
􏼒 􏼓

3
.

(4)

From (3) and (4), we get cf0
(Τ) + c∗fm(Τ)≤ (r + 2(p + 1)

+2(l’ − s’)/3). It follows that

3 cf0
(Τ) + c

∗
fm(Τ)􏽮 􏽯≤ r + 2p + 2 + 2(l’ − s’) + 2 − 2

⟹3 cf0
(Τ) + c

∗
fm(Τ)􏽮 􏽯 + 2≤ r + 2p + 4 + 2(l’ − s’).

(5)

For P2 and P4, Teorem 16 gives the exact bound value.
Tis completes the proof. □

Theorem 17. For every tree with α(Τ)≥ 2, then cf1
′ (Τ) +

c∗fm(Τ)≤ r + p − rad(Τ) − α and the bound is sharp.

Proof. Let Τ be a graph with no cycles, with the vertex as M,
the edge as N, the maximum degree as α, and the radius as
rad(T ). Take f to be the minimal FMXDF of T. Te degree
of an edge is described as d(n) � d(m1) + d(m2) − 2. Te
vertex set can be divided into the following sets:
Mα1 � m ∈M: f(m) � 1 andm ∈ α(T )􏼈 􏼉, Mα0 � m ∈{

M: f(m) � 0 andm ∈ α(T )}, Mβ1 � m ∈M: f(m) � 1􏼈

andm ∈ β(T )}, Mβ0 � m ∈M: f(m) � 0 andm ∈ β(T )􏼈 􏼉,
Mq0 � m ∈M: f(m)􏼈 � 0 andm ∉ β(d(m))∩ α(d(m))},
and Mq1 � m ∈M: f(m) � 1 andm ∉ β(d(m))􏼈 ∩ α (d

(m))}. Te edge set can be divided as Nα1 � n ∈ N{

: f(n) � 1 and n ∈ α}, Nα0 � n ∈ N: f(n)􏼈 � 0 and n ∈ α},
Nβ1 � n ∈ N: f(n) � 1 and n ∈ β􏼈 􏼉, Nβ0 � n ∈ N: f(n)􏼈

� 0 and n ∈ β}, Nq0 � n ∈ N: f(n) � 0 and􏼈 n ∉ β(d(n))

∩ α(d(n))}, and Nq1 � n ∈ N: f(n) �􏼈 1 and n ∉ β(d(n))

∩ α(d(n))}. Ten, the poundage of f is

c
∗
fm(Τ) � 􏽘

x∈M∪N
f(x) � 􏽘

m∈M
f(m) + 􏽘

n∈N
f(n)

� 􏽘
m∈Mα1 ∪Mα0

f(m) + 􏽘
m∈Mβ1 ∪Mβ0

f(m) + 􏽘
m∈Mq1 ∪Mq0

f(m) + 􏽘
n∈Nα1 ∪Nα0

f(n) + 􏽘
n∈Nβ1 ∪Nβ0

f(n) + 􏽘
n∈Nq1 ∪Nq0

f(n)

� Mβ1 ∪Mα1 ∪Mq1 ∪Nβ1 ∪Nα1 ∪Nq1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

<Mβ0 ∪Mβ1 ∪Mα1 ∪Mα0 ∪Mq1 ∪Mq0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + Nβ0 ∪Nβ1 ∪Nα1 ∪Nα0 ∪Nq1 ∪Nq0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

� r + p − rad(Τ) − α(Τ).
(6)

By Corollary 13, we have cf1
′ (G′)≤ c∗fm (G′). Terefore,

we have two cases here.
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Case (i): if cf1
′ < c∗fm, then

cf1
′ + c
∗
fm � 2 􏽘

n∈N
f(n)⎡⎣ ⎤⎦ + 􏽘

m∈M
f(m)

� Mβ1 ∪Mα1 ∪Mq1 ∪Nβ1 ∪Nα1 ∪Nq1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

≤ r + p − rad(Τ) − α(Τ).
(7)

Case (ii): if cf1
′ � c∗fm, then

cf1
′ + c
∗
fm � 2 􏽘

n∈N
f(n)⎡⎣ ⎤⎦ + 􏽘

m∈M
f(m)

