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Te current study explores the space and time-fractional Black–Scholes European option pricing model that primarily occurs in
the fnancial market. To tackle the complexities associated with solving models in a fractional environment, the Aboodh transform
is hybridized with He’s algorithm. Tis facilitates in improving the efciency and applicability of the classical homotopy per-
turbation method (HPM) by ensuring the rapid convergence of the series form solution. Tree cases that are time-fractional
scenario, space-fractional scenario, and time-space-fractional scenario are observed through graphs and tables. 2D graphical
analysis is performed to depict the behaviour of a given option pricing model for varying time, stock price, and fractional
parameters. Solutions of the European option pricing model at various fractional orders are also presented as 3D plots.Te results
obtained through these graphs unfold the interchange between time- and space-fractional derivatives, presenting a comprehensive
study of option pricing under fractional dynamics. Te competency of the proposed scheme is illustrated via solutions and errors
throughout the fractional domain in tabular form.Te validity of the He-Aboodh results is exhibited by comparison with existing
errors. Analysis shows that the proposed methodology (He-Aboodh algorithm) is a valuable scheme for solving time-space-
fractional models arising in business and economics.

1. Introduction

One of the most crucial theories in contemporary fnance is
the Black–Scholes model. Tis mathematical formula cal-
culates the potential value of derivatives based on other
fnancial instruments while accounting for the efects of time
and other risk factors [1]. It is frequently used in contracts
for option pricing [2, 3]. Fischer Black and Myron Scholes
developed the frst Black–Scholes model in 1973 [4]. Later,
Robert Merton published an article [5] to expand the
model’s applications. Te classical Black–Scholes equation
was originated to determine the theoretical value of an
option contract using current stock prices, the option’s strike
price, expected dividends, time of expiration, expected in-
terest rates, and volatility. Some other modifcations of
Black–Scholes models have been suggested that are the

jump-difusion model [6], transaction cost models [7, 8],
stochastic interest model [9], and stochastic volatility model
[10]. After the fractal structures for the fnancial market [11]
were discovered, the standard Brownian motion of the
classical Black–Scholes equation was replaced by fractional
Brownian motion to obtain the fractional Black–Scholes
model. Some such models are the fractional Black–Scholes
pricing model on arbitrage and replication [12], tempered
fractional Black–Scholes equation for European double
barrier option [13], pricing fnancial options model in fractal
transmission system [14], fractional Black–Scholes model
with stochastic volatility [15], pricing double barrier options
in a time-fractional Black–Scholes model [16], fractional
Black–Scholes equation under the constant elasticity of
variance (CEV) model [17], fractional Black–Scholes model
with European option [18], and two-dimensional fractional
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Black–Scholes equation [19]. A time-space-fractional
Black–Scholes European option pricing model [20] arising
in the fnancial market is given as

z
ρ
W(S, τ)

zτρ
+
1
2
σ2S2z

2η
W(S, τ)

zS
2η +(r − D)S

z
η
W(S, τ)

zS
η − rW(S, τ) � 0, (1)

where (S, τ) ϵ (0,∞) × (0, T), ρ, and η are the Caputo
fractional derivatives with respect to τ and S, respectively. σ
(≥ 0), r (> 0), D, T , and S represent the volatility of the
returns, risk-free rate, dividend rate, expiry time, and stock
price, respectively. Te fnal and boundary conditions of (1)
are

W(0, τ) � C1, W(∞, τ) � C2,

W(x, T) � C3.
(2)

Suppose τ � T − t and x � lnS. Ten, by defning
B(x, t) �W(ex, T − t), the model in equation (1) can be
rewritten in dimensionless form as

z
ρ
B(x, t)

zt
ρ − c1

z
2η
B(x, t)

zx
2η − c2

z
η
B(x, t)

zx
η + c3B(x, t) − g(x, t) � 0,

B Id, t(  � C1, B Iu, t(  � C2,

B(x, 0) � C3,

(3)

where c1 � σ2/2, c2 � r − D − c1, c3 � r, and g(x, t) are the
source terms. Moreover, (Id, Iu) is the fnite domain, and the
function B indicates the European option price. By in-
troducing fractional derivatives in the above model, more
complex phenomena such as the long-term memory efect
can be observed.

Several techniques have been introduced in the literature
to solve ordinary and partial diferential equations. Galerkin
method [21], implicit fnite diference scheme [22], Adomian
decomposition method [23], Crank–Nicolson scheme [24],
homotopy perturbation method [25], backward Euler
method [26], diferential transform method [27], and sta-
bilized meshless technique [28] are some of them. Many of
these approaches have been utilized for the numerical so-
lution of fractional diferential equations including the
Navier–Stokes equation [29, 30], Schrödinger equation [31],
COVID-19 model [32], Kundu–Mukherjee–Naskar equa-
tion [33], and Black–Scholes model [34]. Chen et al. [35]
employed a Laguerre neural network for generalized
Black–Scholes models. Chebyshev collocation method is
applied by Mesgarani et al. [36] to analyze time-fractional
Black–Scholes models. Te Crank–Nicolson scheme is
employed by Roul and Goura [37] to solve generalized
Black–Scholes with the European call option. An et al. [38]
proposed a space-time spectral method for the solution of
Black–Scholes equations. Time-fractional Black–Scholes
European option pricing equations are solved through the
residual power series method by Dubey et al. [39]. Roul and
Goura [40] introduced a fnite diference scheme for the
fractional Black–Scholes equation. Te homotopy analysis
method is utilized by Fadugba [41] for European call options
with the time-fractional Black–Scholes model.

