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Let G' be a simple, connected, and undirected (UD) graph with the vertex set M(G') and an edge set N(G'). In this article, we define
a function f: MUN — [0, 1] as a fractional mixed dominating function (FMXDF) if it satisfies f (R,, [x]) = Z},eRm wf (=1
forall x € M(G)UN(G), where R, [x] indicates the closed mixed neighbourhood of x, that is the set of all y € M (GYUN(G)
such that y is adjacent to x and y is incident with x and also x itself. Here, p(f) = Y cpun f (%) is the poundage (or weight) of f.
The fractional mixed domination number (FMXDN) is denoted by y7,, (G') and is designated as the lowest poundage among all
FMXDFs of G'. We compute the FMXDN of some common graphs such as paths, cycles, and star graphs, the middle graph of
paths and cycles, and shadow graphs. Furthermore, we compute upper bounds for the sum of the two fractional dominating
parameters, resulting in the inequality y}l (D) + ¥}, (D <1+ p-rad(T) - a, where y }1 and yj, are the fractional edge
domination number and FMXDN, respectively. Finally, we compare y7,, to other resolvability-related parameters such as metric
and fault-tolerant metric dimensions on some families of graphs.

1. Introduction

Throughout this article, we use G’ as a graph with vertex set
M(G') and an edge set N(G') and T is referred to as a tree.
The maximum degree is indicated by «, which is the degree
of the vertex with the greatest incident edges. The vertex with
the lowest incidence edges is said to have the smallest degree
B. A vertex of degree one is known as a pendant vertex. In the
case of trees, a pendant vertex is known as leaf because it has
only 1 degree and it is denoted by (I, ), while its neighbour is
known as a support vertex (s;). The greatest distance be-
tween a vertex m, and any other node in G’ is known as the
eccentricity of m,; (see [1]). The smallest eccentricity is
represented by the radius rad (G') of G'. For any
m, € M(G'), the open neighbourhood of m, is represented

as the set of all vertices adjacent to m, € M (G'), and it is
denoted by R(m,), and the closed neighbourhood of m, is
denoted by R[m,] = R(m;)U{m,} (see [2]). Similarly, for
any edge n, € N(G'), the open and closed neighbourhoods
of n, are defined as R(n,) = {n € N such that n is adjacent to
m} and R[n;] = R(n;)U{n, }, respectively. The set of all
edges incident to m as well as the vertices adjacent to m is the
open mixed neighbourhood of a vertex m. The collection of
incident vertices m, and m, as well as all the edges adjacent
to n = m;m, is described as the open mixed neighbourhood
of an edge n.

Throughout this paper, we choose an element
x € M(G)UN(G), and the open mixed neighbourhood of
x is indicated by R, (x), which is the set of all
y € M(G')UN (G') such that y is adjacent to x as well as y is
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incident with x, and the closed mixed neighbourhood of x is
denoted by R, [x] = R,, (x) U {x}. Recall that a set BC M is
called a dominating set of G' if every vertex of M — B is
adjacent to at least one vertex in B. The minimum cardinality
of all possible dominating sets in G’ is given by the dom-
ination number y (G'). Haynes et al. [3] presented the
concept of multiple types of graph domination and also gave
some information on fractional dominating function and
mixed domination number. A set RCM UN is said to be
a mixed dominating (MXD) set of G’ if every element not in
R has at least one mixed element in R. The mixed domi-
nation number y,, (G') of G’ is the minimum cardinality of
all possible MXD sets of G'. In 1992, Sampathkumar and
Kamath [4] worked on the concept of mixed domination
number, in which vertices dominate edges in certain ways
and vice versa.

Define a dominating function f,: M (G) — [0, 1]
which is known as a fractional dominating function (FDF) if
fo(RIm]) = ¥, erpmyfo (my) 21 for every m € M (G'). The
fractional domination number s, (G') is the minimum
poundage (weight) among all fractional dominating func-
tions of G', where the poundage of f, is p(f,) =
Ymem(G)fo(m). Scheinerman and Ullman worked on the
concept of fractional domination number for the minimum
weight among all FDFs of G’ in [5]. Similarly, we define
a dominating function f;: N (G') — [0, 1] which is said to
be fractional edge dominating function if f,(R[n])
=Y erimf1(n) 21 for every ne N (G"). The fractional
edge domination number y}l (G") is the minimum

poundage of all fractional edge dominating functions of G/,
where the poundage of f, is equalto Y’y (s f1 (1) (see [6]).
We define a fractional mixed dominating function (FMXDF)
is a function f: MUN — [0, 1] if f (R, [X]) = X er [x]
f(y)=1forall x € M(G') U N(G'). The poundage of f is
given by p(f) = Y emunf (x). The fractional mixed domi-
nation number is used by the symbol of y7,, (G"), which

