
Research Article
Modeling and Analysis of an Age-StructuredMalaria Model in the
Sense of Atangana–Baleanu Fractional Operators

Dawit Kechine Menbiko and Chernet Tuge Deressa

College of Natural Sciences, Department of Mathematics, Jimma University, Jimma, Ethiopia

Correspondence should be addressed to Dawit Kechine Menbiko; abgiadawit@gmail.com

Received 29 August 2023; Revised 21 November 2023; Accepted 13 December 2023; Published 8 January 2024

Academic Editor: Mubashir Qayyum

Copyright © 2024Dawit KechineMenbiko andChernet Tuge Deressa.Tis is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

In this paper, integer- and fractional-order models are discussed to investigate the dynamics of malaria in a human host with
a varied age distribution. A system of diferential equation model with fve human state variables and two mosquito state variables
was examined. Preschool-age (0–5) and young-age individuals make up our model’s division of the human population. We
investigated the existence of an area in which themodel is bothmathematically and epidemiologically well posed. According to the
fndings of our mathematical research, the disease-free equilibrium exists whenever the fundamental reproduction number R0 is
smaller than one and is asymptotically stable. Te disease-free equilibrium point is unstable when R0 > 1. We showed that the
endemic equilibrium point is unique for R0 > 1. Also, the most infuential control parameters of the spread of malaria were
identifed. Numerical simulations of both classical and fractional order were conducted, and we used ODE (45) for classical part
and numerical technique developed by Toufk and Atangana for fractional order.Te infected population will grow because of the
high biting frequency of the mosquito and the high likelihood of transmission from the infected mosquito to the susceptible
human. R � 1.622, which is more than one, indicating that the mosquito vector keeps on growing.Tis supports the stability of the
endemic equilibrium point theorem, which states that the disease becomes endemic when R � 1. Te susceptible human
population will decrease because of the presence of the infective mosquito, which has a high biting frequency for the frst couple of
days. Since the infective mosquito bit the susceptible human, the susceptible human became infected and went to the infected
human compartments. Ten, the susceptible population will decrease and the infested human population will increase. After
a certain amount of time, it becomes zero due to the growth of protected classes. In this case, a disease-free equilibrium point exists
and is stable. Tis condition exists because R0 � 2.827 × 10− 5 is less than 1. Tis supports the theorem that the stability of the
disease-free equilibrium point is obtained when R0 < 1. Depending on equation, we have shown that the possibility of some
endemic equilibria exists when R0 < 1, that is, it undergoes backward bifurcation, even when the disease-free equilibrium is locally
stable, and the result means that the society may misunderstand the level of malaria prevalence in the community.

1. Introduction

Vector-borne diseases (VBDs) result from an infection
communicated by vectors such as mosquitoes, ticks, lice, and
feas. Tese vectors carry pathogenic organisms such as
bacteria, viruses, fungi, protists, and parasitic worms which
can be transferred from one host to another. Some examples
of VBDs are dengue fever, Lyme disease, malaria, West Nile
virus, Rift Valley fever, and Japanese encephalitis [1]. In
many tropical and subtropical regions, malaria is a prevalent
and potentially fatal infectious disease. It is brought on by

the Plasmodium parasite, which is spread when female
Anopheles mosquitoes bite people to obtain blood for their
eggs [2]. Te most prevalent species of Plasmodium are
Plasmodium vivax in temperate zones and Plasmodium
falciparum in tropical areas [3, 4]. About half of the world’s
population is in danger of malaria, according to the WHO
(World Health Organization) malaria report [5]. Globally,
there were estimated 228 million cases of malaria and
405000 deaths from it in 2018. Most of these cases and deaths
accounted for 93% and 94% of all malaria cases globally in
2018. Te projected number of cases and fatalities from
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malaria in 2019 was 229 million worldwide [6]. Globally,
there were reportedly 247 million cases of malaria in 2021,
with 619000 deaths attributed to the disease.

A disproportionately large amount of the worldwide
malaria burden is placed on the WHO African Region. 95%
of malaria cases and 96% of malaria deaths in 2021 occurred
in the area. Almost 80% of all malaria deaths in the WHO
African Area occurred in children under the age of fve.
Two-thirds of recorded deaths are children [6]. As they have
not yet acquired immunity to illnesses, children under the
age of fve are more susceptible to malaria than adults [7]. As
a result, the age distribution in a community afects the
spread of malaria. In Ethiopia, 60% and 40% of malaria cases
are caused by the species Plasmodium falciparum and
Plasmodium vivax, respectively [8, 9]. Many scientifc at-
tempts have been made, including the creation of mathe-
matical models, to lessen the impact of malaria on the global
community. Ross, in 1911 [10], applied deterministic
compartmental epidemic models to illustrate the dynamics
of malaria infection between vector and host populations.
Macdonald and Ross’s model [11] was modifed by adding
biological data about mosquito latency brought on by the
growth of the malaria parasite. Nonetheless, eforts to stop
the spread of malaria have resulted in the creation of ef-
fective vector control measures, including larvicide, indoor
residual spraying, and insecticide-treated nets (ITNs) [6, 12].
Non-integer-order calculus has more than 300-year history.
Many theories are being added to the literature on fractional
calculus every day. In the seventeenth century, German
mathematician Gottfried Leibniz and well-known British
scientist Isaac Newton developed the idea of fractional
calculus as a result of calculus’s ramifcations. In the form of
generalized fractional order, fractional calculus deals with
the defnitions of classical calculus [13]. In order to com-
prehend, forecast, and manage the spread of diseases among
populations, mathematical modeling of infectious diseases is
essential. Trough the integration of mathematical tools and
epidemiological knowledge, researchers are able to conduct
scenario simulations, investigate diverse intervention op-
tions, and facilitate the making of public health decisions.
Tese models are useful instruments for educating decision-
makers and supporting the creation of winning plans to fght
infectious illnesses and safeguard the public’s health [14].

A novel mathematical model was recently presented by
Mohammed-Awel and Gumel [15], because of the wide-
spread use of indoor residual spraying (IRS) and insecticide-
treated nets (ITNs) for malaria control, for evaluating the
impact of pesticide resistance in the mosquito population. In
[1, 16], fractional-order derivatives are described as non-
linear systems in a more realistic way in comparison with
integer-order derivatives, and a comparison of temperature
distribution via Atangana–Baleanu non-integer-order
fractional derivatives is used to illustrate the application
of the mathematical technique of Laplace transform. Many
fractional derivatives have been developed by researchers
and used in a variety of scientifc and engineering felds
[17–19], and the most frequently used derivatives in the
various branches of science, particularly in mathematical
epidemiology, are Caputo, Caputo–Fabrizio (CF), and

Atangana–Baleanu (AB). Diferent kernel properties apply
to each of these three fractional derivatives. In contrast to
Caputo–Fabrizio, which uses an exponentially decaying type
kernel (which is nonsingular but nonlocal), AB derivative in
the Caputo sense uses a Mittag-Lefer type kernel. Odibat
just developed a brand-new fractional derivative of the
generalized Caputo type [20]. Te features of this novel
generalized Caputo derivative are comparable to those of
Caputo derivatives [21]. A nonlinear fractional-order model
for analyzing the dynamical behavior of vector-borne dis-
eases within the frame of Caputo-fractional derivative was
analyzed, numerical simulations for diferent values of
fractional-order derivative were performed, and a compari-
son with the results of the integer-order derivative was made.
In this study, the nature of our malaria model is read at non-
integer-order values using Atangana–Baleanu fractional
derivatives with a high efciency rate.

Te advantage of using CF and AB fractional derivatives
to solve the projected malaria disease model is that they
provide strong approaches for the arbitrary order case,
memory efects, and crossover behavior of the model.

Te beneft of using the Atangana–Baleanu operator is
that it incorporates the crossover behavior of the malaria
disease dynamics model as well as memory results. It also
has a nonsingular and non-nearby kernel, which enables us
to explain complex structures that uniquely, incredibly,
and efciently observe both the law of electricity and
exponential decay at the same time. Here, we consider the
integer-order model proposed by “Klinck” in [15] and
modify it to become fractional-order models in the
Atangana–Baleanu–Caputo sense. After recalling some
defnitions and results concerning integer-order and
fractional-order derivatives, we prove the existence and
give conditions under the fractional models that admit
a unique solution. To illustrate our analytical results, we
shall adopt the Toufk–Atangana method to perform nu-
merical simulations for the fractional model. Researchers
in [15] worked on the dynamics of malaria in an age-
structured human host; in their model, human population
was partitioned into two compartments: preschool age
(0− 5) and the rest of the human population. Tey have
divided the human population into two classes: H1 and H2,
having S, I, and R compartments in each class. Tus, the
human population NH is divided into six compartments,
and we modify such integer-order model proposed in [15]
by including the parameter of natural recovery rate of both
age groups in addition to the recovery rate due to treat-
ment and the protected group of human population to
measure the efect of intervention mechanisms such as
insecticide-treated nets (ITNs) and indoor residual
spraying (IRS) in the transmission dynamics of malaria
and fractional-order models in the Atanga-
na–Baleanu–Caputo sense to describe the memory efects
and crossover behavior of the malaria model. For sim-
plicity, we consider only one susceptible and recovery
compartment, respectively, for both age groups of human
population. Te aim of our study is to understand the
dynamics of malaria through integer-order and fractional-
order analysis of age-structured malaria model.
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Tis study is organized as follows. In Section 2, we develop
mathematical model formulation. Section 3 gives the model
analysis. Section 4 presents the numerical simulation of the
integer-order malaria model. Section 5 gives the fractional
malaria model and analysis. Section 6 presents the numerical
scheme and simulation of the fractional-order model. Section 7
gives the result and discussion. Section 8 draws the conclusion.

2. Formulation of Modified
Mathematical Model

Te human population, denoted by Nh, is divided into fve
epidemiological categories: the susceptible class Sh, the pro-
tected class Ph, the infectious class of preschool age Ic, the
infectious class of young age Iy, and the recovered classRh. We
also divide the mosquito population into two major stages: the
mature stage and the aquatic stage (egg, larvae, and pupae), but
we consider the mature stage which is divided into two
compartments, namely, susceptible class of mosquitoes
denoted by Sm and infectious class of mosquitoes denoted by
Im.Temosquitoes’ population does not have a recovered class
because their infective period endswith their death. At any time
t, the total size of the human Nh(t) and mature mosquitoes
Nm(t) is, respectively, denoted by

Nh(t) � Sh(t) + Ph(t) + IC(t) + Iy(t) + Rh(t),

Nm(t) � Sm(t) + Im(t).
(1)

Trough birth, people are added to society at a constant
rate (Λh). Of those added, those protected by specifc pro-
tective measures belong to the protected class Ph, while the
remaining ((1 − c)Λh) belong to the susceptible class (Sh).
Te susceptible people who heard recommendations and
implement protective measures will join the protected class
Ph at the rate of τ. In our model, individuals belonging to the
susceptible class are at risk of infection at a rate of (λc) for the
infectious class Ic (pre-school age) and at a rate of λy for the
infectious class Iy (young - age). Te infected individuals of
both age levels recover spontaneously at the natural recovery
rate of ω1 and ω2 and treatment recovery rate of δ1 and δ2,
respectively, to join the recovery class Rh. Some studies
[22, 23] indicated that the recovered humans have some
immunity to the disease and do not get clinically ill, but they
still harbor low levels of the parasite in their bloodstream
and can pass the infection to mosquitoes. After a certain
amount of time, they lose their immunity at a rate β and the
proportion βϕ returns to the susceptible class and the
remaining (1 − ϕ)βR who take some protective measure-
ments enter into the protected class. Since the malaria in-
terventions might face serious obstacles in the form of
heterogeneity in parasite, vector, and human population
[24], the protected humans may become susceptible again
and move to the susceptible class Sh at the rate ϕ. Humans
leave the total population through natural death rate μh and
malaria death rate (disease-induced death rate) μd. When
a susceptible mosquito Sm bites an infectious human, it
enters into class Ic and Iy with fraction of bite K2. Mos-
quitoes are assumed to sufer death due to natural causes and
due to the use of insecticide spray at a rate μm or mortality

due to insecticides but cannot die directly from the malaria
parasite infection [25]; female mosquitoes enter their pop-
ulation through the susceptible compartment at per capita
rate Λm. It is assumed that there is no immigration of in-
fectious individuals in the human population. Te death
related to the disease is diferent between children (pre-
school aged) and young-aged people, i.e., μd1

is greater than
μd2

[26]. We also assume that infectious preschool-age
children mature and join the corresponding infectious
young-age class at the rate of η.