Te homotopy perturbation method (HPM) provides
a semianalytical algorithm for solving both linear and non-
linear ordinary/partial diferential equations [42]. It is also
applied to diferential system of equations [43]. In order to
solve diferential equations in fractional form more accurately,
many modifcations of HPM have been introduced. Baleanu
and Jassim [44] extended the modifed fractional homotopy
perturbation technique on Helmholtz and coupled Helmholtz
equations. Qayyum et al. [45, 46] utilized the He–Laplace
method to solve generalized third- and ffth-order time-
fractional KdV models. Fractional Navier–Stokes equations
are investigated by Jena and Chakraverty [47] through
homotopy perturbation Elzaki transform. Another modifca-
tion is theHe-Aboodh algorithm [48] which combines Aboodh
transform and HPM. Manimegalai et al. [49] studied strongly
nonlinear oscillators by applying the Aboodh transform and
the homotopy perturbation method. An iterative scheme and
Aboodh transform are employed by Gbenga and Mahmudov
[50] to analyze the fractional spatial difusion of a biological
population model. Compared to classical HPM, He-Aboodh
has broader applicability and improved convergence and ac-
curacy. It eliminates integral terms which give an efcient
procedure when dealing with fractional derivatives. Tus, in
this paper, we have adapted the He-Aboodh algorithm for the
solution and analysis of time-space-fractional Black–Scholes
model (3). Te scenarios involving time-fractional, space-
fractional, and time-space-fractional derivatives are taken in
the Caputo sense.Te results obtained from this study indicate
improvement in the predictive accuracy of option pricing
particularly the systems involving noninteger-order derivatives.
It also enhanced the comprehension of risks associated with
option pricing in fnancial markets.
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Te format of this research article is as follows: Section 2
contains some basic defnitions of Aboodh transform,
Caputo fractional derivatives, and their Aboodh transform.
A general methodology of the He-Aboodh algorithm is in
Section 3 whereas Section 4 is centered on the application
and solutions of the time-space-fractional Black–Scholes
model. Results and discussion is given in Section 5, and the
conclusion of the paper is in Section 6.

2. Preliminaries

Defnition 1 (see [51]). Te Aboodh transform A of the
function B(x, t) for t≥ 0 is

A B(x, t){ } � K(x, s) �
1
s


∞

0
B(x, t)e

− st
dt, s ∈ k1, k2( ,

(4)

k1, k2 > 0 may be fnite or infnite.

Defnition 2 (see [52]). Te inverse Aboodh transform A− 1

of the function K(x, s) is given as

A
− 1

K(x, s){ } �
1
2πι


c+ι∞

c− ι∞
sK(x, s)e

st
ds, s ∈ k1, k2( .

(5)

Defnition 3 (see [53]). Te Caputo time- and space-
fractional derivatives CDρ

t and CDη
x of a function B(x, t)

is, respectively, defned by

CD
ρ
tB(x, t) �

1
Γ(α − ρ)


t

0
(t − A)

α− ρ− 1
B

(α)
(x, A)dA, α − 1< ρ≤ α,

CD
η
xB(x, t) �

1
Γ(β − η)


x

0
(x − A)

β− η− 1
B

(β)
(A, t)dA, β − 1< η≤ β,

(6)

ρ and η are fractional parameters. Defnition 4 (see [54]). Te Aboodh transform A of Caputo
time- and space-fractional derivatives is, respectively, given
as

A CD
ρ
tB(x, t)  � s

ρ
A B(x, t){ } − 

α− 1

q�0
s
ρ− q− 2

B
(q)

(x, 0), α − 1< ρ≤ α,

A CD
η
xB(x, t)  � s

η
A B(x, t){ } − 

β− 1

q�0
s
η− q− 2

B
(q)

(0, t), β − 1< η≤ β.

(7)

Defnition 5 (see [55]). Te double Aboodh transform w.r.t.
t and x on Caputo time- and space-fractional derivatives
(CDρ

t & CDη
x) can be described as

AtAx CD
ρ
tB(x, t)  � s

η
s
ρ
AxAt B(x, t){ } − 

α− 1

q�0
s
ρ− q− 2

Ax B
(q)

(x, 0) , α − 1< ρ≤ α,

AtAx CD
η
xB(x, t)  � s

ρ
s
η
AtAx B(x, t){ } − 

β− 1

q�0
s
η− q− 2

At B
(q)

(0, t) , β − 1< η≤ β.

(8)
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3. General Methodology of He-Aboodh
Algorithm for Space-Time Fractional Models

Consider a general nonlinear time-space-fractional model

D
ρ
tB(x, t) + D

η
xB(x, t) + L[B(x, t)] + N[B(x, t)] � 0, α − 1< ρ≤ α,

β − 1< η≤ β,
(9)

with conditions

B(x, 0) � A,

B(0, t) � B,
(10)

where D
ρ
t and Dη

x represent the time- and space-fractional
derivatives of unknown function B, respectively. L and N

are the linear and nonlinear operators of B.