represents the function with the least poundage among all
FMXDFs of G'. For convenience, we take f, f;,and f as the
fractional dominating function, fractional edge dominating
function, and FMXDF of G'. For every FMXDFs, we write
every closed mixed neighbourhood of an edge of G’ as
R, [mim,] = f(m)+S,, + f(m,)+S,, — f(mm,) forall
m;m, € N(G'), where star of m, and m, is the set of all
incident edges of the vertex m, and m,, and it is denoted by
S, and S, , and we write every closed mixed neighbourhood
of avertex of G’ as R, [m] = R[m] + S, for every m € M(G').

In [7-13], the authors studied the resolvability-related
parameters like the metric dimension and fault-tolerant
metric dimension of certain families of graphs. The classi-
fication of total dominating and fractional dominating pa-
rameters is by removing a vertex from graph G, and its
related concepts are provided in [14, 15]. The concept of
reinforcement number with respect to half domination

Journal of Mathematics

number is given in [16], and Sridharan et al. [17] introduced
the parameter y,(G), where 0<A<1, with the help of
{0, (1/2),1}.

In recent years, various fractional dominating parameters
that define the function of the domain set as either the vertex
set or an edge set independently have been researched. Here,
we combined the concept of a FDF and MXD set to create
a function with the domain set as both a vertex and an edge set
(VUE) for the minimum weight with the condition of the
summation of the closed mixed neighbourhood of any ele-
ment x € VUE, which is at least one. In this paper, we in-
troduce the concept of fractional mixed domination number
and develop some of the results derived from this parameter.
The fractional mixed domination number is greater than or
equal to the fractional domination number of graph, which is
the significance of this article.

In Section 2, we enumerate the FMXDN of some standard
graphs, such as paths, cycles, star graphs, the middle graph of
the path graphs, and the shadow graphs. In Section 3, provides
the upper bound on the sum of the two parameters where
fractional edge domination and FMXDN, whose resultant
graph gives y; (T) + Yim (D) <1+ p—rad (T) - .

2. Some Standard Graphs

This section discusses the FMXDN of some definitive graphs
such as paths, cycles, star graphs, the middle graphs of paths
and cycles, and shadow graphs.

Theorem 1. If P, is a nontrivial path with r>2, then
y}m(P,) = |2r + 3/5].

Proof. Let G' be a path with r>2 vertices, where
my,m,,...,m, represent vertices of P, and n,n,,..,n,_,
represent edges of P,. Here, |[M(P,)|=r, and |[N(P,)|
=r— 1. Let x;, (1<i<2r — 1), represent elements of P, that
are both either vertices or edges. For P,, obviously
y;}m(Pz) =1 =|2r + 3/5]. For P,.

In Figure 1, first we assign the value 1 to f (m,) and
f (n3) and 0 to the rest of the elements. In another way, we
assign s/t to f(n;) and f (m,) and (1 -s/t) to f (m,) and
f(n;) and 0 to the remaining elements, where s<t,s
=1,2,..t -1, and t>2. For example, we assign the frac-
tional value f (n,), f(m,) = (1/2) and f (n3), f (m,) = (1 -
(1/2)), and the remaining elements are assigned the value of
zero. Next, we set the fractional value f (n,), f (m,) = (1/3)
or (2/3) and f(n3), f (m,) = (1 - (1/3))or (1 - (2/3)) and
the remaining elements are assigned the value of zero. Again,
we set the fractional values f (n,), f (m,) = (1/4) or (2/4) or
(3/4) and f(n3), f (m,) = (1 - (1/4)) or (1 — (2/4)) or (1 -
(3/4)) and the remaining elements are assigned the value of
zero. We assign the values in this way. The only condition is
when to give (s/t) to f (n;) and f (m,), and other f (m,) and
f (n;) must have (1- (s/t)). For the possibilities listed
above, we have y}m (Py) =2=2r+3/5].
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Case (i): For r = 5k + 3, where k € Z* and Z" is the

positive integer. Let x be any element that is either

a vertex or an edge. In this case, we define a function

f: MUN — [0, 1] by
_ |1 ifmsg,andns,

fx)= {0 otherwise )

For an integer g, (0<g<[r/2] - [r —2/4]). Thus, the

poundage of f is p(f) = ¥}, (G)=Yrepunf (x) =

|27 + 3/5].

Case (ii): for r = 5k, 5k + 1, where k € N, where N as

a natural number.

Subcase (i): when r = 5k.