� Mβ1 ∪Mα1 ∪Mq1 ∪Nβ1 ∪Nα1 ∪Nq1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

≤ r + p − rad(Τ) − α(Τ).
(8)

From Case (i) and Case (ii), we get cf1
′ (Τ) + c∗fm

(Τ)≤ r + p − rad(Τ) − α. For P3 and P4, Teorem 17 gives
the exact bound value. □

Defnition 18 (see [10]). Te length of the shortest path
between a pair m1, m2 ∈M(G′) is said to be the distance
d(m1, m2 ) between them. Let C � ms􏼈 􏼉 where s � 1, 2, ..., l

and C⊆M(G′) and let y ∈M(G′). Te distance represen-
tation rsC (y) is the vector (d(y, m1), d(y, m2), ..., d(y, ml))

of distances from y to ms(1≤ s≤ l). Such a set is called
a resolving set in G′. A resolving set of minimum cardinality
is said to be a metric dimension of G′, and it is denoted by
dim(G′) or β(G′). If C′ � C \ m is also a resolving set for any
m ∈ C, then C′ is called a fault-tolerant resolving set of G′.
Te smallest cardinality of the fault-tolerant resolving set is
said to be the fault-tolerant metric dimension, and it is
denoted as dimf (G′) or β′ (G′). For our convenience,
dim(G′)(dimf (G′)) is the metric dimension (fault-tol-
erant metric dimension) instead of β(G′)(β′ (G′)),
respectively.

Defnition 19 (see [7]). Te graph honeycomb rectangular
torus, denoted by HRTr,c, is a graph constructed with r � 4
where r is the number of rows and c≥ 4(c � even) is the
number of columns. Te order and size of this graph are 4 × c

and 4 × (c + ℘ + 1), respectively, where ℘ � 1, 2, 3, ..., c. Te
graph HRTr,c is 3-regular graph. Te vertex and edge sets are

given, respectively, as V (HRTr,c) � ai,℘;􏽮 i � 1, 2, ..., 4,℘ �

1, 2, 3, ..., c}, E(HRTr,c) � ai,℘ai,℘+1; i � 1,􏽮 2, ..., 4,℘ � 1, 2,

3, ..., c − 1} ∪ ai,1ai,℘; i � 1, 2, ..., 4,℘ � c􏽮 􏽯∪ a1,℘􏽮 a4,℘;℘ �

1, 2, 3, ..., c − 1}∪ ai,℘ai+1,℘; i � 1,3; ℘ � 2, 4, 6..., c􏽮 􏽯∪ a2,℘􏽮

a3,℘; ℘ � 1, 2, 3, ..., c − 1}.

Theorem 20 (see [7]). Let HRT4,c be a rectangular honey-
comb structure with c≥ 4(c � even). Ten, dim(HRT4,c) � 4.

Theorem 21 (see [7]). Let HRT4,c be a rectangular honey-
comb structure with c≥ 4(c � even). Ten, dimf

(HRT4,c) � 8.

Theorem 22. If HRT4,c is a rectangular honeycomb structure
with c≥ 4(c � even), then c∗fm(HRT4,c) � ([4 × c] + [4×

(c + ℘ + 1)]/7).

Proof. Let HRT4,c be a honeycomb rectangular torus with
c≥ 4(c is even) and also assume f as a minimal FMXDF of
HRT4,c. In this theorem, we put the function value 1/7 for
each and every element (x ∈M∪N) of HRT4,c. Terefore,
the poundage of f is p(f) � c∗fm(HRT4,c) � 􏽐x∈M∪Nf(x) �

(|M| + |N|/7) � ([4 × c] + [4 × (c + ℘ + 1)]/7). □

Theorem 23 (see [9]). A connected graph has metric di-
mension 1 if and only if it is the path graph.

Theorem 24 (see [11]). A graph has β′ (Γ) � 2 if and only if
it is the path graph.

Theorem 25 (see [13]). For integer n≥ 3, let Cn be the
n-dimensional ring network. Ten, β′ (Cn) � 3.

Theorem 2 (see [8]). Let Kt1 ,t2 ,...,tr
be the complete r-partite

graph with 1≤ t1 ≤ t2 ≤ ...≤ tr and 􏽐
r
i�1ti � n. Ten,

β(Kt1,t2 ,...,tr
) � 􏽐

r
i�1ti − r � n − r.