In Figure 1, red lines show disease progression and solid
and black lines show human or mosquito progression from
one compartment to another compartment. Based on the
above assumptions and fow diagram, the dynamics of the
disease were described by the following nonautonomous
deterministic system of nonlinear DEs.

dSh

dt
� (1 − c)Λh + φPh + βΦRh − τ + λc + λy + μh􏼐 􏼑Sh,

dPh

dt
� cΛh + τSh +(1 − Φ)βRh − φ + μh( 􏼁Ph,

dIC

dt
� λCSh − μd1

+ μh + η + ω1 + δ1( 􏼁􏼐 􏼑IC,

dIy

dt
� λySh + ηIC − μd2

+ μh + ω2 + δ2( 􏼁􏼐 􏼑Iy,

dRh

dt
� ω2 + δ( 􏼁Iy + ω1 + δ1( 􏼁􏼐 􏼑IC − βϕ +(1 − ϕ)β + μh( 􏼁Rh,

dSm

dt
� Λm − λm + μm( 􏼁Sm,

dIm

dt
� λmSm − μmIm,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

where

λm �
k2εm IC+Iy( 􏼁Sm

Nh

,

λC �
k1εCImSh

Nh

,

λy �
k1εyImSh

Nh

(3)

represent the force of infection of preschool age, young age,
and mosquito.

All parameters in Table 1 are positive.

3. Model Analysis

3.1. Positivity of the Solution of the Model. For the system of
diferential equations in (6), to ensure that the solutions of
the system with positive initial conditions remain positive
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Figure 1: Flow diagram.

Table 1: Description of parameters.

Parameter Parameter description
ω1 Natural recovery rate of preschool age
δ1 Recovery rate by treatment of preschool age
ω2 Natural recovery rate of young age
δ2 Recovery rate by treatment of young age
φ Transfer rate of human from Ph to Sh

τ Transfer rate of human from Sh to Ph

Λh Constant recruitment rate for humans
β Rate of loss of immunity
ϕ Proportion of humans who lose their immunity that become Sh

(1 − ϕ) Proportion of humans who lose their immunity that become Ph

c Proportion of new recruitments that are protected
λC Force of infection for preschool age
λy Force of infection of young age
λm Force of infection of mosquitoes
η Maturation rate from IC to Iy

μd1
Disease-induced mortality rate of preschool age

μd2
Disease-induced mortality rate of young age

μm Mortality rate of mosquitoes
μh Natural mortality rate of human
εc Number of bites on preschool-age people
εy Number of bites on young-age people
K1 Fraction of bites that successfully infect human
K2 Fraction of bites that successfully infect mosquitoes
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for all t> 0, it is necessary to prove that all the state variables
are nonnegative, so we have the following theorem.

Theorem 1. Let M be a positive region in R7
+:

M � Sh, Ph, Ic, Iy, Rh, Sm, Im􏽮 􏽯 ∈ R
7
+, (4)

and the initial value for the malaria model (2) be

Sh(0)> 0, Ph(0)> 0, Sm(0)> 0, Ic(0)≥ 0,

Iy(0)≥ 0, Rh(0)≥ 0, Im(0)≥ 0.
(5)

Ten, the solution of Sh(t), Ph(t), Ic(t), Iy(t), Rh(t),

Sm(t), and Im(t) of the nonlinear system of diferential
equation above is positive for all t> 0.

Ten, we have to prove that Sh(0)> 0, Ph(0)> 0, Ic

(0)> 0, Iy(0)> 0, Sm(0)> 0, Im(0)> 0; from the continuity
of Sh(t), Ph(t), Ic(t), Iy(t), Rh(t), Sm(t), and Im(t), we de-
duce that t> 0, Sh(0)> 0, Ph(0)> 0, Ic(0)> 0, Iy(0)> 0,
Sm(0)> 0, Im(0)> 0, for all t> 0; consider the frst equation
of system (2):

dS

dt
� (1 − c)Λh + φPh + βϕRh − τ + λc + λy + μh􏼐 􏼑Sh􏽮 􏽯,

dS

dt
+ τ + λc + λy + μh􏼐 􏼑Sh � (1 − c)Λh + φPh + βϕRh,

Sh(t) � e
τ+μh− 􏽒λh(t)dt

Sh(0) + e
τ+μh− 􏽒λh(t)dt

􏽚 e
τ+μh− 􏽒λh(t)dt

(1 − c)Λh + φPh + βϕRhdt,

(6)

since e
τ+μh− 􏽒 λh(t)dt > 0, Sh(0)> 0, and Ph(t)> 0, Rh(t)> 0;

also, exponential function is always positive; then, the so-
lution Sh(t)> 0.

Similarly, all state variables at t could not be zero and
positive. From this, we conclude that all the solutions of (2)
are in R7

+ for all t> 0 provided that initial conditions are
positive.

3.2. Invariant Region. Te invariant region is a region where
solutions of model equation (2) exist biologically [27]. Bi-
ological entities cannot be negative; therefore, all the solu-
tions of model equation (2) are positive for all time t≥ 0 [27].
Te total population size Nh and Nm can be defned as in
equation (1). In the absence of malaria disease, the DEs for
Nh are given as

dNh

dt
≤Λ − μhNh⟹Nh(0)≤

Λh

μh

. (7)

Te DEs for Nm are also given as

Nm(0)≤
Λm

μm

. (8)

Theorem 2. Model (2) has a feasible solution which is
contained in the region

M � Sh, Ph, Ic, Iy, Rh, Sm, Im􏽮 􏽯 ∈ R
7
+. (9)

Proof. Let

Sh, Ph, Ic, Iy, Rh, Sm, Im􏽮 􏽯 ∈ R
7
+ (10)

be any solution of the system with nonnegative initial
condition. Using (7),

dNh

dt
≤Λh − μNhΛ􏽚 d Nhe

μh( 􏼁≤Λh 􏽚 e
μhtdt,

Nh ≤
Λh

μh

+ Nh0
−

Nh

μh

􏼠 􏼡e
− μht

.

(11)

Terefore, as t⟶ 0, the human population Nh ap-
proaches Λh/μh, and it follows that [24]

lim
t⟶∞

supNh(t)≤
Λh

μh

,

lim
t⟶∞

supNm(t)≤
Λm

μm

.

(12)

Terefore, the feasible solution set for model (2) is given
by

M � Sh, Ph, Ic, Iy, Rh, Sm, Im􏽮 􏽯 ∈ R
7
+,

Sh, Ph, Sm( 􏼁> 0, Nh ≤
Λh

μh

, Nm ≤
Λm

μm

.

(13)

Hence, the compact set M is positively invariant, and the
solutions are bounded (i.e., all solutions with initial con-
ditions in M remain in M for all time t). □

3.3. Disease-Free Equilibrium Point. At the disease-free
equilibrium, all the disease classes are zero. It is a sce-
nario which depicts an infection-free state in the community
or society. Further, at the disease equilibrium point of people
and mosquitoes, Ic � 0, Iy � 0, Im � 0. Disease-free equi-
librium of system is given by ε0 � (S0h, P0

h, 0, 0, 0, S0m, 0),
where
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P
0
h �

τ + cηh( 􏼁Λh

τ + μh+φ􏼐 􏼑μh

,

S
0
h �

φ +(1 − c)μh( 􏼁Λh

τ + μh + φ( 􏼁μh

,

Nh(0) � P
0
h + S

0
h �
Λh

μh

,

Nm(0) �
Λm

μm

.

(14)

3.3.1. Te Basic Reproduction Number. Te average number
of secondary cases a typical infected person produces in their

entire life as infectious or an infectious period when in-
troduced or allowed to exist in a group of susceptible in-
dividuals is known as the basic reproduction number or R0
[28]. R0 is a threshold quantity computed using the next-
generation method which is used to handle the future dy-
namical behavior of the pandemic and used to study the
spread of an infectious disease in epidemiological modeling
[28, 29]. It is defned as

R0 � ρ FV
− 1

􏼐 􏼑 where FV
− 1

�
zF

zx
ε0( 􏼁􏼠 􏼡

zv

zx
ε0( 􏼁􏼠 􏼡

− 1

,

(15)

using the next-generation method.
Te dominant eigenvalue or reproduction number

becomes

R0 �

�����������������������������������������������

K2εmS
0
m

bN
0
h

􏼠 􏼡
K1εyS

0
h

μmN
0
h

⎛⎝ ⎞⎠ +
K2εmS

0
m

aN
0
h

+
ηK2εmS

0
m

abN
0
h

􏼠 􏼡
K1εcS

0
h

μmN
0
h

􏼠 􏼡,

􏽶
􏽴

(16)

for

a � μd1
+ μh + ω1 + δ1,

b � μd2
+ μh + ω2 + δ2,

(17)

which is the average number of secondary infections caused
by a single infective in a totally susceptible population.

3.4. Local Stability of Disease-Free Equilibrium Point

Theorem 3. Te disease-free equilibrium point of the system
of ordinary diferential equation (2) is locally asymptotically
stable if R0 < 1 and unstable if R0 > 1.

Proof. To show the local stability of disease-free equilibrium
point, we use (7 × 7) Jacobian matrix and the
Routh–Hurwitz (RH) criterion.

J ε0( 􏼁 �

c φ 0 0 βΦ 0 − V1

τ M1 0 0 (1 − Φ)β 0 0

0 0 a 0 0 0 V2

0 0 η b 0 0 V3

0 0 ω1 + δ1( 􏼁 ω2 + δ2( 􏼁 f 0 0

0 0 − V4 − V5 0 g 0

0 0 V4 V5 0 0 M2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (18)

and let c � − (τ − μh), M1 � − (φ + μh), a � − (μd1
+ μh + η +

ω + δ1), b � − (μd2
+ δ2 + ω2 + δ2), f � − (β + μh), g � − μm,

M2 � − μm.
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J ε0( 􏼁 �

c − λ φ 0 0 βΦ 0 − V1

τ M1 − λ 0 0 (1 − Φ)β 0 0

0 0 a − λ 0 0 0 V2

0 0 η b − λ 0 0 V3

0 0 ω1 + δ1( 􏼁 ω2 + δ2( 􏼁 f − λ 0 0

0 0 − V4 − V5 0 g − λ 0

0 0 V4 V5 0 0 M2 − λ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

V1 �
K1εcS

0
h

N
0
h

+
K1εyS

0
h

N
0
h

⎛⎝ ⎞⎠,

V2 �
K1εcS

0
h

N
0
h

,

V3 �
K1εyS

0
h

N
0
h

,

V4 �
K2εmS

0
m

N
0
h

,

− V5 �
K2εmS

0
m

N
0
h

.

(19)

We consider only the frst and the second column of 7 ×

7matrix; when we consider the ffth and the seventh column,
we will get zero matrix because of zero column matrix.
Trough the reduction process, we obtain two negative
eigenvalues λ1 � − μm and λ2 � − (β + μh) and the reduced
submatrix becomes

(C − λ) M1 − λ( 􏼁 − φ(τ)􏼂 􏼃

a − λ 0 V2

η b − λ V3

V4 V5 μm − λ.

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (20)

and the characteristic equation of the frst submatrix,

(C − λ) M1 − λ( 􏼁 − φ(τ) � 0, (21)

is

A2λ
2

− A1 + A0 � 0, (22)

where A2 � 1, A1 � (C + M1), A0 � CM1 − φτ, and all co-
efcients Ai of submatrix (21) of the characteristic equation
and the frst column of the RH array are positive, so by the
RH stability criterion, the two eigenvalues λ3 and λ4 of
Jacobian have negative real part. Te second submatrix is
given by

a − λ 0 V2

η b − λ V3

V4 V5 μm − λ.