Similarly, we assign the value 1 to f (ms,,,) and f
(1154.4) and we give 0 to the remaining elements. This
means  that  p(f) =1,  (G)=Yeeyin S (¥) =
[2r + 3/5] is the poundage of f.

Another way: Alternately, to provide the function
values for P5, we assign (s/t) to f (n;) and f (m,) and
(1- (s/t)) to f (m,) and f (n,) and O to the remaining
elements, where s<t,s=1,2,..,t -1, and t>2. In
this way, we proceed with the paths P, Pys, . .. to get
the poundage of P,, where r = 5k. Generally, we as-
sign the values of the paths Py, Ps, ... as (s/t) to the
elements ms,,, and ns,,4, and assign 1 - (s/t) to the
elements Msg.4 and Nsgi1> and 0 to the remaining
elements, where g€ Z,and (0<q<[r/2]—|r—-2/
4]). This implies that poundage of f is p(f) =7,
(G =Y emunf (x) = [2r +3/5].

Subcase (ii): when r = 5k + 1.

We assign the value 1 to f(msg,), f(fs55.4),
and f (m,) and we give 0 to the remaining elements.
Another way: Alternately, to provide the function
values for Py, we assign f(n,), f(m,) = (s/t) and
fny), f(my) = (1-(s/t)), f(mg)=1 and the
remaining elements are assigned a value of zero. In
this way, we proceed with the paths P, Py, . . . to get
the poundage of P,, where r = 5k + 1. In general, we
assign the values of the paths P,;, Py, ... as (s/t) to
the elements m;,,, and 75,4, and assign 1- (s/t) to
the elements ms,,, and nsg,, f (m,) = 1, and 0 to the
remaining elements. This implies that poundage of fis
PO = Vi (G =Y emon f (x) = 127 +3/5].

Case (iii): for r = 5k + 2,5k + 4, where k € N.

Subcase (i): In the similar process of the above cases,
for r = 5k + 2, we assign 1 to ms,,, and ns5,,4, and 0 to
the rest of the elements. For r = 5k + 4, we assign 1 to
Msg.2> Nsgrso a0d 1,y and O to the rest of the elements.
Thus, the poundage of f is p(f) =y},
(G =Y cemon f (x) = | 2r + 3/5].

Another way: For r =5k +2, the values (s/t) are
assigned to ms,,, and 15,4, and 1 — (s/t) is assigned to
Msg.4 and ns.,,, and 0 is assigned to the remaining
elements. For r = 5k + 4, the values (s/t) are assigned
to 54,5, Nsgry> and n,_; and 1 - (s/f) is assigned to

Msg.q and ngg., and 0 is assigned to the remaining
elements, where s<t,s=1,2,....t =1, and t>2, and
(0<g<[r/2]—|r—-2/4]). This implies that the
poundage of f is p(f) = ¥, (G)= ey f (x) =
|27 + 3/5]. O

Theorem 2. For any cycle C, with r=3, we have
Yim (C.) = (2r/5).

Proof. Let G'=C, be a cycle graph with r >3 vertices. Let
my,m,,...,m, be the vertices of C, and n;,n,,...,n, be the
edges of C,. Here, IM(C,)| =7 = [N(C,)|. Let x be an el-
ement of C,, which is either a vertex or edge. We define
a function f: M(C,)UN (C,) —[0.1] by f(x;) = (1/5)
for all i, where x € M U N. In this graph, we have f (R[x;]) =
1 for every i, and its poundage is the minimum among all the
FMXDFs of C,. Thus, the poundage of f is p(f) =77,
(€)= Terton f () = (2115). 0

Theorem 3. For r>2, y,, (K;,) =1

Proof. Let G' be a star graph and m, m; (1 <i<r) be vertices
of G' =K, where m is the central vertex of K, ,. Now, we
define a function f;: MUN — [0, 1] by f,(m)=1,
fi(m)=0 and f,(mm;) =0. This implies that the
poundage of f;is p(f;) = D emunf1 (%) = 1. Suppose if we
define another function f,: MUN — [0, 1] by f,(m) =
0, f,(mm;) =0 and f,(m;) =1 for all i; then, obviously
pUf2) = fr(m)+ f(m)+ f,(mm)>1 = p(f,). As a re-
sult, p(f,) is the smallest when compared to (f,). Hence,
Yim (Ky) = L. O

Theorem 4. For any complete graph K, with r 22, then y7,,
(K,)= (r+s/r +t), where s and r are size and order, re-
spectively, and t > 1.

