In this paper, integer- and fractional-order models are discussed to investigate the dynamics of malaria in a human host with a varied age distribution. A system of differential equation model with five human state variables and two mosquito state variables was examined. Preschool-age (0–5) and young-age individuals make up our model’s division of the human population. We investigated the existence of an area in which the model is both mathematically and epidemiologically well posed. According to the findings of our mathematical research, the disease-free equilibrium exists whenever the fundamental reproduction number R_0 is smaller than one and is asymptotically stable. The disease-free equilibrium point is unstable when $R_0 > 1$. We showed that the endemic equilibrium point is unique for $R_0 > 1$. Also, the most influential control parameters of the spread of malaria were identified. Numerical simulations of both classical and fractional order were conducted, and we used ODE (45) for classical part and numerical technique developed by Toufik and Atangana for fractional order. The infected population will grow because of the high biting frequency of the mosquito and the high likelihood of transmission from the infected mosquito to the susceptible human. $R = 1.622$, which is more than one, indicating that the mosquito vector keeps on growing. This supports the stability of the endemic equilibrium point theorem, which states that the disease becomes endemic when $R = 1$. The susceptible human population will decrease because of the presence of the infective mosquito, which has a high biting frequency for the first couple of days. Since the infective mosquito bit the susceptible human, the susceptible human became infected and went to the infected human compartments. Then, the susceptible population will decrease and the infested human population will increase. After a certain amount of time, it becomes zero due to the growth of protected classes. In this case, a disease-free equilibrium point exists and is stable. This condition exists because $R_0 = 2.827 \times 10^{-5}$ is less than 1. This supports the theorem that the stability of the disease-free equilibrium point is obtained when $R_0 < 1$. Depending on equation, we have shown that the possibility of some endemic equilibria exists when $R_0 < 1$, that is, it undergoes backward bifurcation, even when the disease-free equilibrium is locally stable, and the result means that the society may misunderstand the level of malaria prevalence in the community.

1. Introduction

Vector-borne diseases (VBDs) result from an infection communicated by vectors such as mosquitoes, ticks, lice, and fleas. These vectors carry pathogenic organisms such as bacteria, viruses, fungi, protists, and parasitic worms which can be transferred from one host to another. Some examples of VBDs are dengue fever, Lyme disease, malaria, West Nile virus, Rift Valley fever, and Japanese encephalitis [1]. In many tropical and subtropical regions, malaria is a prevalent and potentially fatal infectious disease. It is brought on by the Plasmodium parasite, which is spread when female Anopheles mosquitoes bite people to obtain blood for their eggs [2]. The most prevalent species of Plasmodium are Plasmodium vivax in temperate zones and Plasmodium falciparum in tropical areas [3, 4]. About half of the world’s population is in danger of malaria, according to the WHO (World Health Organization) malaria report [5]. Globally, there were estimated 228 million cases of malaria and 405000 deaths from it in 2018. Most of these cases and deaths accounted for 93% and 94% of all malaria cases globally in 2018. The projected number of cases and fatalities from
malaria in 2019 was 229 million worldwide [6]. Globally, there were reportedly 247 million cases of malaria in 2021, with 619000 deaths attributed to the disease.

A disproportionately large amount of the worldwide malaria burden is placed on the WHO African Region. 95% of malaria cases and 96% of malaria deaths in 2021 occurred in the area. Almost 80% of all malaria deaths in the WHO African Area occurred in children under the age of five. Two-thirds of recorded deaths are children [6]. As they have not yet acquired immunity to illnesses, children under the age of five are more susceptible to malaria than adults [7]. As a result, the age distribution in a community affects the spread of malaria. In Ethiopia, 60% and 40% of malaria cases are caused by the species *Plasmodium falciparum* and *Plasmodium vivax*, respectively [8, 9]. Many scientific attempts have been made, including the creation of mathematical models, to lessen the impact of malaria on the global community. Ross, in 1911 [10], applied deterministic compartmental epidemic models to illustrate the dynamics of malaria infection between vector and host populations. Macdonald and Ross’s model [11] was modified by adding biological data about mosquito latency brought on by the growth of the malaria parasite. Nonetheless, efforts to stop the spread of malaria have resulted in the creation of effective vector control measures, including larvicide, indoor residual spraying, and insecticide-treated nets (ITNs) [6, 12].