3.1. Time-Fractional Scenario. Te process will begin by
applying the Aboodh transform with respect to time and
taking into account the space derivative in integer order

At D
ρ
tB(x, t)  + At DxB(x, t) 

+ At L[B(x, t)] + N[B(x, t)]{ } � 0.
(11)

Application of Aboodh transform on Caputo fractional
derivative gives

At B(x, t){ } −
1
s
ρ  

α− 1

q�0
s
ρ− q− 2

B
(q)

(x, 0) +
1
s
ρ At DxB(x, t) + L[B(x, t)] + N[B(x, t)]  � 0. (12)

Te general homotopy is

Hom: (1 − λ) At B(x, t){ } − B0(x, t)(  + λ At B(x, t){ } −
1
s
ρ  

α− 1

q�0
s
ρ− q− 2

B
(q)

(x, 0)⎛⎝

+
1
s
ρ At DxB(x, t) + L[B(x, t)] + N[B(x, t)] ⎞⎠ � 0,

(13)

where B0 represents the initial guess and 0≤ λ≤ 1. Ex-
pansion of B(x, t) in power series w.r.t. λ leads to

B(x, t) � 

j

i�0
λi
Bi(x, t). (14)

Substituting equation (14) in equation (13) and then
comparing identical coefcients of λ gives the following
equations:

At 1st order,

At B1(x, t)  + B0(x, t) −
1
s
ρ  

α− 1

q�0
s
ρ− q− 2

B
(q)

(x, 0) +
1
s
ρ At DxB0(x, t)

+L B0(x, t)  + N B0(x, t)  � 0,

B1(x, 0) � 0.

(15)
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In general, at kth order,

At Bk− 1(x, t)  +
1
s
ρ At DxBk− 1(x, t) + L Bk− 1(x, t)  + N Bk− 1(x, t)   � 0,

Bk(x, 0) � 0.

(16)

A solution can be obtained by taking the inverse Aboodh
transform.

At λ1,

B1(x, t) + A
− 1
t B0 −

1
s
ρ  

ϑ− 1

q�0
s
ρ− q− 2

B
(q)

(x, 0) +
1
s
ρ At DxB0(x, t) + L B0  + N B0  

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
� 0. (17)

At λp,

Bp(x, t) + A
− 1
t

1
s
ρ At DxBp(x, t) + L Bp  + N Bp    � 0, p � 2, . . . , k. (18)

Te approximate series solution of equation (11) is

B � 

j

i�0
Bi(x, t). (19)

For η� 1, we may obtain the residual function by
inserting equation (19) in equation (9)

RB � D
ρ
t

B + Dx
B + L[ B] + N[ B]. (20)

3.2. Space-Fractional Scenario. We will initiate the process
by considering Aboodh transform w.r.t. space.

Ax D
η
xB(x, t)  + Ax DtB(x, t)  + Ax L[B] + N[B]{ } � 0. (21)

Aboodh transform of space derivative gives

Ax B(x, t){ } −
1
s
η  

β− 1

q�0
s
η− q− 2

B
(q)

(0, t) +
1
s
η Ax DtB(x, t) + L[B] + N[B]  � 0. (22)

Homotopy of equation is

Hom: (1 − λ) Ax B(x, t){ } − B0(x, t)(  + λ Ax B(x, t){ } −
1
s
η  

β− 1

q�0
s
η− q− 2

B
(q)

(0, t)⎛⎝

+
1
s
η Ax DtB(x, t) + L[B] + N[B] ⎞⎠ � 0.

(23)
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Te same process as in Case 6 results in the following
equation:

At λ1,

Ax B1(x, t)  + B0 −
1
s
η  

β− 1

q�0
s
η− q− 2

B
(q)

(0, t) +
1
s
η Ax DtB0(x, t) + L B0  + N B0   � 0. (24)

At λp,

Ax Bp(x, t)  +
1
s
η Ax DtBp(x, t) + L Bp  + N Bp   � 0, p � 2, . . . , k. (25)

Solutions can be found by using the inverse Aboodh
transform.

At λ1,

B1(x, t) + A
− 1
x B0 −

1
s
η  

β− 1

q�0
s
η− q− 2

B
(q)

(0, t) +
1
s
η Ax DtB0(x, t) + L B0  + N B0  

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
� 0. (26)

At λp,

Bp(x, t) + A
− 1
x

1
s
η Ax DtBp(x, t) + L Bp  + N Bp    � 0, p � 2, . . . , k. (27)

Adding these terms gives the approximate series solu-
tion. Te residual function is produced by substituting the
obtained approximate solution in equation (9) at ρ� 1.

RB � D
η
x

B + Dt
B + L[ B] + N[ B]. (28)

3.3. Time-Space-Fractional Scenario. For both time- and
space-fractional model, we will take double Aboodh
transform w.r.t. time and space.

AxAt D
ρ
tB(x, t)  + AtAx D

η
xB(x, t)  + AtAx L[B] + N[B]{ } � 0. (29)

Aboodh transform of time-space derivative gives

s
ρ
AxAt B(x, t){ } − 

α− 1

q�0
s
ρ− q− 2

Ax B
(q)

(x, 0)  + s
η
AtAx B(x, t){ } − 

β− 1

q�0
s
η− q− 2

At B
(q)

(0, t) 

+ AxAt L[B] + N[B]{ } � 0.