Theorem 27 (see [8]). Let Kt1 ,t2 ,...,tr
be the complete r-partite

graph with 1≤ t1 ≤ t2 ≤ ...≤ tr and 􏽐
r
i�1ti � n. Ten,

β′ (Kt1 ,t2 ,...,tr
) � 􏽐

r
i�1ti � n.

Theorem 28. If Kt1 ,t2 ,...,tr
is the complete r-partite graph with

1≤ t1 ≤ t2 ≤ ...≤ tr, then

c
∗
fm Kt1 ,t2 ,...,tr

􏼐 􏼑 �

1, for 1 � t1 ≤ t2 ≤ . . . ≤ ti, (i � 2, 3, . . . , r),

2, for 2 � t1 ≤ t2 ≤ . . . ≤ ti, (i � 2, 3, . . . , r),

|M| +|N|

Nm[x] |
􏼌􏼌􏼌􏼌

, otherwise,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(9)
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where |M| and |N| represent the cardinality of the vertex set
and edge set of Kt1 ,t2 ,...,tr

.

Proof. Consider Kt1 ,t2 ,...,tr
as a complete r-partite graph with

1≤ t1 ≤ t2 ≤ ...≤ tr, and also assume f as a minimal FMXDF
of Kt1 ,t2 ,...,tr

. Te cardinality of the vertex and edge sets can be
represented as |M| and |N|, respectively.

Case (i): if r � 2, then we have to fnd the FMXDN of
Kt1 ,t2

with 1≤ t1 ≤ t2.

Subcase (i): Suppose 1 � t1 ≤ t2. Tus, we assign the
value 1 for a maximum degree vertex and 0 to the rest
of the elements of Kt1 ,t2

. Ten, the poundage is
p(f) � c∗fm(Kt1 ,t2

) � 1.
Subcase (ii): Suppose 2 � t1 ≤ t2. Ten, we assume the
value 1 for all maximum degree vertices and 0 for the
rest of the elements of Kt1 ,t2

. Ten, p(f) � c∗fm

(Kt1 ,t2
) � 2.

Subcase (iii): Take 3≤ t1 ≤ t2. In this case, we assign the
value 1/|Nm[x � v] | for all x ∈M(G′), where v is the
minimum degree vertex of Kt1 ,t2

. Ten, p(f) �

c∗fm(Kt1 ,t2
) � 1/ | Nm[v] | + 1/ | Nm[v] | + . . . +(|M|+􏼈

|N|)times} � |M| + |N|/|Nm[x] |.

Case (ii): if r � 3, then we have to fnd the FMXDN of
Kt1 ,t2 ,t3

with 1≤ t1 ≤ t2 ≤ t3.

Subcase (i): Let 1 � t1 ≤ t2 ≤ t3. Here, assign the value 1
for a maximum degree vertex and 0 for the rest of the
elements of Kt1 ,t2 ,t3

. Ten, the poundage is p(f) �

c∗fm(Kt1 ,t2 ,t3
) � 1.

Subcase (ii): Let 2 � t1 ≤ t2 ≤ t3. Now, assign the value
1 for all maximum degree vertices and 0 for the rest of
the elements of Kt1 ,t2 ,t3

. Ten, p(f) � c∗fm(Kt1 ,t2 ,t3
)

� 2.
Subcase (iii): Let 3≤ t1 ≤ t2 ≤ t3. In this case, we assign
the value 1/|Nm[x � v] | for all v ∈M(G′), where
v is the minimum degree vertex of Kt1 ,t2 ,t3

. Ten,
p(f) � c∗fm(Kt1 ,t2 ,t3

) � 1/ | Nm[v] | + 1/ | Nm􏼈 [v] | +

. . . + (|M| + |N|)times} � |M| + |N|/ |Nm[x] |.

Case (iii): in general, continuing the above process for
r≥ 4, we have to fnd the FMXDN of Kt1,t2 ,...,tr

with
1≤ t1 ≤ t2 ≤ ...≤ tr.