Proof. Let G' =K, be a complete graph with r >2. Consider
that r and s represent the order and size of G', and t =2, 3, 4,

. Here, we define a function f: MUN — [0, 1] by
f(x;) = (1/IR,,[x]]) for all i, where x € M UN. Then, the
poundage of f is Yim (G =Y emonf (x) = (r+s/r+t).
Thus, 7, (G"Y=(r +s/r +1). O

Observation 5 (see [6]). For any graph G, we have
Y (G) = y(L(G)). Hence, it follows that ¥+ (C,) = y,(C,) =
n/3 and y}(Pn) = yf(Pn_l) =[n-1/3].

Corollary 6. If ys (P,) = [r/3] and y%,, (P,) = |2r +3/5]
for any path graph P,, then y; (P,) <y}, (P,).

Proof. From Observation 5, we have y; (P, ;) = [n—-1/3]
and in this paper, for our convenience, we take the notation
of FDF as Vs, Then, y (P,) = [r/3]. By Theorem 1, we have
Yim(Py) = [2r + 3/5]. 'Therefore, we get y; (P,) <y,
(P,). O



Figure 1: Path P,.

Corollary 7. For any cycle C, with r>3, we have
Yf, (C,) = /3, which is always less than (2r/5) = y}m (C,).

Proof. From Observation 5, we have y( (C,) = r/3 and by
Theorem 2, we have y;m (C,) = 2r/5. Thus, Y, (C)=r/3<
(2r/5) = v5,, (C,). O

Definition 8 (see [18]). The shadow graph of a connected
graph G is constructed by taking two copies of G, say G’ and
G". Join each vertex of u’' of G’ to the neighbours of the
corresponding vertex u" of G”. The shadow graph of G is
denoted by D, (G).

Definition 9 (see [18]). The middle graph of a connected
graph G denoted by M(G) is the graph whose vertex set is
V (G) U E(G) where two vertices are adjacent if

(i) They are adjacent edges of G

(ii) One is a vertex of G and the other is an edge incident
with it

Theorem 10. For r>3, the shadow graph of P, is
y}m(D2 (P,))=r—-1.

Proof. Consider two copies of P, and assume that
G' =D, (P,) is a shadow graph with r > 3. Let m;,m,, ...,m,
represent the vertices of the first copy of P, and m;,'m,, ..., m,
represent the vertices of a second copy of P,. Let
ny,M,,....M,_; be the edges of the first copy of P, and
i, My, ..., 1n,_| be the edges of a second copy of P,, with n,
connecting m; and m;,,, and #; connecting m; and m;, ;. Here,
|M(G")|=2r and |[N(G')|=4 (r—1). Assume f (q) = 1/5 for
all g€ MUN when r=2. Then, the poundage of f is
p(f) =8/5. For r >3, the function f: MUN — [0, 1] is
defined by the following types of possibilities:

(i) Ifr = 3k, where k € N, then we assign a value of 1 to
f (nsg,), f (m,,), and f(n;,,5), and a value of 0 to
the remaining elements of G'.

(ii) If r = 3k + 1, where k € N, then we assign a value of
1 to f(ns,,), f (M3,,,), and f(m;,,), and a value of
0 to the remaining elements of G'.

(iii) If r = 3k + 2, where k € N, then we assign a value of
1to f(n3g,1), f (M3,), fins,s), and f (m,_,), and
a value of 0 to the remaining elements of G’, where
se Z,(0<s<[r—3/2]). Then, the poundage of f is

Vim (G") =Y emun f (x) =7 — 1. Hence, Vim (D2
(P))=r-1. O

Theorem 11. The middle graph of path P, forr >2isy, (M’
(P.)=[r/2].
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Proof. Let m,,m,,...,m, be the vertices of the path and
1y, My, ..., n,_; be the edges of P,.

In this proof, we build the middle graph of path P,, that
is, G'=M'" (P,), with the vertex set M(G')={q, = (m;
Unj): (1<s<2r-1)} and an edge set N(G')={mn;,n,
My, MyNy, NyMy, ..o N, M, LU {1y, o1, ., on, . Here,
r = |m;|. In Figure 2, for M' (P,), we set f,(n;) =1 and
fo(ns) =1, and all other remaining vertices are set to 0. In
M' (Ps)has f(n)) =1, f,(n3) = Land f, (ms) = 1, with the
remaining vertices all being 0. Now, we define a function
fo: M(M' (P,)) — [0, 1] by

1, formns,, orny,, andm,,

5) = (1)
fola:) { 0, otherwise,

where t € Z, (0<t < [r/2] - 1). Then, the poundage of f, is

p](fo) =Y memc)fo(m) = [r/2]. Hence, s, (M'(P,))=r/
2]. O

Theorem 12. For r>3, y;, (M (C,))=[r/2].