(30)
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Homotopy equation of equation (30) is

Hom: (1 − λ) AxAt B(x, t){ } − B0(x, t)(  + λ AxAt B(x, t){ } +
1
s
ρ − 

α− 1

q�0
s
ρ− q− 2

Ax B
(q)

(x, 0)  + s
η
AtAx B(x, t){ }⎛⎝⎛⎝

− 

β− 1

q�0
s
η− q− 2

At B
(q)

(0, t)  + AxAt L[B] + N[B]{ }⎞⎠⎞⎠ � 0.

(31)

Mapping the same process as in Case 6 gives the fol-
lowing equation:

At λ1,

AxAt B1(x, t)  + B0 +
1
s
ρ − 

α− 1

q�0
s
ρ− q− 2

Ax B
(q)

(x, 0)  + s
η
AtAx B0(x, t) ⎛⎝

− 

β− 1

q�0
s
η− q− 2

At B
(q)

(0, t)  + AxAt L B0  + N B0  ⎞⎠ � 0.

(32)

At λp,

AxAt Bp(x, t)  +
1
s
ρ s

η
AtAx B0(x, t) (

+ AxAt L B0  + N B0   � 0, p � 2, . . . , k.

(33)

Inverse Aboodh transform and then the sum of obtained
terms lead towards an approximate series solution. Te
residual function is given by

RB � D
ρ
t

B + D
η
x

B + L[ B] + N[ B]. (34)

4. Application and Solution of Time-Space-
Fractional Black–Scholes European Option
Pricing Model

Example 1 (see [20]).

z
ρ
B

zt
ρ − c1

z
2η
B

zx
2η − c2

z
η
B

zx
η + c3B − g(x, t) � 0, 0< ρ≤ 1,0< η≤ 1, t> 0.

B(0, t) � 0,B(1, t) � 0,

B(x, 0) � x
2
(1 − x),

(35)

where g(x, t) � ((2t2− ρ/Γ(3 − ρ)) + (2t1− ρ/Γ(2 − ρ)))x2

(1 − x)− (t +1)2 (c1(2 − 6x)+ c2(2x − 3x2) − c3(x2(1− x)).
At ρ� η� 1, the exact solution of equation (35) is [56]

B(x, t) � x
2
(1 − x)(t + 1)

2
. (36)

4.1. Solution

4.1.1. Case 1: Time Fractional. Consider η� 1 in equation
(35). Taking Aboodh transform w.r.t. time (At) and then
utilizing diferential property of the Aboodh transform give
a homotopy equation

Hom: (1 − λ) At B{ } − x
2
(1 − x)  + λ At B{ } −

1
s12

 x
2
(1 − x) +

1
s1ρ

 At − c1
z
2
B

zx
2 − c2

zB

zx
+ c3B − g(x, t)   � 0.

(37)
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Substituting equation (14) in equation (37) and com-
paring alike coefcients of λ leads to the following equation:

At λ1,

At B1  + x
2
(1 − x) −

1
s12

 x
2
(1 − x) +

1
s1ρ

 At − c1
z
2
B0

zx
2 − c2

zB0

zx
+ c3B0 − g(x, t)  � 0. (38)

Application of Aboodh transform inverse generates the
following equation:

B1 � − 2t
ρ t c1(2 − 6x) + x c2(2 − 3x) + c3 + 1( (x − 1)x( ( 

Γ(ρ + 2)
+

(x − 1)x
2

Γ(ρ + 1)
 

− 2t
ρ t

2
c1(2 − 6x) + x c2(2 − 3x) + c3(x − 1)x( ( 

Γ(ρ + 3)
 .

(39)

At λ2,

At B2  +
1

s1ρ
 At − c1

z
2
B1

zx
2 − c2

zB1

zx
+ c3B1  � 0.

(40)

Aboodh transform inverse gives the following equation:

B2 � − 2t
2ρ

−
t
2 4c1 3c2 − 3c3x + c3(  + c

2
2(6x − 2) + 2c2c3x(2 − 3x) + c

2
3(x − 1)x

2
 

Γ(2ρ + 3)
⎛⎝

−
x(3x − 2) + c3 c3 + 1( (x − 1)x

2

Γ(2ρ + 2)
−
2c1(3x − 1) − x c2(2 − 3x) + c3(x − 1)x( ( 

Γ(2ρ + 1)


−
t 2c1 6c2 − 6c3x + 2c3 − 3x + 1(  + c

2
2(6x − 2) − c2 2c3 + 1(  

Γ(2ρ + 2)
.

(41)

Hence, the continuation of the process gives the ffth-
order approximate solution in series form as shown in the
following equation:

B(x, t) � 
5

i�0
Bi(x, t). (42)

4.1.2. Case 2: Space Fractional. Take ρ� 1 in equation (35)
and then apply Aboodh transform w.r.t. space (Ax). Te
acquired homotopy equation is

Hom: (1 − λ) Ax B{ } − Ax(  + λ Ax B{ } −
1

s23
 A −

1
s22ηc1

 Ax

zB

zt
− c2

z
η
B

zx
η + c3B − g(x, t)   � 0, (43)
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where A is the dummy variable which is introduced to
convert the boundary condition into the initial condition. A
similar procedure as Case 9 leads to the following equation:

At λ1,

Ax B1  + Ax −
1

s23
 A −

1
s22ηc1

 Ax

zB0

zt
− c2

z
η
B0

zx
η + c3B0 − g(x, t)  � 0. (44)

At λ2,

Ax B2  −
1

s22ηc1
 Ax

zB1

zt
− c2

z
η
B1

zx
η + c3B1  � 0.