Subcase (i): Take 1 � t1 ≤ t2 ≤ ...≤ tr. Ten, assign the
value 1 for a maximum degree vertex and 0 for the rest
of the elements of Kt1 ,t2 ,...,tr

. Ten, the poundage is
p(f) � c∗fm(Kt1 ,t2 ,...,tr

) � 1.

Subcase (ii): Take 2 � t1 ≤ t2 ≤ ...≤ tr. Here, we put the
value 1 for all maximum degree vertices and 0 for the
rest of the elements of Kt1 ,t2,...,tr

. Ten, p(f) �

c∗fm(Kt1 ,t2 ,...,tr
) � 2.

Subcase (iii): Take 3≤ t1 ≤ t2 ≤ ...≤ tr. In this case, we
assign the value 1/|Nm[x � v] | for all x ∈M(G′),
where v is the minimum degree vertex of Kt1,t2 ,...,tr

.
Ten, p(f) � c∗fm(Kt1 ,t2 ,...,tr

) � 1/ | Nm􏼈 [v] | + 1/
| Nm[v] | + . . . + (|M| + |N|)times} � |M| + |N|/|Nm

[x] |. □

Theorem 29. For any tree, c∗fm(T )≤ dim(T ) + r − 1/2⌊ ⌋

and this bound is sharp for Pr, where r � 2, 4, and 6.

Proof. Let T be a tree with r vertices and r − 1 edges.
Consider f as a minimal FMXDF of T, and by Defnition 18,
defne a resolving set rsC(m) � (d(m, m1), d(m, m2),

..., d(m, ml)) represents the distances from m to ms (1≤
s≤ l) forming the resolving set of m with respect to C where
C � ms/1≤ s≤ l􏼈 􏼉. Now we have to compare the value of
FMXDN and the resolvability parameter like metric di-
mension (the resolving set with minimum cardinality). By
using Teorems 1 and 23, we obtain the inequality as
c∗fm(Pr )≤ dim(Pr) + r − 1/2⌊ ⌋. Suppose T is a star graph
with m, mi, where 1≤ i≤ r. By Teorem 3, we obtain
c∗fm(K1,r ) � 1. Now we have to fnd the resolving set for
K1,r. When r � 1, the resolving set rs � m1. Next, the re-
solving set for K1,2 is rs � m1􏼈 􏼉. For K1,3, the resolving set is
rs � m1, m2􏼈 􏼉. Continuing this way we obtain the minimum
resolving set for K1,1 and K1,2 is 1, and k1,r � r − 1 for r≥ 3.
Terefore, c∗fm(K1,r )≤ dim(K1,r)+ r − 1/2⌊ ⌋. In this way, we
create a resolving set for any tree and obtain the inequality as
c∗fm(T )≤ dim(T ) + r − 1/2⌊ ⌋. Terefore, Teorem 29 is
sharp for the path Pr, where r � 2, 4, and 6.

Table 1 provides a comparison between the FMXDN and
some resolvability-related parameters of certain graphs, such
as paths, cycles, honeycomb rectangular toruses, and
complete multipartite graphs. □

Theorem 30. For any graph G′, we have ⌊c∗fm(G′) + 1⌋ ≥ −

r + 2max ⌈α + 2/2⌉, ⌈β + 2cf0
(G′)/2⌉􏽮 􏽯 and this bound

is sharp.

Proof. Consider G′ as a graph with a cardinality of vertex set
M as r, α as its maximum degree, and β as its minimum
degree. Let f be the smallest FMXDF of G′. Here, we have
two claims.

Claim 1: ⌊c∗fm(G′) + 1⌋ ≥ − r + 2⌈α + 2/2⌉. For all
FMXDFs, we write every closed region of an edge as
Rm[m1m2] � f(m1) + Sm1

+ f(m2) + Sm2
− f(m1m2)

for all n1 � m1m2 ∈ N(G′), where Sm1
and Sm2

denote
the star of m1 and m2, and we write every closed mixed
neighbourhood of a vertex as f[m] � R[m] + Sm for
every m ∈M(G′). Ten, the poundage of f is p(f) �

c∗fm(G′) � 􏽐n1�m1m2∈N(G′)f[m1m2] + 􏽐m∈MG′f[m]≥
1≥ α. It follows that c∗fm(G′)≥ α⟹ c∗fm(G′)≥ ⌈α/2⌉.
Ten, obviously,

c
∗
fm G

′
􏼒 􏼓 + 1􏼖 􏼗≥ − r + 2

α + 2
2

􏼘 􏼙. (10)