Proof. Consider the graph G'=M' (C,) with r>3. A frac-
tional dominating function f is defined as f,: M(G') —
[0, 1] by f, (m;)=1/5 for all i, where 1<i<2r. Thus, the

poundage of f is p(fo) = Xem(c) fo (M) = [r/2]. Hence,
vy, (M (C)=[r/2]. O

Corollary 13. For any graph G', the following holds true:

i)y, ()<}, (G).

(ii) y}l (G')Sy;}m (G'), where f, and f, are fractional
dominating and fractional edge dominating functions
of G

Proof. Assume G’ as connected graph and f as FMXDF of
G'. The fractional domination number y; (G')=},.em

fo(m) < Ysemuon f (%) =y}, (G).
Similarly, the fractional edge domination number y}l

(Gl) = ZneNf,I (1’1) < ZxGMUNf (X) = YJ;m (G,)

Corollary 14. For any path graph, y; (M’ (P,))<y},, (M’
(P,)).

Proof. From Theorem 11 and Corollary 13, we get y,, (M’
(P) <y}, (M (P)). o

Corollary 15. For r>3, we have y;, (M’ (C,))<y}m (M’
(C,)).

Proof. From Theorem 12 and Corollary 13, we get y; (M’
(C)) <V} M (C))). O

3. Bounds

In this section, we provide some bounds on gamma y%,, (G
in terms of fractional domination, fractional edge domi-
nation, maximum degree &, minimum degree 3, support s’,
and leaves I’ and compare Vm to other resolvability-related
parameters.
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M’ (P,)

1 2

1y n,

FiGure 2: Middle graph of P, and Ps.

Theorem 16. For each tree, we have 3{ny (T) + y}m (T)} +
2<r+2(' =s)+4+ 2p and this bound is sharp.

Proof. Let T be a tree with the number of vertices r, the
number of edges p, the number of leaves /', and the number

of supporting vertices s . For our convenience, we take the
notation as |[M(G)|=r and r—1= p= IN(G)|. In this
theorem, f is the least FMXDF of G'. A set of support
vertices and leaves in a tree T is represented by s (T) and
I'(T). Here, a (B) is the maximum (minimum) degree of
the vertex. The vertex set can be divided into the following

Vim (D= Y f(x)

x€MUN

S fm+ Y fw

meM neN
=Y fm+
meMl, UMI, meMs; U Ms

r

N

2

By Corollary 13, we have y (G') <y7,, (G"). Therefore,
we have two cases here.

N fm+

HMPHHML

sets:  Ms, = {m eM: f(m)=1,me s (T),and deg(m)
<a(T)}, Msy,= {m eM: f(m)=0,mes (T),and deg
(m)2B(T)}, Ml, ={m € M: f(m)=1,andm e [ (T)}, M
Iy = {m € M: f(m)=0,andm el (T)}, Mty ={meM: f
(m) = 1, and mis neither leaf nor support vertex}, and M
to={m e M: f(m) =0, andmisneitherleaf nor support
vertex}. Also, the edge set can be partitioned into two sets,
where Ny={neN: f(n)=0} and N, ={neN: f(n)
= 1}. Then, the poundage of f is

Y o fm+ Y fn (2)

meMt, UMt, N,;€UN,



Case (i): if s, < y}m, then

b+ vin=2| 3 s
eM

<([5])
<([5])+("=)

S3r+2(l -5)
3

+Y fn)

neN

r+2(r=1+1)+2(F -5

3

_r+2(p+ 1) +2(F =)
= 3 :

Case (ii): if y7, =77, then

A PR
o[-
af[g) e

S3r+2(l -5)
3

+Y fn

neN

r+2(r-1+1)+2(0-5)

3

r+2(p+1)+2<1'—s’>
3 :

VimD= Y f)=) fim+Y fn

x€MUN meM neN
= Y  fm+ > fm+
meMa,; UMa, meMp; UM,

(3)

(4)

Y fim+

meMgq, U Mg,

|MB, UMa, UMq, UNB, UNa, UNq,|
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From (3) and (4), we get Y, (T) + y}m (M<(r+2(p+1)
+2 (I = §°)/3). It follows that

My, (D + v}, (D} sr+2p+2+2(0-5) +2-2

—=3{y;, (1) +1;, (D} +2<r+2p+4+2(0 - 5).
(5)

For P, and P,, Theorem 16 gives the exact bound value.
This completes the proof. O

Theorem 17. For every tree with a(T)>2, then y}l (T) +
Yim (D <1+ p—rad(T) - « and the bound is sharp.