Non-integer-order calculus has more than 300-year history. Many theories are being added to the literature on fractional calculus every day. In the seventeenth century, German mathematician Gottfried Leibniz and well-known British scientist Isaac Newton developed the idea of fractional calculus as a result of calculus’s ramifications. In the form of generalized fractional order, fractional calculus deals with the definitions of classical calculus [13]. In order to comprehend, forecast, and manage the spread of diseases among populations, mathematical modeling of infectious diseases is essential. Through the integration of mathematical tools and epidemiological knowledge, researchers are able to conduct scenario simulations, investigate diverse intervention options, and facilitate the making of health policies. These models are useful instruments for educating decision-makers and supporting the creation of winning plans to fight infectious illnesses and safeguard the public’s health [14].

A novel mathematical model was recently presented by Mohammed-Awel and Gumel [15], because of the widespread use of indoor residual spraying (IRS) and insecticide-treated nets (ITNs) for malaria control, for evaluating the impact of pesticide resistance in the mosquito population. In [11, 16], fractional-order derivatives are described as nonlinear systems in a more realistic way in comparison with integer-order derivatives, and a comparison of temperature distribution via Atangana–Baleanu non-integer-order fractional derivatives is used to illustrate the application of the mathematical technique of Laplace transform. Many fractional derivatives have been developed by researchers and used in a variety of scientific and engineering fields [17–19], and the most frequently used derivatives in the various branches of science, particularly in mathematical epidemiology, are Caputo, Caputo–Fabrizio (CF), and Atangana–Baleanu (AB). Different kernel properties apply to each of these three fractional derivatives. In contrast to Caputo–Fabrizio, which uses an exponentially decaying type kernel (which is nonsingular but nonlocal), AB derivative in the Caputo sense uses a Mittag-Leffler type kernel. Odibat just developed a brand-new fractional derivative of the generalized Caputo type [20]. The features of this novel generalized Caputo derivative are comparable to those of Caputo derivatives [21]. A nonlinear fractional-order model for analyzing the dynamical behavior of vector-borne diseases within the frame of Caputo-fractional derivative was analyzed, numerical simulations for different values of fractional-order derivative were performed, and a comparison with the results of the integer-order derivative was made. In this study, the nature of our malaria model is read at non-integer-order values using Atangana–Baleanu fractional derivatives with a high efficiency rate.

The advantage of using CF and AB fractional derivatives to solve the projected malaria disease model is that they provide strong approaches for the arbitrary order case, memory effects, and crossover behavior of the model.

The benefit of using the Atangana–Baleanu operator is that it incorporates the crossover behavior of the malaria disease dynamics model as well as memory results. It also has a nonsingular and non-nearby kernel, which enables us to explain complex structures that uniquely, incredibly, and efficiently observe both the law of electricity and exponential decay at the same time. Here, we consider the integer-order model proposed by “Klink” in [15] and modify it to become fractional-order models in the Atangana–Baleanu–Caputo sense. After recalling some definitions and results concerning integer-order and fractional-order derivatives, we prove the existence and give conditions under the fractional models that admit a unique solution. To illustrate our analytical results, we shall adopt the Toufk–Atangana method to perform numerical simulations for the fractional model. Researchers in [15] worked on the dynamics of malaria in an age-structured human host; in their model, human population was partitioned into two compartments: preschool age (0–5) and the rest of the human population. They have divided the human population into two classes: H_1 and H_2, having S, I, and R compartments in each class. Thus, the human population N_H is divided into six compartments, and we modify such integer-order model proposed in [15] by including the parameter of natural recovery rate of both age groups in addition to the recovery rate due to treatment and the protected group of human population to measure the effect of intervention mechanisms such as insecticide-treated nets (ITNs) and indoor residual spraying (IRS) in the transmission dynamics of malaria and fractional-order models in the Atanga–Baleanu–Caputo sense to describe the memory effects and crossover behavior of the malaria model. For simplicity, we consider only one susceptible and recovery compartment, respectively, for both age groups of human population. The aim of our study is to understand the dynamics of malaria through integer-order and fractional-order analysis of age-structured malaria model.
This study is organized as follows. In Section 2, we develop mathematical model formulation. Section 3 gives the model analysis. Section 4 presents the numerical simulation of the integer-order malaria model. Section 5 gives the fractional analysis. Section 6 presents the numerical simulation of the fractional-order model. Section 7 gives the result and discussion. Section 8 draws the conclusion.