Claim 2: ⌊c∗fm(G′) + 1⌋ ≥ − r + 2⌈β + 2cf0
(G′)/2⌉. In

this claim, the poundage of f is, c∗fm(G′) � 􏽐x∈M∪N
f(x) � 􏽐n1�m1m2∈N(G′)f[m1m2] + 􏽐m1∈MG′f

[m1]≥􏽐m1∈MG′f[m1] � r≥ cf0
(G′). It follows that

⌊c∗fm(G′) + 1⌋ > cf0
(G′)> − r + cf0

(G′). Here β≥ 1;
then obviously

8 Journal of Mathematics



Ta
bl

e
1:

T
e
co
m
pa
ri
so
n
of

ot
he
r
re
so
lv
ab
ili
ty
-r
el
at
ed

pa
ra
m
et
er
s.

G
ra
ph

s
M
et
ri
c
di
m
en
sio

n
(
di
m

(
G
′ )

)
T

e
fa
ul
t-
to
le
ra
nt

m
et
ri
c
di
m
en
sio

n
(
di
m

f
(

G
′ )

)
FM

X
D
N

c
∗ fm

(
G
′ )

Pa
th

(P
r
)

1
2

⌊(
2r

+
3)
/5

⌋

C
yc
le

(C
r
)

2
3

2r
/5

H
RT

4,
c

4
8

(
[4

×
c]

+
[4

×
(

c
+
℘

+
1)

])
/7

K
t 1

,t
2,

..
.,
t r

n
−

r
n

1
fo
r1

�
t 1
≤

t 2
≤

..
.≤

t i
(

i
�
2,
3,

..
.,

r)

2
fo
r2

�
t 1
≤

t 2
≤

..
.≤

t i
(

i
�
2,
3,

..
.,

r)

(
|M

|
+

|N
|)
/(

|N
m

[x
]

|)
ot
he
rw

ise

⎧⎪ ⎨ ⎪ ⎩

Journal of Mathematics 9



P2 (or)K1,1

K4

K6

K1,3 K1,5

Figure 3: Sharpness with P2, K4, K6, and K1,r, where r is odd.
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Figure 4: G′.
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c
∗
fm􏽪 G

′
􏼒 􏼓 +1⌋≥ − r + 2

β + 2cf0
G
′

􏼒 􏼓

2
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥

. (11)

From (10) and (11), we get ⌊c∗fm(G′) + 1⌋ ≥ − r + 2max
⌈α + 2/2⌉, ⌈β + 2cf0

(G′)/2⌉􏽮 􏽯. Furthermore, this bound is
sharp for P2, K4, K6, and K1,r when r is odd. Figure 3 gives
the sharpness of Teorem 30. □

4. Application

Te fractional mixed domination is used in hospitals. In this
situation, the vertex set can be as various types of seven patients.
Te edge set is the connection between those patients having
any one of the common symptoms (like shortness of breath,
fever, fever and chills, lung infection, nausea and vomiting,
abdominal pain, and diarrhea (see Figure 4)).

Doctors’ aim is to reduce the patients’ disease symptoms in
a minimum number of hours. Here, the fractional mixed
domination number illustrates that the minimum number of
hours to reduce the disease of the patients. Here, in Figure 4,
c∗fm(G′) � 3.

5. Conclusion

We found the exact value of the FMXDN of some standard
graphs, such as paths, cycles, the middle graph of the paths
and cycles, and shadow graphs. Also, some upper bounds on
the sum of the two fractional dominating parameters, whose
resultant graph gives this inequality cf1

′ (Τ) + c∗fm(Τ)≤
r + p − rad(Τ) − α, were obtained in terms of fractional edge
domination and fractional mixed domination. Finally, we
provided a comparison result of c∗fm and other resolvability
parameters such as metric and fault-tolerant metric di-
mension. Tis new parameter will be applicable for the
optimization problems in our future work.
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