Proof. Let T be a graph with no cycles, with the vertex as M,
the edge as N, the maximum degree as «, and the radius as
rad (T'). Take f to be the minimal FMXDF of T. The degree
of an edge is described as d(n) = d(m,) + d(m,) — 2. The
vertex set can be divided into the following sets:
M, ={meM: f(m)=1landme a(T)}, My={me
M: f(m)=0andm e a(T)}, Mg = fmeM: f(m)=1
andm € B(T)}, Mg, = {meM: f(m)=0andm e B(T)},
My = {meM: f(m) =0andm ¢ B(d(m))na(d(m))},
and M, = {meM: f(m)=1andm ¢ f(d(m)) Na (d
(m))}. The edge set can be divided as N, = {neN
:f(n)=1landnea}, N, ={neN: f(n) =0andnea},
Ng ={neN: f(n)=1landnep}, Ng= {neN: f(n)
=0andn € f}, Ng = {neN: f(n)=0and n¢B(d(n)
Na(d(n))}, and Ng = {neN: f(n)= landn ¢ B(d(n)
Na(d(n))}. Then, the poundage of f is

Y f

neNg, UNgq,

Y e

neNB, UNB,

Y fmwe

n€Na; UNa,

<|MByUMB, UMa, UMayUMg, UMg,| +|NBy UNB, UNa; UNay, UNg, UNg,|

=r+ p—rad(T) — a(T).

By Corollary 13, we have y; (G') < Yfm (G'). Therefore,

we have two cases here.

(6)
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Case (i): if y}l <V then

y}l + y}m = ZLZ f(n)] +
eN
=|MB, UMa, UMgq, UNB, UNa, UNgq,|
a(T).

Y. f(m)

meM

<r+p-rad(T) -
(7)

Case (ii): if y}l = y}‘}m, then
y}l + y}m = ZLZ f(n)] +
eN

=|MB, UMa, UMgq, UNB, UNa, UNgq,|
a(T).

Y fm)

meM

<r+p-rad(T) -
(8)

From Case (i) and Case (ii), we get yf (T) + me
(T)<r+ p-rad(T) — a. For P; and P,, Theorem 17 gives
the exact bound value. O

Definition 18 (see [10]). The length of the shortest path
between a pair m;,m, € M(G') is said to be the distance
d(m,,m, ) between them. Let C = {m} where s =1, 2,...,1
and CC M (G') and let y € M (G). The distance represen-
tation s () is the vector (d (y,m,),d (y,m,),....,d (y,m;))
of distances from Yy tom (I<s<l). Such a set is called
aresolving setin G. A resolvmg set of minimum cardinality
is said to be a metric dimension of G, and it is denoted by
dim (G) orf3 (G ).IfC =C\misalsoa resolving set for any
m € C, then C' is called a fault-tolerant resolving set of G .

The smallest cardinality of the fault-tolerant resolving set is
said to be the fault- tolerant metric dimension, and it is
denoted as dim (G )or ﬂ (G). For our convenience,

dim(G')(dimf (G)) is the metric dimension (fault tol—
erant metric dimension) instead of ﬁ(G )(/5 (G)),
respectively.

Definition 19 (see [7]). The graph honeycomb rectangular
torus, denoted by HRT, , is a graph constructed with r = 4
where r is the number of rows and c>4(c = even) is the
number of columns. The order and size of this graph are 4 x ¢
and 4 x (c + g + 1), respectively, where g = 1, 2, 3, ..., c. The
graph HRT, _ is 3-regular graph. The vertex and edge sets are

Il
A

Yj‘m(Ktl,tz,...,tr)
|M| +|N]
| [N, [x]]°

1, forl=t<t,<... <

2, for2 =t,<t,<

given, respectively, as V (HRT, ) = { Ay i=1,2,..,4,0=
1,2,3,...ch, E(HRT, ) = {a,,8,,,13i = 1, 2,49 = 1, 2,

3,.sC = I}U{ ;10551 = 1, 2,. 4,@—(:} {‘11,,@ i =
1,2, 3,..,c— 1}U { Qi i+1,p;l =13 p=24 6...,C}U{a2«]
a3,p; @ = la 2) 3)---,C - 1}

Theorem 20 (see [7]). Let HRT,  be a rectangular honey-
comb structure with ¢ > 4(c = even). Then, dim (HRT, ) = 4.

Theorem 21 (see [7]). Let HRT, be a rectangular honey-
comb  structure with c¢>4(c =even). Then, dimf
(HRT,,) = 8.

Theorem 22. IfHRT, isa rectangular honeycomb structure
with ¢>4(c = even), then yfm (HRT,,) = ([4 xc] + [4x
(c+p+1)]/7).