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ � 0, (23)

and the characteristic equation of the second submatrix is

A3λ
3

− A2λ
2

+ A1λ + A0 � 0, (24)
where

A3 � − 1, A2 � a + b + M2( 􏼁,

A1 � V2V4 + V3V5 − aM2 − bM2 − ab( 􏼁,

A0 � abM2 + V2V5η − aV3V5 − V2V4b.

(25)

All the frst columns of the RH array are positive; then, the
remaining eigenvalues of the Jacobian are negative real part for
R0 < 1. Tus, the disease-free equilibrium point ε0 is locally
asymptotically stable for R0 < 1 and unstable for R0 > 1. □

3.5. Global Stability of Disease-Free Equilibrium Point

Theorem 4. If the reproduction number R0 < 1, the disease-
free equilibrium point ε0 of model (2) is globally asymptot-
ically stable in the feasible region M.

Proof. To prove the global asymptotic stability of the
disease-free equilibrium point ε0, we use the method of
Lyapunov function. Let us defne an appropriate Lyapunov
function V(t) by applying the approach in [27]. V � C1Ic

+ C2Iy + C3Im, where C1, C2, C3 are positive constants and
Ic, Iy, and Im are positive state variables.

dv

dt
� C1

dIc

dt
+ C2

dIy

dt
+ C3

dIm

dt
. (26)

By substituting expressions for dIc/dt, dIy/dt, and
dIm/dt from (2) in (26) and by collecting like terms of the
equation, we obtain
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dv

dt
� C1

k1εcImSh

Nh

− C1aIc + c2
k1εyImSh

Nh

+ C2ηIc − C2bIy

+ C3
k2εmIcSm

Nh

+ C3
k2εmIySm

Nh

− C3μmIm + C3
k2εmImSm

Nh

+ C2η − C1a � 0,

(27)

and by taking coefcients of Ic and Iy equal to zero for
dv/dt≤ 0,

C3
k2εmImSm

Nh

− C2b � 0, (28)

dv

dt
� C1

k1εcImSh

Nh

+ C1
k2εyIySh

Nh

− C3μmIm,

(29)

C3
K2εmSm

Nh

+ C2η − C1a � 0. (30)

From (28),

C2 � C3
k2εmImSm

bNh

. (31)

By substituting C2 in (30), we obtain

C1 � C3
k2εmSm

aNh

+
k2εmSm

η
abNh􏼠 􏼡. (32)

After substituting C1 and C2 in (29) and after some
calculation, we obtain [R2

0 − 1]Im ≤ 0; from this, for Im � 0,
R0 ≤ 1. Finally, we obtain dv/dt≤ 0; then, dv/dt � 0. Tis
shows that the disease-free equilibrium is globally asymp-
totically stable. □

3.6. Endemic Equilibrium Point. Endemic equilibrium
points are steady-state solutions where the disease persists in
the population. Te solution for the endemic equilibrium is
obtained in terms of the infected humans, which is also
expressed in terms of R0.

Theorem 5. If R0 > 1, then the system of DEs of the model has
a unique endemic equilibrium point.

ε∗ � S
∗
h , P
∗
h , I
∗
c , I
∗
y, R
∗
h , S
∗
m, I
∗
m􏼐 􏼑. (33)

Proof. After some algebraic manipulation, we have

S
∗
h �

P1π
πP4 + P2K1εc + P3K1εy􏼐 􏼑I

∗
m

,

I
∗
c �

P1πK1εcI
∗
m

πP4 + a P2K1εc + P3K1εy􏼐 􏼑I
∗
m

,

I
∗
y �

K1εya + ηK1εc􏼐 􏼑P1I
∗
m

R
2
0ab P2K1εc + P3K1εy􏼐 􏼑I

∗
m + πP4

,

R
∗
h �

P1 daK1εy + K1εc(ηd + be)􏼐 􏼑R
2
0I
∗
m

abf P2K1εc + P3K1εy􏼐 􏼑I
∗
m + πP4

,

P
∗
h �

P1 πP5 + K1εyP6 + P7K1εc􏼐 􏼑 + cΛhabf P2K1εc + P3K1εy􏼐 􏼑􏽨 􏽩R
2
0I
∗
m + πP4

abfg2 P2K1εc + P3K1εy􏼐 􏼑I
∗
m + πP4

,

S
∗
m �

ΛabT1I
∗
m + πP4

T2μm + abμmT1( 􏼁I
∗
m + πP4μm

· R
2
0 abπμmT1 T2μm + abμmT1( 􏼁( 􏼁I

∗3
m

+ abπ2μ2mT1P4 + R
2
0 πP4 T2μm + abμmT1( 􏼁 − T3P1ΛabT1( 􏼁􏼐 􏼑I

∗2
m

+ π P4 1 + μm( 􏼁 − T3P1πP4( 􏼁I
∗
m,

(34)
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and after some steps and simplifcation, the degree three
polynomial is reduced to quadratic:

AI
∗2
m + BI

∗
m + C � 0, (35)

and at I∗ � 0, there was DFE.

A � R
2
0 abπμmT1 T2μm + abμmT1( 􏼁( 􏼁,

B � abπ2μ2mT1p4 + R
2
0 πp4 T2μm + abμmT1( 􏼁 − T3p1ΛabT1( 􏼁􏼐 􏼑,

C �
μ2h

p1Λ
2μ2m(ab)

2
μm + 1
μm

1 − R
2
0􏼐 􏼑􏼠 􏼡,

(36)

where P1 � Λg2abfμh, P2 � g2abf + (dη + be), P3 � g2abf −

(β(φ + ϕμh))da, P4 � g2abfμh, T1 � p2k1εc + p3k1, T2 � p1
(k2εmk1εc + ak2εm(k1εya + ηk1εc)), T3 � bk2εmk1εc + k2εm

(k1εya + ηk1εc) contains parameters.
From quadratic equation (35), the endemic equilibrium

exists for

B
2

− 4AC≥ 0. (37)

Te number of possible positive real roots for (35) de-
pends on the signs of A, B, and C. Tis can be analyzed by
using the Descartes rule of signs on the quadratic

f I
∗
m( 􏼁 � AI

∗2
m + BI

∗
m + C. (38)

As indicated in [30], Descartes’s rule of sign is used to
determine the number of real zeros of a polynomial function;
it indicates that the number of positive real zeros in
a polynomial function f(I∗m) is equal to or less than the
number of coefcient sign changes, on an even number
basis.

In Table 2, the existence of multiple endemic equilibria
when R0 < 1 suggests the possibility of backward bifurcation.
Te change of stability occurring at R0 � 1 is often followed
by the emergence of branch of steady states. Tis is referred
to as bifurcation; this may happen for values of R0 slightly
greater than one which is called forward bifurcation, and if
R0 is slightly less than one, this is called backward bi-
furcation. In quadratic equation (15),

I
∗
m �

− B +
��������
B
2

− 4AC
􏽰

2A
,

I
∗
m �

− B −
��������
B
2

− 4AC
􏽰

2A
.

(39)

If R0 > 1 or C< 0, then (15) has a unique positive root:

I
∗
m �

− B +
��
∆

√

2A
, (40)

where ∆> 0. If R0 � 0 or C � 0, then (15) has a unique
positive solution. I∗m � − B/2A, provided that B< 0. Here, if
B � 0, then I∗m � 0 which shows DFE ε0, and if B> 0, then
I∗m < 0, and this does not showmeaning in epidemiology. For
R0 < 1 or C> 0 and Δ> 0, we consider two cases.

(i) If B> 0, then I∗m < 0, that is, (15) has no solution.
(ii) If B< 0, that is, if B< − 2

���
AC

√
< 0, then (15) has two

endemic equilibria.

By considering such diferent cases of the solution of
(15), a theorem is established as follows. □

Theorem 6. Te age-structured malaria model has

(1) A unique endemic equilibrium if

(a) C< 0 if R0 > 0
(b) B< 0 and C � 0 or B2 − 4AC � 0

(2) Two endemic equilibria if C> 0, B< 0, and
B2 − 4AC> 0.

(3) No endemic equilibrium in all other ways.

In the theorem for R0 < 1, stable DFE and stable EE come
together; this indicates the probability of backward bi-
furcation. Analysis of backward bifurcation was carried out
by employing center manifold theory.

3.6.1. Center Manifold Teory. Computation of eigenvalues
of the Jacobian matrix can be used to determine the stability
of the disease at an endemic equilibrium point. Te bi-
furcation analysis is performed at the disease-free equilib-
rium by using center manifold theory as presented in
Martcheva [28]. To apply the center manifold theory, the
following simplifcation and change of variables are made on
the model which are rewritten by using state variables of
malaria model and center manifold approach on the system.

Let X1 � Sh, , X2 � Ph, X3 � Ic, X4 � Iy, X5 � Rh, X6 �

Sm, X7 � Im,

Nh � X1 + X2 + X3 + X4 + X5,

Nm � X6 + X7.
(41)

Further by using the vector,

X � X1, X2, X3, X4, X5, X6, X7( 􏼁
T
. (42)

Te system can be written in the form

F � f1, f2, f3, f4, f5, f6, f7( 􏼁
T (43)
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and as follows writing the system in vector forms:

dx

dt
� F xi( 􏼁, (44)

dX1

dt
� f1 � (1 − c)Λh + φX2 + βΦX5 − τX1 −

k1εcX7X1

Nh

−
k1εyX7X1

Nh

− μhX1􏼠 􏼡,

dX2

dt
� f2 � cΛh + τX1 +(1 − Φ)βX5 − φ + μh( 􏼁X2,

dX3

dt
� f3 �

k1εcX7X1

Nh

− μd1
+ μh + η + ω1 + δ1( 􏼁􏼐 􏼑X3,

dX4

dt
� f4 �

k1εyX7X1

Nh

+ ηX3 − μd2
+ μh + ω2 + δ2( 􏼁􏼐 􏼑X4,

dX5

dt
� f5 � ω2 + δ( 􏼁X4 + ω1 + δ1( 􏼁( 􏼁X3 − βϕ +(1 − ϕ)β + μh( 􏼁X5,

dX6

dt
� f6 � Λm −

k2εm X3 + X4( 􏼁X6

Nh

+ μhX6,

dX7

dt
� f7 �

k2εm X3 + X4( 􏼁X6

Nh

− μmX7.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(45)

Choose k1 as bifurcation parameter, and solving for
R0 � 1,

k1 �
abN

2
hμm

ak2εmSmεySh + bk2εmSmμm + ηk2εmμmSm( 􏼁εcabSh

.

(46)

Te Jacobian matrix evaluated at disease-free equilibrium:

J ε0( 􏼁 �

c φ 0 0 βΦ 0 − V1,

τ M1 0 0 (1 − Φ)β 0 0

0 0 a 0 0 0 V2

0 0 η b 0 0 V3

0 0 ω1 + δ1( 􏼁 ω2 + δ2( 􏼁 f 0 0

0 0 − V4 − V5 0 g 0

0 0 V4 V5 0 0 M2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (47)

Eigenvalues of Jacobian are λ1 � − μm, λ2 � − (β + μh),

Table 2: Number of possible real roots of f(I∗m) for R0 > 1 and R0 < 1.

Cases A B C R0
Number of
sign changes

Number of
+ve real
roots

1 + + + <1 0 1
2 + − + <1 2 1
3 − + + <1 1 2
4 − − + <1 1 0
5 + + − >1 1 2
6 + − − >1 1 1
7 − + − >1 2 1
8 − − − >1 0 0
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λ3 �
− C + m1( 􏼁 +

��������

C + m1( 􏼁
2

􏽱

− 4 Cm1 − φ( 􏼁

2
,

λ4 �
− C + m1( 􏼁 −

��������

C + m1( 􏼁
2

􏽱

− 4 Cm1 − φ( 􏼁

2
.

(48)

Using RH criteria, the remaining eigenvalues of Jacobian
are negative real for R0 < 1. Hence, the center manifold
theory can be used to analyze the dynamics of the system for
the case when R0 − 1, and it can be shown that the Jacobian
matrix has a right eigenvector.