(45)

Taking the inverse Aboodh transform and adding the
terms gives the ffth-order series solution. Te optimal value
of dummy variable A can be found by using the right-side
boundary condition of interval.

4.1.3. Case 3: Time-Space Fractional. Aboodh transform
with respect to both time (At) and space (Ax) gives the
following equation:

AxAt

z
ρ
B

zt
ρ − c1

z
2η
B

zx
2η − c2

z
η
B

zx
η + c3B − g(x, t)  � 0.

(46)

HPM procedure leads to homotopy.

Hom: (1 − λ) AtAx B{ } − Ax(  + λ AtAx B{ } −
A

s12+ρ
s23

−
1

s1ρs22ηc1
AtAx

z
ρ
B

zt
ρ − c2

z
η
B

zx
η + c3B − g(x, t)   � 0. (47)

Substituting equation (14) and comparing coefcients of
λ gives the following equation:

At λ1,

AtAx B1  + Ax −
A

s12+ρ
s23

−
1

s1ρs22ηc1
AtAx

z
ρ
B0

zt
ρ − c2

z
η
B0

zx
η + c3B0 − g(x, t)  � 0. (48)

At λ2,

AtAx B2  −
1

s1ρs22ηc1
AtAx

z
ρ
B1

zt
ρ − c2

z
η
B1

zx
η + c3B1  � 0. (49)

Applying the double inverse Aboodh transform and then
the summation of obtained terms gives a ffth-order ap-
proximate series solution.

Example 2 (see [20]).

z
ρ
B

zt
ρ − c1

z
2η
B

zx
2η − c2

z
η
B

zx
η + c3B − g(x, t) � 0, 0< ρ≤ 1,0< η≤ 1, t> 0.

B(0, t) � (t + 1)
2
, B(1, t) � 3(t + 1)

2
,

B(x, 0) � x
3

+ x
2

+ 1,

(50)
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where g(x, t) � ((2t2− ρ/Γ(3 − ρ)) + (2t1− ρ/Γ(2 − ρ)))(x3 +

x2 + 1) − (t + 1)2 (c1(2 + 6x) + c2(2x + 3x2) − c3(x3+ x2

+ 1). At ρ� η� 1, the exact solution of equation (50) is shown
in the following equation [56]:

B(x, t) � x
3

+ x
2

+ 1 (t + 1)
2
. (51)

4.2. Solution

4.2.1. Case 1: Time Fractional. Consider η� 1 and then
following the steps given in Section 3, we have a homotopy
equation.

Hom: (1 − λ) At B{ } − x
3

+ x
2

+ 1   + λ At B{ } −
x
3

+ x
2

+ 1
s12

  +
1

s1ρ
 At − c1

z
2
B

zx
2 − c2

zB

zx
+ c3B − g(x, t)   � 0.

(52)

Equation (14) leads to the following equation: At λ1,

At B1  + x
3

+ x
2

+ 1  −
1

s12
  x

3
+ x

2
+ 1  +

1
s1ρ

 At − c1
z
2
B0

zx
2 − c2

zB0

zx
+ c3B0 − g(x, t)  � 0. (53)

At λ2,

At B2  +
1

s1ρ
 At − c1

z
2
B1

zx
2 − c2

zB1

zx
+ c3B1  � 0.

(54)

Fifth-order approximate solution is obtained from the
following equation:

B(x, t) � 
5

i�0
Bi(x, t). (55)

4.2.2. Case 2: Space Fractional. By following the same steps
as in Section 3, we get the following equation:

Hom: (1 − λ) Ax B{ } − Ax +(t + 1)
2

   + λ Ax B{ } −
A + s2(t + 1)

2

s23
  −

1
s22ηc1

 Ax

zB

zt
− c2

z
η
B

zx
η + c3B − g(x, t)   � 0.

(56)

Utilizing equation (14) gives the following equation: At λ1,

Ax B1  + Ax +(t + 1)
2

  −
A + s2(t + 1)

2

s23
  −

1
s22ηc1

 Ax

zB0

zt
− c2

z
η
B0

zx
η + c3B0 − g(x, t)  � 0. (57)

At λ2,

Ax B2  −
1

s22ηc1
 Ax

zB1

zt
− c2

z
η
B1

zx
η + c3B1  � 0.

(58)

At λ3,

Ax B3  −
1

s22ηc1
 Ax

zB2

zt
− c2

z
η
B2

zx
η + c3B2  � 0.

(59)
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Taking the inverse Aboodh transform and adding the
terms gives the ffth-order series solution.

4.2.3. Case 3: Time-Space Fractional. Te procedure given in
Section 3 leads to the following equation:

Hom: (1 − λ) AtAx B{ } − Ax +(t + 1)
2

   + λ AtAx B{ } −
As12 + s12 + 2s1 + 2 s2

s1ρ+4
s23

⎛⎝

−
1

s1ρs22ηc1
AtAx

z
ρ
B

zt
ρ − c2

z
η
B

zx
η + c3B − g(x, t)  � 0.