Proof. Let HRT,  be a honeycomb rectangular torus with
c>4(ciseven) and also assume f as a minimal FMXDF of
HRT, . In this theorem, we put the function value 1/7 for
each and every element (x € M UN) of HRT, . Therefore,

the poundage of f is p(f) = v}, (HRT, ) = Y cepun f () =
(|M|+|N|/7)—([4><c]+[4><(c+p+1)]/7) O

Theorem 23 (see [9]). A connected graph has metric di-
mension 1 if and only if it is the path graph.

Theorem 24 (see [11]). A graph has ﬂ, =2
it is the path graph.

if and only if

Theorem 25 (see [13]). For integer n>3, let C, be the
n-dimensional ring network. Then, [3 (C,) =

Theorem 26 (see [8]). Let K, ;
graph  with 1<t <t,<..<t,
ﬁ(Ktl,tz ..... z,) = Zir:lti -

Theorem 27 (see [8]). Let K, ,
graph  with 1<t <t,<..<f,
ﬁ (Kt Hseen t) Zz‘rzlti =n.

. be the complete r-partite
and Yo ti=n. Then,

r=n-—r.

. be the complete r-partite
and Yo ti=n. Then,

¢+, is the complete r-partite graph with

--------

ti’ (i=2, 3,...,1’),

<t;, (i=2,3,...,1), 9)

otherwise,



where |M| and |N| represent the cardinality of the vertex set
and edge set of K, , .

Proof. Consider K, ,
1<t <t,<..<t,, and also assume f as a minimal FMXDF
of K , . The cardinality of the vertex and edge sets can be
represented as M| and |N]|, respectively.

Case (i): if r = 2, then we have to find the FMXDN of
K, ., with 1<t <f,.

. as a complete r-partite graph with

4444444

Subcase (i): Suppose 1 = ¢, <t,. Thus, we assign the
value 1 for a maximum degree vertex and 0 to the rest
of the elements of K, ,. Then, the poundage is
p(f)= Y}m (Ky ) =1

Subcase (ii): Suppose 2 = t; <t,. Then, we assume the
value 1 for all maximum degree vertices and 0 for the
rest of the elements of K, ,. Then, p(f) =17},
(Kt tz) =

Subcase (111) Take 3 <t, <t,.In this case, we assign the
value 1/|N,,,[x = v] | forall x € M (G'), where v is the

mrmmum degree vertex of K, .. Then, p(f)=
Vim (Ko ) = {1/IN,,[ ]|+1/|N W+ +(M]+
INDtimes} = [M]| + [N|/IN,,, [x] .

Case (ii): if r = 3, then we have to find the FMXDN of
Ky 4,0, with 1<t <1, <t3.

Subcase (i): Let 1 = t, <t, <t;. Here, assign the value 1
for a maximum degree vertex and 0 for the rest of the
elements of K, , ,. Then, the poundage is p(f) =
Y}m (Ktl,tz,t3) =

Subcase (ii): Let 2 = £, <t, <t;. Now, assign the value
1 for all maximum degree vertices and 0 for the rest of
the elements of K, , ,. Then, p(f) =%, (K, )
=2.

Subcase (iii): Let 3 <t, <t, <t;. In this case, we assign
the value 1/[N,,[x =v]]| for all ve M (G), where
v is the minimum degree vertex of K, , ,. Then,

P =Vim Ky gyr) = {V/IN, VI + VIN,, [v]]+
..+ (IM] + [N|)times} = |[M| + |N|/ [N, [x] |.
Case (iii): in general, continuing the above process for

r>4, we have to find the FMXDN of K, ,
1<t <t,<..<t,.

.....

Subcase (i): Take 1 = ¢, <t, <...<t,. Then, assign the
value 1 for a maximum degree vertex and 0 for the rest
of the elements of K, t - Then, the poundage is
p(f)= Yfm(Kt1 fyrot, ) =

Subcase (ii): Take 2 = ¢, <t, <... <t,. Here, we put the
value 1 for all maximum degree vertices and 0 for the
rest of the elements of K, .. Then, p(f)=
Yfm (K, A t,) =

Subcase (iii): Take 3<t, <t, <...<t,. In this case, we
assign the value 1/|N,, [x = v]I for all x e M(G),
where v is the mrmmum degree vertex of K,

,,,,,

.....

Then, p(f)= Yim (K tyt) = {1/IN,, [v] | + 1/
IN, [VIl+...+ (|M|+|N|)t1rnes}—|M|+|N|/|N
[x] 1. ad
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Theorem 29. For any tree, y}m (T)<dim(T) + [r - 1/2]
and this bound is sharp for P,, where r = 2, 4,and 6.