W �

W1

W2

W3

W4

W5

W6

W7

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

·

c φ 0 0 βΦ 0 − V1

τ M1 0 0 (1 − Φ)β 0 0

0 0 a 0 0 0 V2

0 0 η b 0 0 V3

0 0 ω1 + δ1( 􏼁 ω2 + δ2( 􏼁 f 0 0

0 0 − V4 − V5 0 g 0

0 0 V4 V5 0 0 M2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

W1

W2

W3

W4

W5

W6

W7

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

W1 �
k1

abfτ
M2C(1 − ϕ) + τϕ − (1 − ϕ) τϕ − CM2( 􏼁

τφ − CM2( 􏼁
+ V1τ􏼢 􏼣W7,

W2 �
β ω1 + δ1( 􏼁V2b + ω2 + δ2( 􏼁 ηV2 + aV3( 􏼁􏼂 􏼃

abf τφ − CM2( 􏼁
(C(1 − ϕ) + τϕ) + V1τ􏼢 􏼣W7,

W3 �
V2W7

a
,

W4 �
ηV2 + aV3

ab
􏼒 􏼓W7,

W5 �
ω1 + δ1( 􏼁V2b + ω2 + δ2( 􏼁 ηV2 + aV3( 􏼁􏼂 􏼃W7

abf
,

W6 �
− V4V2b + V5 ηV2 + aV3( 􏼁( 􏼁W7

abg
.

(49)

Similarly, the components of the left eigenvector of J
correspond to zero eigenvalue, and it can be done by
transposing Jacobian matrix.
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c φ 0 0 βΦ 0 − V1
τ M1 0 0 (1 − Φ)β 0 0
0 0 a 0 0 0 V2
0 0 η b 0 0 V3
0 0 ω1 + δ1( 􏼁 ω2 + δ2( 􏼁 f 0 0
0 0 − V4 − V5 0 g 0
0 0 V4 V5 0 0 M2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

y1
y2
y3
y4
y5
y6
y7

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (50)

where

y3 �
yV5 − V4b

b
􏼠 􏼡y7,

y4 �
− V5y7

b
, y7 > 0,

y1 � y2 � y5 � y6 � y7 � 0.

(51)

Now, we shall establish the conditions on parameter
values that cause a backward bifurcation to occur in system
(45) based on the use of center manifold theory in
Martcheva [28].

Computation of a and b for the transformed system of
(45) is associated with nonzero partial derivatives of f

evaluated at the DFE (S0h, P0
h, 0, 0, 0, S0m, 0).

a � 􏽘
7

i,j,k�1
y3WiWj

z
2
f3 ε0, k1( 􏼁

zXizXj

+ 􏽘
7

i,j,k�1
y4WiWj

z
2
f4 ε0, k1( 􏼁

zXizXj

+ 􏽘
7

i,j,k�1
y7WiWj

z
2
f7 ε0, k1( 􏼁

zXizXj

,

z
2
f3

zX2zX7
�

z
2
f3

zX3zX7
�

z
2
f3

zX5zX7
�

− k1εc φ +(1 − c)μh( 􏼁μh

τ + μh + φ( 􏼁Λh

,

z
2
f4

zX2zX7
�

z
2
f4

zX3zX7
�

z
2
f4

zX5zX7
�

z
2
f4

zX4zX7
�

− k1εy φ +(1 − c)μh( 􏼁μh

τ + μh + φ( 􏼁Λh

,

z
2
f7

zX4zX5
�

z
2
f7

zX1zX3
�

z
2
f7

zX1zX4
�

z
2
f7

zX2zX3
�

z
2
f7

zX2zX4
�

z
2
f7

zX3zX5
�

− k2εmΛmμ
2
h

Λ2hμm

,

z
2
f7

zX3zX4
�

z
2
f7

zX4zX3
�

z
2
f7

zX
2
3

�
z
2
f7

zX
2
4

�
− 2k2εmΛmμ

2
h

Λ2hμm

,

z
2
f7

zX3zX6
�

z
2
f7

zX4zX6
�

k2εmμh

Λh

1 −
Λmμh

Λhμm

􏼠 􏼡.

(52)

It is not necessary to calculate the derivatives of f1, f2,

f5, f6 in computing b because y1, y2, y5, y6 are all 0. From

b � 􏽘
7

i,k�1
ykWi

z
2
fk ε0, k1( 􏼁

zXizk1
,

b � 􏽘
7

i,k�1
y3W7

z
2
f3 ε0, k1( 􏼁

zX7zk1
+ y4W7

z
2
f4 ε0, k1( 􏼁

zX7zk1
􏼢 􏼣,

z
2
f3 ε0, k1( 􏼁

zX7zk1
�
εc φ +(1 − c)μh( 􏼁

τ + μh + φ( 􏼁
,

z
2
f4 ε0, k1( 􏼁

zX7zk1
�
εy φ +(1 − c)μh( 􏼁

τ + μh + φ( 􏼁
,

b � y3W7
εc φ +(1 − c)μh( 􏼁

τ + μh + φ( 􏼁
+ y4W4

εy φ +(1 − c)μh( 􏼁

τ + μh + φ( 􏼁
􏼠 􏼡> 0,

(53)
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when we come to a,

a � y3W7k1
εc φ +(1 − c)μh( 􏼁μh

τ + μh + φ( 􏼁Λh

− W2 − W3 − W4 − W5( 􏼁

+ y4W7k1
εy φ +(1 − c)μh( 􏼁μh

τ + μh + φ( 􏼁Λh

− W2 − W3 − W4 − W5( 􏼁

+ y7W3k2
εmΛmμ

2
h

μmΛ
2
h

+ y7W4k2
εmΛmμ

2
h

μmΛ
2
h

􏼢 􏼣 − W2 − W1 − W5 − 2W3 − 2W4( 􏼁

+ y7W3k2
εmμh

Λh

+ y7W4k2
εmμh

Λh

􏼢 􏼣 1 −
Λmμh

Λhμm

􏼠 􏼡W6+.

(54)

Let

Z1 � − W2 + W3 + W4 + W5( 􏼁,

Z2 � − W2 + W1 + W5 + 2W3 + 2W4( 􏼁,

a � y7 W3 + W4( 􏼁k2
εmμh

Λh

1 −
Λmμh

Λhμm

􏼠 􏼡W6

− y3W7k1
εc φ +(1 − c)μh( 􏼁μh

τ + μh + φ( 􏼁Λh

+ y4W7k1
εy φ +(1 − c)μh( 􏼁μh

τ + μh + φ( 􏼁Λh

􏼠 􏼡Z1 + Z2y7W4k2
εmΛmμ

2
h

μmΛ
2
h

􏼢 􏼣.

(55)

Let

F1 � y7 W3 + W4( 􏼁k2
εmμh

Λh

1 −
Λμh

Λhμm

􏼠 􏼡W6,

F2 � − y3W7k1
εc φ +(1 − c)μh( 􏼁μh

τ + μh + φ( 􏼁Λh

+ y4W7k1
εy φ +(1 − c)μh( 􏼁μh

τ + μh + φ( 􏼁Λh

􏼠 􏼡Z1 + Z2y7W4k2
εmΛmμ

2
h

μmΛ
2
h

􏼢 􏼣,

(56)

and by considering F1 and F2, a is positive if F1 >F2. As we
observed b is positive, according to center manifold theory, if
a> 0, b> 0, then the given age-structured malaria model
undergoes backward bifurcation at R0 � 1 whenever b> 0
and F1 >F2.

As we observed, an age-structured malaria model ex-
hibits backward bifurcation whenever a> 0, and the epi-
demiological signifcance of backward bifurcation is that, in
addition to generating R0 < 1, more action is necessary to
reduce the dynamics of malaria transmission in commu-
nities. Figure 2 shows the backward bifurcation phenome-
non as evidence for the malaria model analysis. Te stable

equilibrium is represented by the solid line and the unstable
equilibrium is represented by the dotted line. It confrms the
results of the analysis, showing an endemic equilibrium.

3.7. Te Local Stability of the Endemic Equilibrium Point.
We conduct linear stability on the endemic equilibrium
point using the Jacobian of the malaria model of the
equations. Ten, the following stability theorem is stated.

Theorem 7. Te endemic equilibrium point ε∗ � (S∗h , P∗h ,

I∗c , I∗y, R∗h , S∗m, I∗m) of the malaria model is locally asymptot-
ically stable if and only if R0 > 1.
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Proof. To show the local stability of the endemic equilibrium
point, we use themethod of the Jacobianmatrix andRH stability
criterion. Te Jacobian of the malaria model at any point is

J ε0( 􏼁 �

D1 − λ φ 0 0 βΦ 0 − V1

τ D2 − λ 0 0 (1 − Φ)β 0 0

0 0 D3 − λ 0 0 0 V2

0 0 η D4 − λ 0 0 V3

0 0 ω1 + δ1( 􏼁 ω2 + δ2( 􏼁 D5 − λ 0 0

0 0 − V4 − V5 0 D6 − λ 0

0 0 V4 V5 0 λm D7 − λ.

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (57)

where D1 � − (τ + λc + λyμh), D2 � − (φ + μh), D3 � − (μd1
+

μh +η + ω + δ1), D4 � − (μd2
+ δ2 + ω2 + δ2), D5 � − (β +μh),

D6 � − μm, D7 � − μm V1 � (K1εcS
0
h/N

0
h + K1εyS0h /N

0
h), V2 �

K1εc S0h/N
0
h, V3 � K1εyS0h/N

0
h, V4 � K2εmS0m/N

0
h, − V5 � K2

εmS0m/N
0
h.

By considering the frst column and corresponding row
of 7 × 7 matrix,

D1 − λ( 􏼁

D2 − λ 0 0 (1 − Φ)β 0 0

0 D3 − λ 0 0 0 V2

0 η D4 − λ 0 0 V3

0 ω1 + δ1( 􏼁 ω2 + δ2( 􏼁 D5 − λ 0 0

0 − V4 − V5 0 D6 − λ 0

0 V4 V5 0 λm D7 − λ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (58)

and if we consider |J − λI| � 0, the frst column has a di-
agonal entry. Terefore, one of the eigenvalues is given by
λ1 � D2 � − (φ + μh). Te reduced matrix becomes

0.5
0.45

0.4
0.35

0.3
0.25

0.2
0.15

0.1
0.05

0

I*

0 0.2 0.4 0.6 0.8 1 1.4
R0

1.6 1.8 21.2

Backward Bifurcation Diagram for Malaria Model

Stable EE

Stable DFE

Unstable EE

Unstable DFE

Figure 2: Backward bifurcation diagram for age-structured malaria model.
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D1 − λ( 􏼁

D3 − λ 0 0 0 V2
η D4 − λ 0 0 V3

ω1 + δ1( 􏼁 ω2 + δ2( 􏼁 D5 − λ 0 0
− V4 − V5 0 D6 − λ 0
V4 V5 0 λm D7 − λ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (59)

and if we consider |J − λI| � 0, the third column has a di-
agonal entry. Terefore, the second eigenvalue is
λ2 � D5 � − (β + μh).

Te reduced matrix becomes

(1) (D1 − λ)

D3 − λ 0 0 V2

η D4 − λ 0 V3

− V4 − V5 D6 − λ 0

V4 V5 λm D7 − λ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

By considering the second column of 7by7 Jacobian
matrix, the reduced matrix after manipulation
becomes

(2) − (φτ)

D3 − λ 0 0 V2

η D4 − λ 0 V3

− V4 − V5 D6 − λ 0
V4 V5 λm D7 − λ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

By taking the common of (1) and (2),

(3) [(D1 − λ) − φτ]

D3 − λ 0 0 V2
η D4 − λ 0 V3

− V4 − V5 D6 − λ 0
V4 V5 λm D7 − λ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

By considering the ffth column of 7 × 7 of the Ja-
cobian matrix, the reduced matrix after expanding
diferent columns with corresponding rows becomes

(4) (βϕλc)

η D4 − λ 0 V3
(ω1 + δ1) (ω2 + δ2) 0 0

− V4 − V5 D6 − λ 0
V4 V5 λm D7 − λ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

And by considering the seventh column, the cor-
responding row of the reduced matrix is

(5) − (V1λc)

η D4 − λ 0
− V4 − V5 D6 − λ
V4 V5 λm

⎛⎜⎝ ⎞⎟⎠.