(60)

Substituting equation (14) and comparing similar co-
efcients of λ gives the following equation:

At λ1,

AtAx B1  + Ax +(t + 1)
2

−
As12 + s12 + 2s1 + 2 s2

s1ρ+4
s23

−
1

s1ρs22ηc1

· AtAx

z
ρ
B0

zt
ρ − c2

z
η
B0

zx
η + c3B0 − g(x, t)  � 0.

(61)

At λ2,

AtAx B2  −
1

s1ρs22ηc1
AtAx

z
ρ
B1

zt
ρ − c2

z
η
B1

zx
η + c3B1  � 0. (62)

At λ3,

AtAx B3  −
1

s1ρs22ηc1
AtAx

z
ρ
B2

zt
ρ − c2

z
η
B2

zx
η + c3B2  � 0. (63)

Applying the double inverse Aboodh transform and then
the summation of obtained terms gives a ffth-order ap-
proximate series solution.

5. Results and Discussion

In the current work, Black–Scholes European option pricing
model in space- and time-fractional environment is solved
through a hybrid technique, the He-Aboodh transform, in
which the Aboodh transform and homotopy perturbation
method are integrated together. For simulation purposes,
Wolfram Mathematica 13.3 is utilized on TinkPad that has
a display size of 14.00-inch, resolution 3840× 2160 pixels,
processor core i9, and 16GB RAM.Tree cases that are time-
fractional (Case 6), space-fractional (Case 7), and time-
space-fractional (Case 8) are analyzed via 2D and 3D graphs.
Absolute errors obtained through the proposed

methodology are compared with the multiquadric-radial
basis function (MQ-RBF) method errors in Tables 1 and
2. It can be deduced that the He-Aboodh algorithm gives
more precise results than the existing technique. For dif-
ferent values of fractional parameter ρ, Tables 3 and 4 exhibit
the solutions and errors at varying time twhereas, in Tables 5
and 6, solutions and errors are calculated throughout the
whole domain of stock price x. From these tables, the
convergence of the scheme for the whole fractional domain
is observed. Te consistency of obtained solutions can also
be seen from them. It is noted that He-Aboodh transform is
a reliable technique for solving space- and time-fractional
models as the obtained solutions are nearer to their exact
solutions.

In Example 1 for Case 9, Figure 1 displays the solution
pattern of the Black–Scholes model at fractional parameter
ρ� 0.24 and 0.86. By considering volatility σ � 0.37, risk-free
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rate r� 0.16, and dividend rateD� 0.05, both plot shows that
initially increase in time does not have any impact on option
price. However, when the time becomes large and the stock
price x increases in its domain, the European option pricing
also displays an increase in its value. As compared to plot (a),
the value of European option pricingB is greater in plot (b)
for larger fractional parameter value. Tis shows the efects
of long-range memory on the dynamics of Black–Scholes
model. Figure 2 demonstrates that an increase in stock price
and time causes the European option price to rise. For Case
10, Figure 3 with fractional parameter η� 0.24 and 0.86

illustrates that option price increases as time and stock price
escalates. Moreover, the profle of European option pricing
also expands at a greater value of time (see Figure 4). In the
case of time-space fractional, plot (a) of Figure 5 at ρ� 0.24
and η� 0.5 exhibits that option price keeps increasing as
time and stock price rises. Te peak of the European option
pricing model is at stock price x � 0.8; after that, it started to
get lower. Solution at ρ� 0.84 and η� 0.7 in plot (b) also
presents the surge in European option pricing model. Ad-
ditionally, enlarging the values of fractional parameters ρ
and η in their domains indicates a drop in Black–Scholes

Table 1: Error comparison of He-Aboodh algorithm and MQ-RBF method (Example 1).

Solution |R|He− Aboodh |R|MQ− RBF [20]

ρ� 0.2
0.203082 8.07× 10− 11 2.30× 10− 5

0.221127 2.54× 10− 10 5.24× 10− 4

0.241779 5.05× 10− 10 1.38× 10− 2

0.265120 8.30× 10− 10 2.50× 10− 5

0.291054 1.22× 10− 9 6.79× 10− 4

0.319510 1.70× 10− 9 3.12× 10− 2

ρ� 0.7
0.167321 8.32× 10− 17 1.27× 10− 5

0.200614 1.77× 10− 15 3.21× 10− 4

0.231784 1.59× 10− 14 1.01× 10− 2

0.262800 8.06× 10− 14 1.67× 10− 5

0.294466 2.85× 10− 13 4.15× 10− 4

0.327210 8.04× 10− 13 2.05× 10− 2

Table 2: Error comparison of He-Aboodh algorithm and MQ-RBF method (Example 2).