Proof. Let T be a tree with r vertices and r — 1 edges.
Consider f as a minimal FMXDF of T, and by Definition 18,
define a resolving set rsq(m) = (d(m,m;),d(m,m,),
.»d(m,m;)) represents the distances from m to m, (1<
s <I) forming the resolving set of 1 with respect to C where
C = {my/1<s<I}. Now we have to compare the value of
FMXDN and the resolvability parameter like metric di-
mension (the resolving set with minimum cardinality). By
using Theorems 1 and 23, we obtain the inequality as
Yim (Pr) <dim(P,) + [r —1/2]. Suppose T is a star graph
with m,m;, where 1<i<r. By Theorem 3, we obtain
Yim (K1, ) = 1. Now we have to find the resolving set for
K,,. When r = 1, the resolving set rs = m,. Next, the re-
solving set for K , is rs = {m, }. For K| 3, the resolving set is
rs = {m,,m,}. Continuing this way we obtain the minimum
resolving set for K} ; and K, is 1,and k), = r — 1forr=3.
Therefore, y,, (K, , ) <dim (K, )+ [ — 1/2]. In this way, we
create a resolving set for any tree and obtain the inequality as
y}m(T)Sdim(T) + |r — 1/2]. Therefore, Theorem 29 is
sharp for the path P,, where r = 2, 4,and 6.

Table 1 provides a comparison between the FMXDN and
some resolvability-related parameters of certain graphs, such
as paths, cycles, honeycomb rectangular toruses, and
complete multipartite graphs. O

Theorem 30. For any graph G, we have [y (GY+1]> -
r+2 max{[(x +2/21,[B+ 2y4, (G )/2]} and this  bound
is sharp.

Proof. Consider G' as a graph with a cardinality of vertex set
M as r,a as its maximum degree, and § as its minimum
degree. Let f be the smallest FMXDF of G'. Here, we have
two claims.

Claim 1: [y}, (G)+1]> —r+2[a+2/2]. For all
FMXDFs, we wrrte every closed region of an edge as
R, [mm,] = f(m)) +S,, +f(my)+S,, — f(mm,)

for all ny =mym, € N(G'), where S, and S,,, denote
the star of m, and m,, and we write every closed mixed
neighbourhood of a vertex as f[m] = R[m] +S,, for

every m € M(G’). Then, the poundage of f is p(f) =
Yj;’m (G,) = an—mlmzeN(G f[mlmZ] + ZmeMG f[l’l’l

1>a. It follows that Yf (G)za= yfm (G)=Tal2].
Then, obviously,

[yfm<G)+lJ2 —r+2[(x;2]. (10)

Claim 2: [y5,,(G)+1]2 —r+ 20 +2yy, (G)/2]. In
this claim, the poundage of f is, y fm(G)
F &) = Yoemmen)f mimy] + Yo eme f
[m]2Y,, cue flm]=r2y; (G). It follows that
[y}m (G)+1]> Y, (G)> -r+ Vs, (G). Here B=1;
then obviously

ZXGMUN
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U}m<G'>+1Jz—r+2 /3+2y2f<6> (11)

From (10) and (11), we get [V}k‘m (G)+1]> —r + 2 max
{[(x +2/21, [+ 2y4, (G’)/Z]}. Furthermore, this bound is

sharp for P,, K, K, and K, when r is odd. Figure 3 gives
the sharpness of Theorem 30. O

4. Application

The fractional mixed domination is used in hospitals. In this
situation, the vertex set can be as various types of seven patients.
The edge set is the connection between those patients having
any one of the common symptoms (like shortness of breath,
fever, fever and chills, lung infection, nausea and vomiting,
abdominal pain, and diarrhea (see Figure 4)).

Doctors’ aim is to reduce the patients’ disease symptoms in
a minimum number of hours. Here, the fractional mixed
domination number illustrates that the minimum number of
hours to reduce the disease of the patients. Here, in Figure 4,

Vim(G) =3,
5. Conclusion

We found the exact value of the FMXDN of some standard
graphs, such as paths, cycles, the middle graph of the paths
and cycles, and shadow graphs. Also, some upper bounds on
the sum of the two fractional dominating parameters, whose
resultant graph gives this inequality y}l (D) +y5, (T) <
r+ p —rad (T) — a, were obtained in terms of fractional edge
domination and fractional mixed domination. Finally, we
provided a comparison result of y%, and other resolvability
parameters such as metric and fault-tolerant metric di-
mension. This new parameter will be applicable for the
optimization problems in our future work.
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