By considering (3), (4), and (5),

D1 − λ( 􏼁 − φτ􏼂 􏼃 D3 − λ( 􏼁 D4 − λ( 􏼁 D6 − λ( 􏼁 D7 − λ( 􏼁 − V3V5λm − V5 D6 − λ( 􏼁􏼂 􏼃

− V2 η − V5λm − V5 D6 − λ( 􏼁( 􏼁􏼂 􏼃 + V2 D4 − λ( 􏼁V4λm + D4 − λ( 􏼁 D6 − λ( 􏼁V4􏼂 􏼃.
(60)

After manipulation and rearranging, we obtain the
characteristic equation:

A5λ
5

+ A4λ
4

+ A3λ
3

+ A2λ
2

+ A1λ + A0 � 0. (61)

Using the RH stability criteria, we prove that when
R0 > 1, all roots of the polynomial equations have negative
real parts. Tus, the endemic equilibrium point ε∗ is locally
asymptotically stable if R0 > 1. □

3.8. Te Global Stability of the Endemic Equilibrium Point

Theorem 8. Te endemic equilibrium point

ε∗ � S
∗
h , P
∗
h , I
∗
c , I
∗
y, R
∗
h , S
∗
m, I
∗
m􏼐 􏼑 (62)

of the system is globally asymptotically stable if R0 > 1.

Proof. Let us defne an appropriate Lyapunov function V(x)

by applying the approach [28] such that

V(x) � 􏽘
7

i�1
Xi − X

∗
i − X

∗
i X
∗
i ln

Xi

X
∗
i

􏼠 􏼡􏼠 􏼡, (63)

where Xi represent the population of the compartment X∗i
and are endemic equilibrium points in R7

+, and thus,

V(x) � Sh − S
∗
h − S
∗
h ln

Sh

s
∗
h

􏼠 􏼡􏼠 􏼡 + Ph − P
∗
h − P
∗
h ln

Ph

P
∗
h

􏼠 􏼡􏼠 􏼡 + Ic − I
∗
c − I
∗
c ln

Ic

I
∗
c

􏼠 􏼡􏼠 􏼡

+ Iy − I
∗
y − I
∗
y ln

Iy

I
∗
y

⎛⎝ ⎞⎠⎛⎝ ⎞⎠ + Rh − R
∗
h − R
∗
h ln

Rh

R
∗
h

􏼠 􏼡􏼠 􏼡

+ Sm − S
∗
m − S
∗
m ln

Sm

s
∗
m

􏼠 􏼡􏼠 􏼡 + Im − I
∗
m − I
∗
m ln

Im

I
∗
m

􏼠 􏼡􏼠 􏼡.

(64)
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By diferentiating (64) with respect to t and replacing the
derivatives in the equation from their respective expressions
in the equation of the system, we obtain

dV

dt
� (1 − c)Λh + φPh + βΦRh − τ + λc + λy + μh􏼐 􏼑Sh

−
Sh

S
∗
h

(1 − c)Λh + φPh + βΦRh − τ + λc + λy + μh􏼐 􏼑Sh􏼐 􏼑

+ cΛh + τSh +(1 − Φ)βRh − φ + μh( 􏼁Ph

−
Ph

P
∗
h

cΛh + τSh +(1 − Φ)βRh − φ + μh( 􏼁Ph( 􏼁

+ λCSh − μd1
+ μh + η + ω1 + δ1( 􏼁􏼐 􏼑IC

−
Ic

I
∗
c

λCSh − μd1
+ μh + η + ω1 + δ1( 􏼁􏼐 􏼑IC􏼐 􏼑

+ λySh + ηIC − μd2
+ μh + ω2 + δ2( 􏼁􏼐 􏼑Iy

−
Iy

I
∗
y

λySh + ηIC − μd2
+ μh + ω2 + δ2( 􏼁􏼐 􏼑Iy􏼐 􏼑

+ ω2 + δ2( 􏼁Iy + ω1 + δ1( 􏼁IC − βϕ +(1 − ϕ)β + μh( 􏼁Rh

−
Rh

R
∗
h

ω2 + δ2( 􏼁Iy + ω1 + δ1( 􏼁IC − βϕ +(1 − ϕ)β + μh( 􏼁Rh

+ cΛm − λm + μm( 􏼁Sm

−
Sm

S
∗
m

Λm − λm + μm( 􏼁Sm( 􏼁 + λmSm − μmIm

−
Im

I
∗
m

λmSm − μmIm( 􏼁,

(65)

simplify equation (65) by gathering negative and positive
terms, and yielding: dV/ dt � G1 − G2, where G1 denotes
positive terms and G2 denotes negative terms. Terefore, if
G1 <G2, dV/ dt≤ 0 and dV/ dt � 0 if and only if
Sh � S∗h , Ph � P∗h , Ic � I∗c , Iy � I∗y, Rh � R∗h , Sm � S∗m, Im � I∗m,

hence V is, therefore, the Lyapunov function on M. Based on
this, we can observe that the biggest compact invariant sin-
gleton set in M � Sh(t), Ph(t), Ic(t), Iy(t), Rh􏽮 (t), Sm(t),

Im(t) ∈M: dV/ dt � 0} is ε∗ � (S∗h , P∗h , I∗c , I∗y, I∗m). Tere-
fore, by the principle of LaSalle [31], the endemic equilibrium ε0
is globally asymptotically stable in the invariant region M if
G1 <G2 for R0 > 1. □

3.9. Sensitivity Analysis. Te normalized direct sensitivity in-
dex of the variable R0 depends on a parameter (Pr) defned as

SI
R0
Pr

�
zR0

zPr

×
Pr

R0
. (66)

Tese small shear sensitivities allow us to determine the
relative importance of diferent parameters on malaria
transmission and prevalence. Te most sensitive parameter
in Table 3 has a sensitivity index greater than all other
parameters.

4. Numerical Simulation of Integer-Order
Malaria Model

Te numerical simulations examine the efect of combina-
tions of parameters of the modifed model on the trans-
mission of the disease by using MATLAB. Te simulation is
carried out by taking diferent values of parameters. Te set
of parameter values is given in Table 4 whose sources are
mainly from literature as well as assumptions. We used
diferential equation solver ODE (45). Te simulations and
analysis made are based on these parameter values and initial
conditions below.

Te following initial conditions have been considered:
Sh(0) � 25891, Ph(0) � 8285, Ic(0) � 1542, Iy(0) � 1350,

Rh(0) � 1543, Sm(0) � 11998, Im(0) � 2601.

4.1. Numerical Simulation with Sensitive Parameter. We
consider two sensitive parameters, namely, number of bites
on preschool-age human per female mosquito per time and
the number of bites on young-age human per female
mosquito per time.

5. The Fractional Malaria Model and Analysis

Tere are a certain number of limitations of the models
developed via classical diferential equations, such as the
absence of memory efects and being not able to capture the
crossover behavior of a physical or a biological process. “Te
fractional operator, specifcally the ABC operator, comprises

Table 3: Sensitivity analysis.

No. Sensitivity indices at
diferent parameters Sign Sensitivity indices at

parameter value

1 SR0
φ + 4.3 × 10− 4

2 S
R0
Λm

+ 1/2

3 S
R0
K1

+ 1/2

4 S
R0
K2

+ 1/2

5 SR0
εy

+ 1

6 SR0
εc

+ 1

7 SR0
τ + − 10.5

8 SR0
μh

+ − 1.83 × 10− 13

9 SR0
μm

+ − 1

10 S
R0
Λh

+ − 1/2

11 SR0
c + − 2

12 SR0
ω2

+ − 0.46

13 S
R0
δ2

+ − 0.11

14 SR0
μd1

+ − 0.0006

15 SR0
ω1

+ − 0.047

16 SR0
η + − 0.0022

17 S
R0
δ1

+ − 0.044
18 S

R0
ϕ + − 0.78
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the memory efects and the crossover behavior of the
model.” Memory efect means that the future state of the
fractional operator of a given function depends on the
current state and the historical behavior of the state [32].
Terefore, to explore the malaria dynamics more re-
alistically, “Some basics of fractional calculus” are refor-
mulated with the replacement of classical derivative by the
one having fractional order in ABC sense. Tus, the frac-
tional epidemic model for age-structured malaria model
with the nonlocal kernel is formulated through the following
system.

5.1. Some Basic Concepts from Fractional Calculus

Defnition 9. Let f: [a, b]⟶ R, a< b, be abounded and
continuous function and let α ∈ [0, 1]. Te Atanga-
na–Baleanu fractional derivative for a given function of
order α in Caputo sense is defned by ABC

a Dα
t f (t) � M(α)

/(1 − α) 􏽒
t

a
df(τ)/dτ Eα(− α(t − τ)α/1 − α)dτ where M(α)

� (1 − α) + α/Γ(α) denotes M(0) � M(1) � 1 and Eα is
Mittag-Lefer function, defned by Eα(z) � Σ∞k�0z

k/Γ(αk

+ 1), α ϵC, Re(α)> 0.

Defnition 10 (see [33]). Let f: [a, b]⟶ R be bounded and
continuous function; then, the corresponding fractional
integral concerning AB fractional-order derivatives is de-
fned as ABC

a Iαt f(t) � 1 − α/M(α)f(t) + α/M(α)Γ(α) 􏽒
t

t0

f(τ)(t − τ)α− 1dτ.

Theorem 11. Letf: [a, b]⟹R be bounded and continuous
function; then, the following result holds as in [32]:

ABC
a D

α
t f(t)≤

M(α)

(1 − α)
f(t)

�������

�������
� ‖max a≤ t≤ b(f(t))‖.

(67)

Furthermore, the Atangana–Baleanu derivative fulflls
the Lipschitz condition [32] for two functions
f1, f2 ∈ L(a, b), b> a; then, the AB fractional derivative
satisfes the following inequality:

ABC
a D

α
t f1(t)≤ ABCa D

α
t f2(t)

����
����≤L f1(t) − f2(t)

����
����, (68)

where 0< α≤ 1 is the order of fractional derivatives.
Te fractional-order system of the diferential equation

of malaria is proposed as follows:

ABC
0 D

α
t Sh(t) � (1 − c)Λh + φPh + βΦRh − τ + λc + λy + μh􏼐 􏼑Sh,

ABC
0 D

α
t Ph(t) � cΛh + τSh +(1 − Φ)βRh − φ + μh( 􏼁Ph,

ABC
0 D

α
t Ic(t) � λcSh − μd1

+ μh + η + ω1 + δ1􏼐 􏼑Ic,

ABC
0 D

α
t Iy(t) � λySh + ηIc − μd2

+ μh + ω2 + δ2􏼐 􏼑Iy,

ABC
0 D

α
t Rh(t) � ω2 + δ2( 􏼁Iy + ω1 + δ1( 􏼁Ic − βΦ +(1 − Φ)β + μh( 􏼁Rh,

ABC
0 D

α
t Sm(t) � Λm − λm + μm( 􏼁Sm,

ABC
0 D

α
t Im(t) � λmSm − μmIm.

(69)

Te Atangana–Baleanu (AB) derivative is described by
the system of DEs, and the mathematical model can be
written as

ABC
0 D

α
t X(t) � Fi(t, X(t)),where, X(t) � Sh(t), Ph(t), Ic(t), Iy(t), Rh(t), Sm(t), Im(t)􏼐 􏼑. (70)

Table 4: Parameter values.

Parameter Value Source
ω1 0.6415 Assumption
δ1 0.0014 [15]
ω2 0.415 Assumption
δ2 0.00000035 [15]
φ 0.652 Assumption
τ 0.9988 Assumption
Λh 178 Assumption
β 0.222 Assumption
ϕ 0.00042 Assumption
c 0.99 Assumption
η 0.997 Assumption
μd1

2.14 × 10− 6 [15]
μd2

9.78 × 10− 8 [15]
μm 0.042 [15]
μh 0.00004 [15]
εc 0.429 [15]
εy 0.695 Assumption
K1 0.456 Assumption
K2 0.574 Assumption
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In the fractional order of dynamical system (70),
Fi(t, X(t)) for i � 1, 2, 3, 4, 5, 6, 7 are kernels of the dy-
namical system with initial conditions Sh(0) � S0, Ph(0) �

P0, Ic(0) � I0, Iy(0) � I0, Rh(0)

� R0, Sm(0) � S0, Im(0) � I0.