Solution |R|He− Aboodh |R|MQ− RBF [20]

ρ� 0.2
5.76684 6.38× 10− 11 2.46× 10− 5

6.60082 2.01× 10− 10 5.13× 10− 4

7.29695 3.99× 10− 10 1.48× 10− 2

7.93903 6.57× 10− 10 4.36× 10− 5

8.55386 9.72× 10− 10 7.86× 10− 4

9.15321 1.34× 10− 9 4.03× 10− 2

ρ� 0.7
3.31886 6.10× 10− 16 3.16× 10− 5

4.07935 1.33× 10− 15 7.52× 10− 4

4.80665 1.18× 10− 14 1.85× 10− 2

5.53274 6.16× 10− 14 3.67× 10− 5

6.26966 2.27× 10− 13 8.32× 10− 4

7.02315 6.37× 10− 13 3.26× 10− 2

Table 3: Solution and error analysis at x � 0.83, σ � 0.5, r� 0.3, and D� 0.1 (Example 1).

t
ρ� 0.47 ρ� 0.81 ρ� 1.00

Solution |R| Solution |R| Solution |R|

0.0 0.117113 0.0 0.117113 5.55× 10− 17 0.117113 0.0
0.2 0.124053 4.68× 10− 7 0.175650 5.38× 10− 11 0.168643 4.56× 10− 15

0.4 0.118901 6.71× 10− 6 0.221004 4.98× 10− 9 0.229541 2.37× 10− 12

0.6 0.137371 3.25× 10− 5 0.270332 7.14× 10− 8 0.299809 9.30× 10− 11

0.8 0.179568 1.00× 10− 4 0.327652 4.77× 10− 7 0.379446 1.26× 10− 9

1.0 0.245842 2.45× 10− 4 0.395310 2.09× 10− 6 0.468452 9.58× 10− 9

1.2 0.336830 5.11× 10− 4 0.475056 7.05× 10− 6 0.566827 5.03× 10− 8

1.4 0.453317 9.57× 10− 4 0.568346 1.97× 10− 5 0.674571 2.05× 10− 7
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model’s profle which is displayed in Figure 6. It can be seen
from these fgures that noninteger-order derivatives allow
the characterization of fnancial models more accurately
than integer-order derivatives.

By taking the values of volatility σ � 0.4, risk-free rate
r� 0.21, and dividend rateD� 0.1 in the time-fractional case of
Example 2, Figure 7 illustrates that as stock price and fractional
parameter expand, the profle of Black–Scholes option pricing
model depicts an increasing behaviour. In Case 13 (see Fig-
ure 8), it is shown through the arrow that as time increases the

option price indicates an elevation. On the other hand, a de-
cline in the option pricing profle is observed for larger values of
fractional parameter η. 3D Figure 9 in Case 14 demonstrates
that in the beginning, the option price was at higher value, but
as the stock price and time goes up, it began to decrease.
Moreover, the value of fractional parameters ρ and η is smaller
in plot (a) as compared to plot (b). For smaller values of ρ and
η, the option price is greater. Tis indicates the complex and
memory-dependent behaviour of option pricing models that
are efectively captured through fractional calculus.

Table 4: Solution and error analysis at x � 0.83, σ � 0.5, r� 0.3, and D� 0.1 (Example 2).

t
ρ� 0.47 ρ� 0.81 ρ� 1.00

Solution |R| Solution |R| Solution |R|

0.0 2.26069 1.33× 10− 15 2.26069 1.33× 10− 15 2.26069 0.0
0.2 5.10599 2.63× 10− 7 3.73771 3.02× 10− 11 3.25539 2.00× 10− 15

0.4 6.66875 3.77× 10− 6 5.11501 2.80× 10− 9 4.43095 1.33× 10− 12

0.6 8.13614 1.83× 10− 5 6.58448 4.02× 10− 8 5.78736 5.21× 10− 11

0.8 9.59313 5.71× 10− 5 8.16714 2.69× 10− 7 7.32463 7.07× 10− 10

1.0 11.0662 1.39× 10− 4 9.86875 1.18× 10− 6 9.04275 5.37× 10− 9

1.2 12.5657 2.90× 10− 4 11.6907 3.99× 10− 6 10.9417 2.82× 10− 8

1.4 14.0960 5.45× 10− 4 13.6326 1.12× 10− 5 13.0216 1.15× 10− 7

Table 5: Solution and error analysis at t � 0.4, σ � 0.5, r� 0.3, and D� 0.1 (Example 1).

x
ρ� 0.47 ρ� 0.81 ρ� 1.00

Solution |R| Solution |R| Solution |R|

0.0 0.085840 9.14× 10− 6 0.020002 6.80× 10− 9 3.2× 10− 12 3.24× 10− 12

0.1 0.082964 8.97× 10− 6 0.034352 6.67× 10− 9 0.017640 3.18× 10− 12

0.2 0.116212 8.76× 10− 6 0.079327 6.51× 10− 9 0.062720 3.10× 10− 12

0.3 0.169277 8.52× 10− 6 0.141631 6.33× 10− 9 0.123480 3.02× 10− 12

0.4 0.225852 8.24× 10− 6 0.207967 6.13× 10− 9 0.188160 2.92× 10− 12

0.5 0.269630 7.93× 10− 6 0.265040 5.90× 10− 9 0.245000 2.81× 10− 12

0.6 0.284304 7.59× 10− 6 0.299554 5.64× 10− 9 0.282240 2.69× 10− 12

0.7 0.253566 7.22× 10− 6 0.298214 5.37× 10− 9 0.288120 2.56× 10− 12

0.8 0.161110 6.83× 10− 6 0.247724 5.07× 10− 9 0.250880 2.42× 10− 12

0.9 0.009370 6.41× 10− 6 0.134787 4.76× 10− 9 0.158760 2.26× 10− 12

1.0 0.274183 5.96× 10− 6 0.053890 4.43× 10− 9 2.1× 10− 12 2.11× 10− 12

Table 6: Solution and error analysis at t � 0.4, σ � 0.5, r� 0.3, and D� 0.1 (Example 2).

x
ρ� 0.47 ρ� 0.81 ρ� 1.00

Solution |R| Solution |R| Solution |R|

0.0 2.85062 7.67× 10− 6 2.24078 5.70× 10− 9 1.96000 2.71× 10− 12

0.1 2.92069 7.28× 10− 6 2.27341 5.41× 10− 9 1.98156 2.58× 10− 12

0.2 3.06335 6.87× 10− 6 2.36406 5.10× 10− 9 2.05408 2.43× 10− 12

0.3 3.29490 6.43× 10− 6 2.52601 4.78× 10− 9 2.18932 2.27× 10− 12

0.4 3.63167 5.97× 10− 6 2.77257 4.43× 10− 9 2.39904 2.11× 10− 12

0.5 4.08994 5.49× 10− 6 3.11703 4.08× 10− 9 2.69500 1.94× 10− 12

0.6 4.68603 4.99× 10− 6 3.57269 3.70× 10− 9 3.08896 1.76× 10− 12

0.7 5.43624 4.47× 10− 6 4.15284 3.32× 10− 9 3.59268 1.57× 10− 12

0.8 6.35688 3.94× 10− 6 4.87077 2.92× 10− 9 4.21792 1.38× 10− 12

0.9 7.46427 3.39× 10− 6 5.73980 2.51× 10− 9 4.97644 1.19× 10− 12

1.0 8.77470 2.83× 10− 6 6.77320 2.09× 10− 9 5.88000 9.92× 10− 13
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Figure 1: 3D Black–Scholes European option pricing solution of Example 1 (Case 9) at σ � 0.37, r� 0.16, and D� 0.05. (a) Solution at
ρ� 0.24. (b) Solution at ρ� 0.86.
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Figure 2: European option pricing model profle at diferent values of x in Example 1 (Case 9) where ρ� 0.24, σ � 2.0, r� 1.1, and D� 0.8.
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Figure 3: 3D Black–Scholes European option pricing solution of Example 1 (Case 10) at σ � 0.37, r� 0.16, and D� 0.05. (a) Solution at
η� 0.24. (b) Solution at η� 0.86.
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Figure 5: 3D Black–Scholes European option pricing solution of Example 1 (Case 11) at σ � 0.37, r� 0.16, and D� 0.05. (a) Solution at
ρ� 0.24 and η� 0.5. (b) Solution at ρ� 0.84 and η� 0.7.
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Figure 6: European option pricing model profle at diferent values of ρ and η in Example 1 (Case 11) where t � 1.7, σ � 2.0, r� 1.1, and
D� 0.8.

Journal of Mathematics 15



0

20

40

60

80

100

0

50

100

150

x=0.17
x=0.40
x=0.67

x=0.81
x=1.00

ρ=0.24
ρ=0.49

ρ=0.61
ρ=0.88

1 2 3 4 5 60
t

2 3 4 5 6 71
t

Figure 7: European option pricing model profle at diferent values of x and ρ in Example 2 (Case 12) where σ � 0.4, r� 0.21, and D� 0.1.
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Figure 8: European option pricing model profle at diferent values of t and η in Example 2 (Case 13) where σ � 2.0, r� 1.1, and D� 0.8.
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Figure 9: 3D Black–Scholes European option pricing solution of Example 2 (Case 14) at σ � 0.37, r� 0.16, and D� 0.05. (a) Solution at
ρ� 0.54 and η� 0.60. (b) Solution at ρ� 0.84 and η� 0.70.
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6. Conclusion

Fractional analysis of Black–Scholes European option pricing
model in both space and time is the primary focus of this
research article. Te proposed methodology, He-Aboodh
algorithm, is utilized to obtain approximate solutions of
the given model. Diferential property of Aboodh transform
on Caputo time-fractional, space-fractional, and time-space-
fractional derivatives is applied to efciently tackle the
complexities arising from noninteger-order dynamics. Solu-
tion and errors at diferential values of time, stock price, and
fractional parameters are displayed in tabular form which
shows that the application of the proposed methodology
improves the predictive accuracy of option pricing models
especially when dealing with memory-dependent procedures.
Additionally, the error comparison of the multiquadric-radial
basis function and He-Aboodh algorithm at fractional pa-
rameters ρ� 0.2 and 0.7 leads to the conclusion that the
proposed methodology gives better results in terms of ac-
curacy. By increasing the rates of time, stock price, and
fractional parameters, change in the profle of the given
Black–Scholes model is demonstrated with the help of two-
dimensional fgures. Te ups and downs in the value of
European option pricing are illustrated through three-
dimensional fgures. Solutions at diferent values of frac-
tional parameters for all three cases indicate that for Example
1, with an increase in time and stock price, the value of the
option price also increases. On the other hand, the option
price is initially at a higher value in Example 2, but it started to
decline when stock price and time increased. Tese results
provide a benefcial understanding of the interaction between
time- and space-fractional dynamics in option pricing
models. Tus, it can be concluded that the He-Aboodh al-
gorithm is an efcient technique that can be extended to solve
nonlinear complex time- and space-fractional Black–Scholes
models arising in the fnancial market.
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