5.2. Existence and Uniqueness of Solutions. To show the
existence of solution of the given model, we use the Banach
fxed point theorem, and to show the existence and

uniqueness of the solution, we apply AB fractional integral
to the proposed model [34]. Let

B � E(J) × E(J) × E(J) × E(J) × E(J) × E(J)

× E(J) × E(J) � C[0, T]
(71)

be the Banach space of real-valued continuous functions
defned on an interval E(J) � [0, T] with the corresponding
norm defned by

Sh(t), Ph(t), Ic(t), Sy(t), Rh(t), Sm(t), Im(t)
�����

�����

� Sh(t)
����

���� + Ph(t)
����

���� + Ic(t)
����

���� + Sy(t)
�����

����� + Rh(t)
����

���� + Sm(t)
����

���� + Im(t)
����

����,
(72)

and the associated sup norm [35].

Theorem 12 (see [33, 34]). (Lipschitz condition and
contraction).

For each kernel in the fractional model above, there exists
a Lipschitz constant Li > 0, i � 1, 2, 3, 4, 5, 6, 7, such that

Fi(t, X(t)) − Fi t, Xi(t)( 􏼁
����

����≤Li X(t) − Xi(t)
����

���� (73)

is contraction for 0≤ Li < 1.

Proof. Let the kernel of the frst compartment, F1, satisfy the
Lipschitz condition and contraction if the inequality given
below holds:

0≤ τ + μh +
K1εc

M Nh( 􏼁
+

K1εy

M Nh( 􏼁
< 1,

F1 t, Sh( 􏼁 − F1 t, Sh1
􏼐 􏼑

�����

����� � (1 − c)Λh + φPh + βϕRh − τ + μh

K1εc

M Nh( 􏼁
+

K1εy

M Nh( 􏼁
􏼠 􏼡Im􏼠 􏼡Sh

��������

��������

+ (1 − c)Λh + φPh + βϕRh − τ + μh

K1εc

M Nh( 􏼁
+

K1εy

M Nh( 􏼁
􏼠 􏼡Im􏼠 􏼡Sh

��������

��������

+ ≤ τ + μh

K1εc

M Nh( 􏼁
+

K1εy

M Nh( 􏼁
􏼠 􏼡Im􏼠 􏼡 Sh − Sh1

􏼐 􏼑

��������

��������

≤ τ + μh +
K1εc

M Nh( 􏼁
+

K1εy

M Nh( 􏼁
􏼠 􏼡Im􏼠 􏼡 Sh − Sh1

�����

�����.

(74)

Suppose that

L1 � τ + μh +
K1εc

M Nh( 􏼁
+

K1εy

M Nh( 􏼁
􏼠 􏼡Z7􏼠 􏼡, (75)

where

Sh

����
���� � sup

t∈J
Sh(t)

����
���� � Z1, Ph

����
���� � sup

t∈J
Ph(t)

����
���� � Z2,

Ic

����
���� � sup

t∈J
Ic(t)

����
���� � Z3,

Iy

�����

����� � sup
t∈J

Iy(t)
�����

����� � Z4, Rh

����
���� � sup

t∈J
Rh(t)

����
���� � Z5,

Sm

����
���� � sup

tϵJ
Sm(t)

����
���� � Z6, Im

����
���� � sup

t∈J
Im(t)

����
���� � Z7 where Im

����
����≤Z7

(76)
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is bounded function, so

F1 t, Sh( 􏼁 − F1 t, Sh1
􏼐 􏼑

�����

�����≤L1 Sh(t) − Sh1(t)

�����

�����, (77)

and thus for F1, the Lipschitz condition is obtained, and if

0≤ τ + μh +
K1εc

M Nh( 􏼁
+

K1εy

M Nh( 􏼁
􏼠 􏼡Z7 < 1, (78)

then F1 is contraction. Similarly,

L2 � φ + μh( 􏼁,

L3 � μd1
+ μh + η􏼐 􏼑 + ω1 + δ1( 􏼁,

L4 � μd2
+ μh + η􏼐 􏼑 + ω2 + δ2( 􏼁,

L5 � βϕ +(1 − ϕ)β + μh,

L6 �
K2εm Z3 + Z4( 􏼁

M Nh( 􏼁
+ μh,

L7 � μm

(79)

are bounded functions; if 0≤Li < 1, i � 2, 3, 4, 5, 6, 7, then
Fi, i � 2, 3, 4, 5, 6, 7, are contraction.

Consider the following recursive form for any positive
integer n:

Xn(t) �
1 − α
M(α)

F t, X(n− 1)􏼐 􏼑 +
α

M(α)Γ(α)
􏽚

t

t0

F τ, Xn− 1(τ)( 􏼁(t − τ)
α− 1dτ, (80)

and we express the diference between the successive terms
by using recursive formula in (80).

An(t) � Xn(t) − Xn− 1(t)

�
1 − α
M(α)

Fi t, Xn− 1(t)( 􏼁 − Fi t, Xn− 2(t)( 􏼁􏼂 􏼃

·
α

M(α)Γ(α)
􏽚

t

t0

Fi τ, Xn− 1(τ)( 􏼁 − Fi τ, Xn− 2(τ)( 􏼁(t − τ)
α− 1dτ.

(81)

From (81), the diference between successive terms is
expressed as follows:
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A1n(t) � Shn
(t) − Shn− 1

(t) �
1 − α
M(α)

F1 t, Shn− 1
(t)􏼐 􏼑 − F1 t, Shn− 2

(t)􏼐 􏼑􏽨 􏽩

α
M(α)Γ(α)

􏽚
t

0
F1 τ, Shn− 1

(τ)􏼐 􏼑 − F1 τ, Shn− 2
(τ)􏼐 􏼑(t − τ)

α− 1dτ,

A2n(t) � Phn
(t) − Phn− 1

(t) �
1 − α
M(α)

F2 t, Phn− 1
(t)􏼐 􏼑 − F2 t, Phn− 2

(t)􏼐 􏼑􏽨 􏽩

·
α

M(α)Γ(α)
􏽚

t

0
F2 τ, Phn− 1

(τ)􏼐 􏼑 − F2 τ, Phn− 2
(τ)􏼐 􏼑(t − τ)

α− 1dτ,

A3n(t) � Icn
(t) − Icn− 1

(t) �
1 − α
M(α)

F3 t, Icn− 1
(t)􏼐 􏼑 − F3 t, Icn− 2

(t)􏼐 􏼑􏽨 􏽩

·
α

M(α)Γ(α)
􏽚

t

0
F3 τ, Icn− 1

(τ)􏼐 􏼑 − F3 τ, Icn− 2
(τ)􏼐 􏼑(t − τ)

α− 1dτ,

A4n(t) � Iyn
(t) − Iyn− 1

(t) �
1 − α
M(α)

F4 t, Iyn− 1
(t)􏼐 􏼑 − F4 t, Iyn− 2

(t)􏼐 􏼑􏽨 􏽩

·
α

M(α)Γ(α)
􏽚

t

0
F4 τ, Iyn− 1

(τ)􏼐 􏼑 − F4 τ, Iyn− 2
(τ)􏼐 􏼑(t − τ)

α− 1dτ,

A5n(t) � Rhn
(t) − Rhn− 1

(t) �
1 − α
M(α)

F5 t, Rhn− 1
(t)􏼐 􏼑 − F5 t, Rhn− 2

(t)􏼐 􏼑􏽨 􏽩

·
α

M(α)Γ(α)
􏽚

t

0
F5 τ, Rhn− 1

(τ)􏼐 􏼑 − F5 τ, Rhn− 2
(τ)􏼐 􏼑(t − τ)

α− 1dτ,

A6n(t) � Smn
(t) − Smn− 1

(t) �
1 − α
M(α)

F6 t, Smn− 1
(t)􏼐 􏼑 − F6 t, Smn− 2

(t)􏼐 􏼑􏽨 􏽩

·
1
Γ(α)

􏽚
t

0
F6 τ, Smn− 1

(τ)􏼐 􏼑 − F6 τ, Smn− 2
(τ)􏼐 􏼑(t − τ)

α− 1dτ,

A7n(t) � Imn
(t) − Imn− 1

(t) �
1 − α
M(α)

F7 t, Imn− 1
(t)􏼐 􏼑 − F7 t, Imn− 2

(t)􏼐 􏼑􏽨 􏽩

·
1
Γ(α)

􏽚
t

0
F7 τ, Imn− 1

(τ)􏼐 􏼑 − F7 τ, Imn− 2
(τ)􏼐 􏼑(t − τ)

α− 1dτ,

(82)

with initial conditions

Sh0
(t) � Sh(0), Ph0

(t) � Ph(0), Ic0
(t) � Ic(0), Iy0

(t) � Iy(0),

Rh0
(t) � Rh(0), Sm0

(t) � Sm(0), Im0
(t) � Im(0).

(83)

Equation (70) can be reduced using defnition of the
norm.

A1n(t)
����

���� � Shn
(t) − Shn− 1

(t)
�����

����� �
1 − α
M(α)

F1 t, Shn− 1
(t)􏼐 􏼑 − F1 t, Shn− 2

(t)􏼐 􏼑
�����

�����

+
α

M(α)Γ(α)
􏽚

t

0
F1 τ, Shn− 1

(τ)􏼐 􏼑 − F1 τ, Shn− 2
(τ)􏼐 􏼑(t − τ)

α− 1dτ
�������

�������
.

(84)
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Applying triangular inequality,

Shn
(t) − Shn− 1

(t)
�����

�����≤
1 − α
M(α)

F1 t, Shn− 1
(t)􏼐 􏼑 − F1 t, Shn− 2

(t)􏼐 􏼑
�����

�����

+
α

M(α)Γ(α)
􏽚

t

0
F1 τ, Shn− 1

(τ)􏼐 􏼑 − F1 τ, Shn− 2
(τ)􏼐 􏼑(t − τ)

α− 1
dτ

�������

�������
,

(85)

and by integrating (73), we obtained

A1n(t)
����

���� � Shn
(t) − Shn− 1

(t)
�����

�����≤
1 − α
M(α)

L1 Shn
(t) − Shn− 1

(t)
�����

�����

+
t
α

M(α)Γ(α)
L1 Shn

(t) − Shn− 1
(t)

�����

����� A1n(t)
����

����

≤ A1n− 1(t)
����

����
1 − α
M(α)

+
t
α

M(α)Γ(α)
􏼠 􏼡.

(86)

Similarly,

A2n(t)
����

����≤ A2n− 1(t)
����

����
1 − α
M(α)

+
t
α

M(α)Γ(α)
􏼠 􏼡,

A3n(t)
����

����≤ A3n− 1(t)
����

����
1 − α
M(α)

+
t
α

M(α)Γ(α)
􏼠 􏼡,

A4n(t)
����

����≤ A4n− 1(t)
����

����
1 − α
M(α)

+
t
α

M(α)Γ(α)
􏼠 􏼡,

A5n(t)
����

����≤ A5n− 1(t)
����

����
1 − α
M(α)

+
t
α

M(α)Γ(α)
􏼠 􏼡,

A6n(t)
����

����≤ A6n− 1(t)
����

����
1 − α
M(α)

+
t
α

M(α)Γ(α)
􏼠 􏼡,

A7n(t)
����

����≤ A7n− 1(t)
����

����
1 − α
M(α)

+
t
α

M(α)Γ(α)
􏼠 􏼡.

(87)

□

Theorem 13. Te mathematical model involving Atanga-
na–Baleanu fractional model given in (69) has solution if
there exists y0 such that

1 − α
M(α)

+
t
α

M(α)Γ(α)
􏼠 􏼡Li < 1, i � 1, 2, 3, 4, 5, 6, 7. (88)

Proof. Using techniques of recursive formula, we obtain

A1n(t)
����

����≤ Shn
(0)

�����

�����L1
1 − α
M(α)

+
tα

M(α)Γ(α)
􏼠 􏼡

n

. (89)

Similarly,

A1n(t)
����

����≤ Shn
(0)

�����

�����L1
1 − α
M(α)

+
tα

M(α)Γ(α)
􏼠 􏼡

n

,

A2n(t)
����

����≤ Phn
(0)

�����

�����L2
1 − α
M(α)

+
tα

M(α)Γ(α)
􏼠 􏼡

n

,

A3n(t)
����

����≤ Icn
(0)

�����

�����L3
1 − α
M(α)

+
tα

M(α)Γ(α)
􏼠 􏼡

n

,

A4n(t)
����

����≤ Iyn
(0)

�����

�����L4
1 − α
M(α)

+
tα

M(α)Γ(α)
􏼠 􏼡

n

,

A5n(t)
����

����≤ Rhn
(0)

�����

�����L5
1 − α
M(α)

+
tα

M(α)Γ(α)
􏼠 􏼡

n

,

A6n(t)
����

����≤ Smn
(0)

�����

�����L6
1 − α
M(α)

+
tα

M(α)Γ(α)
􏼠 􏼡

n

,

A7n(t)
����

����≤ Shn
(0)

�����

�����L7
1 − α
M(α)

+
tα

M(α)Γ(α)
􏼠 􏼡

n

.

(90)

Now we are going to show functions which are
Sh, Ph, Ic, Iy, Rh, Sm, Im that are solutions of (69).

Assume

Sh(t) − Sh(0) � Shn(t) − A1n(t), (91)

and by repeating the process of recursive formula, we obtain

A1n(t)
����

����≤
1 − α
M(α)

+
tα

M(α)Γ(α)
􏼠 􏼡

n+1

L1 Shn
(t) − Shn− 1

(t)
�����

�����􏼒 􏼓
n+1

,

(92)

for t � y0, and (92) becomes
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A1n(t)
����

����≤
1 − α
M(α)

+
yα
0

M(α)Γ(α)
􏼠 􏼡

n+1

L1 Shn
(t) − Shn− 1

(t)
�����

�����􏼒 􏼓
n+1

,

(93)

and by taking the limit of (93),

n⟶∞, A1n(t)
����

����⟶∞,
1 − α
M(α)

+
t
α

M(α)Γ(α)
􏼠 􏼡L1 < 1.

(94)

Tis completes the proof of existence of the solution of
the given model using the Banach fxed point theorem; the
same is true for the remaining expressions. □

Theorem 14. Te Atangana–Baleanu fractional model has
a unique solution if

1 − α
M(α)

+
t
α

M(α)Γ(α)
􏼠 􏼡Li < 1. (95)

Let X∗ � (Sh1
, Ph1

, Ic1
, Iy1

, Rh1
, Sm1

, Im1
) be solutions of the

proposed fractional model

X(t) − X
∗
(t) �

1 − α
M(α)

Fi(t, X(t)) − Fi t, X
∗
(t)( 􏼁

+
α

M(α)Γ(α)
􏽚

t

t0

Fi(τ, X(τ)) − Fi τ, X
∗
(τ)( 􏼁(t − τ)

α− 1dτ.

(96)

By taking the norm of both sides and after integrating,
we obtain

X(t) − X
∗
(t)

����
����≤

1 − α
M(α)

Li X(t) − X
∗
(t)

����
���� +

α
M(α)Γ(α)

Li X(t) − X
∗
(t)

����
����. (97)

We have ‖X(t) − X∗(t)‖ which is common for both
sides since

1 −
1 − α
M(α)

+
t
α

M(α)Γ(α)
􏼠 􏼡Li > 0, (98)

and we get ‖X(t) − X∗(t)‖ � 0; then, we have X(t) � X∗(t),
and thus (69) has unique solution.

Theorem 15. Te epidemiologically feasible region of AB
fractional model is given by

M � Sh(t), Ph(t), Ic(t), Iy(t), Rh(t), Sm(t), Im(t) ϵR7
+, (99)

such that
0≤ Sh(t) + Ph(t) + Ic(t) + Iy(t) + Rh(t)

+ Sm(t) + Im(t)≤Nh ≤
Λh

μh

.

(100)

To show positivity, we have to consider the
following lemma.

Lemma 16 (see [36]) (generalized mean value theorem). Let
f(x) ∈ C[a, b] and ABC

0 Dα
t f(x)≥ 0ϵC ∈ [a, b] when

0< α≤ 1. Ten, we have

f(a) � f(a) +
1
Γ(α)

ABC
0 D

α
t f(ε)(x − a)

α
, (101)

when 0≤ ε≤x,∀x ∈ (a, b]. From the lemma above, if

f(x) ∈ C[0, b],
ABC
0 D

α
t f(x)ϵC[a, b],

ABC
0 D

α
t f(x)≥ 0, ∀x ∈ [0, b],

(102)

when 0< α≤ 1f(x) is nondecreasing, and for
ABC
0 D

α
t f(x)≤ 0, ∀x ∈ [0, b], (103)

f(x) is nonincreasing. Let us show that M is positively
invariant; using the above lemma, we have

ABC
0 D

α
t | Sh � 0 � (1 − c)Λh + φPh + βΦRh ≥ 0,

ABC
0 D

α
t | Ph � 0 � cΛh + τSh +(1 − Φ)βRh ≥ 0,

ABC
0 D

α
t | Ic � 0 � λcSh ≥ 0.

(104)

Similarly, each of the remaining solutions of the model is
nonnegative and remains in M. To show that the solution of
the system is bounded, we have to obtain the fractional
derivatives of total population by summing up all the re-
lations in the system, so

ABC
0 D

α
t Sh+

ABC
0 D

α
t Ph+

ABC
0 D

α
t Ic+

ABC
0 D

α
t Iy+

ABC
0 D

α
t Rh,

ABC
0 D

α
t Nh ≤Λh − μhNh⟹

ABC
0 D

α
t Nh + μhNh ≤Λh.

(105)

By applying Laplace transform on both sides of the above
inequality,
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L
ABC
0 D

α
t Nh + μhNh􏼐 􏼑≤ L Λh( 􏼁,

L Nh( 􏼁≤ 1 −
ταS− α

(1 − τ)(1 − α)
􏼡􏼠 􏼡

− 1 1 − α
(1 − τ)F(α)

1 +
αS

− α

1 − α
􏼠 􏼡

Λh

S
+ N0

1
(1 − τ)S

􏼢 􏼣,

(106)

where

τ �
− μh(1− α)

F(α)
, (107)

and by applying the inverse Laplace transform [37], the so-
lution is given by

Nh(t) �
Λh

μh

−
Λh

μh(1 − τ)

d

dt
􏽚

t

0
Eα

τα
(1 − τ)(1 − τ)

(t − x)
αdx +

1
(1 − τ)

Eα
ταt

α

(1 − τ)(1 − α)
􏼠 􏼡N(0), (108)

where Eα,β refers to Mittag-Lefer function, and it has as-
ymptotic behavior.

Eα,β(z) ≈ Σωτ�1
Z

− τ

F(β − ατ)
,

Nh(t)⟶
Λh

μh

,

(109)

as, t⟶∞, Nh(t)≤Λh/μh as, t⟶ 0 hence it is a bi-
ologically feasible region that means for t≥ 0 we have
0<Nh(t)≤ (Nh(t))/μh this indicates that the total human
population is bounded. In the same way, mosquito population
is also bounded because Nm(t)≤Λm/μm as t⟶ 0.

5.3. Local Stability of Disease-Free Equilibrium Point of
Fractional Model. As for the case of the model with integer
derivative (45), the fractional model (69) admits always DFE,

ε0 Sh0
, Ph0

, 0, 0, Rh0
, Sm0

, 0􏼐 􏼑, (110)

and disease-free equilibrium point of (69) is given in (14). As
in the case of ODEmodel (45), we compute the reproduction
number R0 using the next-generation matrix approach [38],
and the reproduction number of fractional model (69) is
given by

R0 �

�����������������������������������������������

K2εmS
0
m

bN
0
h

􏼠 􏼡
K1εyS

0
h

μmN
0
h

⎛⎝ ⎞⎠ +
K2εmS

0
m

aN
0
h

+
ηK2εmS

0
m

abN
0
h

􏼠 􏼡
K1εcS

0
h

μmN
0
h

􏼠 􏼡

􏽶
􏽴

. (111)

Theorem 17. Te disease-free equilibrium of (69) is locally
asymptotically stable if R0 < 1 and unstable if R0 > 1.

To show the local stability of disease-free equilibriumof (69),
we use 7 × 7 Jacobian matrix and RH criterion. As indicated in
(11), the disease-free equilibrium (ε0) of (69) is locally as-
ymptotically stable for R0 < 1 and unstable for R0 > 1.

By using the same Lyapunov type function as in (14) of
classical model (45), we prove that DFE of fractional model
(69) is globally asymptotically stable in M whenever R0 ≤ 1.
Tus, the following result is valid.

Theorem 18. For any α ∈ (0, 1], the disease-free equilibrium
point ε0 of model (69) is globally asymptotically stable in the
feasible region M if R0 < 1 [39].

Theorem 1 . Te endemic equilibrium point
ε∗ � (S∗h , P∗h , I∗c , I∗y, R∗h , S∗m, I∗m) of the malaria model of (69) is
locally asymptotically stable if and only if R0 > 1.

To show the local stability of the endemic equilibrium point,
we used the method of the Jacobian matrix and RH stability
criterion.

As indicated in (21), endemic equilibrium point ε∗ is
locally asymptotically stable if R0 > 1.

Theorem 20. Te endemic equilibrium point ε∗ � (S∗h ,

P∗h , I∗c , I∗y, R∗h , S∗m, I∗m) of the system is globally asymptotically
stable if R0 > 1.

As we observe from (26) of this paper, ε0 is globally
asymptotically stable in the invariant region M if G1 <G2 for
R0 > 1.

6. Numerical Scheme and Simulation of
Fractional-Order Model

Te numerical scheme for the solution of fractional-order
diferential equation is defned by Toufk and Atangana [40].
Consider nonlinear FDEs
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ABC
0 D

α
t X(t) � Fi(t, X(t)), X(0) � X0. (112) Te numerical scheme for (112) is defned as in [34].

Xn+1 � X0 +
1 − α
M(α)

tn, X tn( 􏼁( 􏼁

+
α

M(α)Γ(α)
􏽘

h
α
f tk, X tk( 􏼁( 􏼁

Γ(α + 2)
(n + 1 − k)

α
(n + 2 − k + α) − (n − k)

α
(n + 2 − k + 2α)

−
h
α
f tk− 1, X tk− 1( 􏼁( 􏼁

Γ(α + 2)
(n + 1 − k)

α+1
− (n − k)

α
(n + 1 − k + α).

(113)

By adopting the procedure in [40], the numerical scheme
of each compartment in the fractional model (69) takes

Sh tn+1( 􏼁 � Sh t0( 􏼁 +
1 − α
M(α)

F1 t, Sh(t), Ph(t), Ic(t), Iy(t), Rh(t), Sm(t), Im(t)􏼐 􏼑

+
α

M(α)Γ(α)
􏽘

h
α
F1 t, Sh(t), Ph(t), Ic(t), Iy(t), Rh(t), Sm(t), Im(t)􏼐 􏼑

Γ(α + 2)

· (n + 1 − k)
α
(n + 2 − k + α) − (n − k)

α
(n + 2 − k + 2α)

−
h
α
F1 t, Sh(t), Ph(t), Ic(t), Iy(t), Rh(t), Sm(t), Im(t)􏼐 􏼑

Γ(α + 2)
(n + 1 − k)

α+1
− (n − k)

α
(n + 1 − k + α),

Ph tn+1( 􏼁 � Ph t0( 􏼁 +
1 − α
M(α)

F2 t, Sh(t), Ph(t), Ic(t), Iy(t), Rh(t), Sm(t), Im(t)􏼐 􏼑

+
α

M(α)Γ(α)
􏽘

h
α
F2 t, Sh(t), Ph(t), Ic(t), Iy(t), Rh(t), Sm(t), Im(t)􏼐 􏼑

Γ(α + 2)

· (n + 1 − k)
α
(n + 2 − k + α) − (n − k)

α
(n + 2 − k + 2α)

−
h
α
F2 t, Sh(t), Ph(t), Ic(t), Iy(t), Rh(t), Sm(t), Im(t)􏼐 􏼑

Γ(α + 2)
(n + 1 − k)

α+1
− (n − k)

α
(n + 1 − k + α),

Ic tn+1( 􏼁 � Ic t0( 􏼁 +
1 − α
M(α)

F3 t, Sh(t), Ph(t), Ic(t), Iy(t), Rh(t), Sm(t), Im(t)􏼐 􏼑

+
α

M(α)Γ(α)
􏽘

h
α
F3 t, Sh(t), Ph(t), Ic(t), Iy(t), Rh(t), Sm(t), Im(t)􏼐 􏼑

Γ(α + 2)

· (n + 1 − k)
α
(n + 2 − k + α) − (n − k)

α
(n + 2 − k + 2α)

−
h
α
F3 t, Sh(t), Ph(t), Ic(t), Iy(t), Rh(t), Sm(t), Im(t)􏼐 􏼑

Γ(α + 2)
(n + 1 − k)

α+1
− (n − k)

α
(n + 1 − k + α),

Iy tn+1( 􏼁 � Iy t0( 􏼁 +
1 − α
M(α)

F4 t, Sh(t), Ph(t), Ic(t), Iy(t), Rh(t), Sm(t), Im(t)􏼐 􏼑

+
α

M(α)Γ(α)
􏽘

h
α
F4 t, Sh(t), Ph(t), Ic(t), Iy(t), Rh(t), Sm(t), Im(t)􏼐 􏼑

Γ(α + 2)

· (n + 1 − k)
α
(n + 2 − k + α) − (n − k)

α
(n + 2 − k + 2α)

−
h
α
F4 t, Sh(t), Ph(t), Ic(t), Iy(t), Rh(t), Sm(t), Im(t)􏼐 􏼑

Γ(α + 2)
(n + 1 − k)

α+1
− (n − k)

α
(n + 1 − k + α),
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Rh tn+1( 􏼁 � Rh t0( 􏼁 +
1 − α
M(α)

F5 t, Sh(t), Ph(t), Ic(t), Iy(t), Rh(t), Sm(t), Im(t)􏼐 􏼑

+
α

M(α)Γ(α)
􏽘

h
α
F5 t, Sh(t), Ph(t), Ic(t), Iy(t), Rh(t), Sm(t), Im(t)􏼐 􏼑

Γ(α + 2)

· (n + 1 − k)
α
(n + 2 − k + α) − (n − k)

α
(n + 2 − k + 2α)

−
h
α
F5 t, Sh(t), Ph(t), Ic(t), Iy(t), Rh(t), Sm(t), Im(t)􏼐 􏼑

Γ(α + 2)
(n + 1 − k)

α+1
− (n − k)

α
(n + 1 − k + α),

Sm tn+1( 􏼁 � Sm t0( 􏼁 +
1 − α
M(α)

F6 t, Sh(t), Ph(t), Ic(t), Iy(t), Rh(t), Sm(t), Im(t)􏼐 􏼑

+
α

M(α)Γ(α)
􏽘

h
α
F6 t, Sh(t), Ph(t), Ic(t), Iy(t), Rh(t), Sm(t), Im(t)􏼐 􏼑

Γ(α + 2)

· (n + 1 − k)
α
(n + 2 − k + α) − (n − k)

α
(n + 2 − k + 2α)

−
h
α
F6 t, Sh(t), Ph(t), Ic(t), Iy(t), Rh(t), Sm(t), Im(t)􏼐 􏼑

Γ(α + 2)
(n + 1 − k)

α+1
− (n − k)

α
(n + 1 − k + α),

Im tn+1( 􏼁 � Im t0( 􏼁 +
1 − α
M(α)

F7 t, Sh(t), Ph(t), Ic(t), Iy(t), Rh(t), Sm(t), Im(t)􏼐 􏼑

+
α

M(α)Γ(α)
􏽘

h
α
F7 t, Sh(t), Ph(t), Ic(t), Iy(t), Rh(t), Sm(t), Im(t)􏼐 􏼑

Γ(α + 2)

· (n + 1 − k)
α
(n + 2 − k + α) − (n − k)

α
(n + 2 − k + 2α)

−
h
α
F7 t, Sh(t), Ph(t), Ic(t), Iy(t), Rh(t), Sm(t), Im(t)􏼐 􏼑

Γ(α + 2)
(n + 1 − k)

α+1
− (n − k)

α
(n + 1 − k + α),

(114)

for step size h(tm, tm− 1).
In the numerical simulation of dynamics of malaria

disease, two categories of the species are considered: the host
population which contains the human population and the
vector which consists of mosquito. Te two species are
interconnected with each other. Te efect of embedded
parameter is shown on the dynamics of both species. We used
the numerical technique developed by Toufk and Atangana.

7. Result and Discussion

Te susceptible human population decreases rapidly as
shown in Figure 3. Tis indicates that the susceptible human
population will continue to join the infected class; as a result,
the infected population will increase due to high biting rate
of mosquito and high probability transmission rate from the
infected mosquito to the susceptible human. R0 � 1.622
which is greater than one; this indicates that the mosquito
vector is continuously increasing. It supports the theorem
for stability of endemic equilibrium point that the disease is
endemic when R0 > 1.

Figure 4 shows the distribution of population for dif-
ferent classes with time. Tus, the susceptible human
population decreases due to the presence of infective
mosquito with high biting rate of mosquito for the frst few

days. Since the infective vector bites the susceptible human,
the susceptible human becomes infected and goes to the
infected human compartments; then, the susceptible pop-
ulation decreases and the infected human population in-
creases. After some interval of time, they go to zero due to
increment of protected class, that is, as protected class in-
creases, susceptible vector and infected vector class decrease
due to lack of meal for their egg; then, the disease-free
equilibrium point exists and is stable. Te existence of this
condition is due to the fact that R0 � 2.827 × 10− 5 which is
less than one. Tis supports the theorem that the stability of
disease-free equilibrium point exists when R0 < 1, i.e., the
society is free from the disease when R0 < 1.

We also evaluated sensitivity indices of the parameter
values shown in Table 2. In the case of malaria transmission,
themost sensitive parameter is the rate of mosquito bites or the
number of bites in people of preschool age (εc) and young age
(εy); other parameters include the probability of transmission
from an infectious mosquito to a susceptible person or
a portion of the bite that successfully infects human (K1) and
the probability of disease transmission from infectious human
to susceptible vector or a portion of the bite that successfully
infects mosquito. As shown in Figure 4, the number of bites of
mosquito increases and the susceptible human population
decreases because when the contact between mosquito and the
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two human age levels increases, the force of infection increases
and individuals go to the infected class to increase the infected
human class as shown in Figure 5. As the number of bites
increases, the population of susceptible vector decreases be-
cause of increase in infected vector for some time interval
initially and then decreases because infected vector goes to the
susceptible human class to increase force of infection as shown
in Figures 6–8. Susceptible human population decreases in
three directions: frstly because of natural death rate, secondly
because of increment in force of infection as shown in Figure 4,
and thirdly because of increment in transfer rate tau (τ) of
human from susceptible class to protected class as shown in
Figures 9 and 10 to increase protected class individuals as
shown in Figure 11. As explained in assumption part, pro-
tection class is the class with individuals who use intervention
mechanisms like ITNs and IRS; if individuals who use such
control mechanisms increase, the force of infection decreases
because of decrease in mosquito vector with lack of meal for

their egg production. As shown in Figures 3 and 12, the
number of infected humans decreases as the number of re-
covered humans increases because of increment in natural
recovery rate and treatment rate, so this increment in recovery
rate is one way to increase protected class individuals; in-
crement in protected class is our target to control malaria
disease; because of increment in protection class and recovery
rate, infected preschool-age and young-age human population
decreases as shown in Figures 13–15.

In Figures 16 and 17, we show the global asymptotic
stability of the proposed model by varying the initial con-
ditions of each compartment for time being, and to save time
and space, we show only two compartments, namely, sus-
ceptible humans and infected preschool humans.

As indicated in Figures 18 and 19, as fractional order α
approaches 1 or integer order, the susceptible human pop-
ulation decreases which is similar to that of classical model
result, that is, as the biting rate of mosquito increases, the
susceptible human population decreases. Te majority of
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Figure 3: Human mosquito plot shows that susceptible human
populations decrease rapidly. Tis indicates that the susceptible
human population will continue to join the infected class
R0 � 1.622.
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Figure 4: Human mosquito for DFE plot which shows susceptible
human population decreases due to the presence of infective
mosquito with high biting rate for the frst few days.
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Figure 5: As the number of bites of mosquito increases, the
susceptible human population decreases.
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Figure 8: Te result shows that the infected vector population is
increased for initial time interval then after decrease as time increase.
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Figure 9: Te population of infected vector increases for initial
time interval and then decreases.
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Figure 10: Susceptible population decreases as increases transfer
rate (τ) of human from susceptible to protected class.
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Figure 11: Te dynamics of susceptible population with fractional
order α which show the decay behavior for the given time t.
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Figure 12: Te result of recovered human population with frac-
tional order Îś shows that the recovery is increased for some time
interval.
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fractional-ordermodel simulation results are roughly similar to
those of classical order model simulation results when frac-
tional order α⟶ 1. However, as many studies have shown,

the model with fractional derivatives (Atangana–Baleanu in
Caputo sense) is superior to the model with integer-order
derivatives. Based on theorem (21), we have demonstrated that
even in the disease-free equilibrium, there is a chance of an
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Figure 13:Te dynamics of protected humanwith fractional order α
which show protected individuals increased for initial time interval
and decreasing behavior for some time; and then increase fnally.
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Figure 17: Global stability of susceptible human compartment.
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Figure 18: As the value of τ increases, the protected class also
increases.
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endemic equilibrium when R0 < 1 experiences backward bi-
furcation; this suggests that society may not fully comprehend
the extent of malaria prevalence in the population. When the
level of malaria endemicity expressed only by the size of the
basic reproductive number is less than one, the disease can
disappear but still persist (at very high endemic levels).

8. Conclusion

Integer- and fractional-order models were presented for the
dynamics of malaria in human hosts with varying ages. A
system of diferential equations model with fve human state
variables and two mosquito state variables was examined. We
demonstrated the existence of an area in which the model is
both mathematically and epidemiologically well posed. Te
equilibrium point devoid of disease was discovered, and its
stability was examined. We identifed the basic reproduction
number R0 in terms of the model parameters that measure the
intensity of the transmission of the disease. It has been
demonstrated that during the course of the infectious period,
R0 predicts the anticipated number of additional infections (in
mosquitoes and people) from one infectious individual (hu-
man or mosquito). It was also established that for the basic
reproduction number R0 < 1, the disease-free equilibrium
point emerges.We showed that the endemic equilibrium point
is unique for R0 > 1, and also we showed numerical result for
both fractional- and integer-order models. For the numerical
simulation of integer order, we used ODE (45), and we used
numerical technique developed by Toufk and Atangana for
fractional order. Plasmodium parasites cause malaria. Since
malaria is a global problem, the following measures should be
taken to eradicate the disease. Te biological explanation of
(21) is that when backward bifurcation occurs, malaria can still
exist in the community even when R0 < 1, and such situation
can lead to misunderstandings about malaria eradication
programs. Responsible bodies like policy makers may think
they have succeeded in bringing R0 under one and hope
malaria will disappear. Unfortunately, if backward bifurcation
occurs, there will be a large endemic equilibrium due to the
hysteresis that occurs when R0 < 1.

(i) Our results in (21) indicate that responsible bodies
need to increase the culture of using diferent
control mechanisms like ITNs and IRS including
diferent medical treatments to avoid backward
bifurcation or inverse bifurcation.

(ii) Since the model indicates that the probability of
disease transmission rate and mosquito biting rate
play a major role in the disease’s spread, eforts
should be made to reduce mosquito populations
and biting rates through biological or chemical
means, or any other method that will lower the rate
of malaria infection.

(iii) Government agencies with accountability should
start and continue efcient programs to guarantee
that public health decision makers take into account
intervention strategies aimed at reducing mosquito
populations and biting rates when controlling
malaria. Furthermore, we plan to expand the model
in subsequent work to encompass

(a) Efects of diferent constant control mechanisms
onmalaria prevalence, optimal control, and cost
analysis.

(b) Te efects of temperature and rainfall on the
spread of malaria on the mortality and survival
probabilities via optimal control.

(c) Diferent fractional-order derivatives and integer-
order derivatives, comparing their results and
performing backward and forward bifurcation to
identify the prevalence of malaria disease.
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