2. Formulation of Modified Mathematical Model

The human population, denoted by N_h, is divided into five epidemiological categories: the susceptible class S_h, the protected class P_h, the infectious class of preschool age I_c, the infectious class of young age I_y, and the recovered class R_h. We also divide the mosquito population into two major stages: the mature stage and the aquatic stage (egg, larvae, and pupae), but we consider the mature stage which is divided into two compartments, namely, susceptible class of mosquitoes denoted by S_m and infectious class of mosquitoes denoted by I_m. The mosquitoes’ population does not have a recovered class because their infective period ends with their death. At any time t, the total size of the human $N_h(t)$ and mature mosquitoes $N_m(t)$ is, respectively, denoted by

$$
N_h(t) = S_h(t) + P_h(t) + I_c(t) + I_y(t) + R_h(t),
$$

$$
N_m(t) = S_m(t) + I_m(t).
$$

Through birth, people are added to society at a constant rate (Λ_h). Of those added, those protected by specific protective measures belong to the protected class P_h, while the remaining ($(1-\gamma)\Lambda_h$) belong to the susceptible class (S_h). The susceptible people who heard recommendations and implement protective measures will join the protected class P_h at the rate of τ. In our model, individuals belonging to the susceptible class are at risk of infection at a rate of λ_c for the infectious class I_c (pre-school age) and at a rate of λ_y for the infectious class I_y (young age). The infected individuals of both age levels recover spontaneously at the natural recovery rate of ω_1 and ω_2 and treatment recovery rate of δ_1 and δ_2, respectively, to join the recovery class R_h. Some studies [22, 23] indicated that the recovered humans have some immunity to the disease and do not get clinically ill, but they still harbor low levels of the parasite in their bloodstream and can pass the infection to mosquitoes. After a certain amount of time, they lose their immunity at a rate β and the proportion $\beta\phi$ returns to the susceptible class and the remaining $(1-\phi)\beta R$ who take some protective measurements enter into the protected class. Since the malaria interventions might face serious obstacles in the form of heterogeneity in parasite, vector, and human population [24], the protected humans may become susceptible again and move to the susceptible class S_h at the rate ϕ. Humans leave the total population through natural death rate μ_h and malaria death rate (disease-induced death rate) μ_d. When a susceptible mosquito S_m bites an infectious human, it enters into class I_c and I_y with fraction of bite K_2. Mosquitoes are assumed to suffer death due to natural causes and due to the use of insecticide spray at a rate μ_m or mortality due to insecticides but cannot die directly from the malaria parasite infection [25]; female mosquitoes enter their population through the susceptible compartment at per capita rate Λ_m. It is assumed that there is no immigration of infectious individuals in the human population. The death related to the disease is different between children (pre-school aged) and young-aged people, i.e., μ_d is greater than μ_d [26]. We also assume that infectious preschool-age children mature and join the corresponding infectious young-age class at the rate of η.

In Figure 1, red lines show disease progression and solid and black lines show human or mosquito progression from one compartment to another compartment. Based on the above assumptions and flow diagram, the dynamics of the disease were described by the following nonautonomous deterministic system of nonlinear DEs.

$$
\frac{dS_h}{dt} = (1-\gamma)\Lambda_h + \varphi P_h + \beta\Phi R_h - \left(\tau + \lambda_c + \lambda_y + \mu_h\right)S_h,
$$

$$
\frac{dP_h}{dt} = \gamma\Lambda_h + \tau S_h + (1-\Phi)\beta R_h - (\varphi + \mu_h)P_h,
$$

$$
\frac{dI_c}{dt} = \lambda_c S_h - \left(\mu_d + \mu_h + \eta + (\omega_1 + \delta_1)\right)I_c,
$$

$$
\frac{dI_y}{dt} = \lambda_y S_h + \eta I_c - \left(\mu_d + \mu_h + (\omega_2 + \delta_2)\right)I_y,
$$

$$
\frac{dR_h}{dt} = \left((\omega_2 + \delta)I_y + (\omega_1 + \delta_1)\right)I_c - (\beta\phi + (1-\phi)\beta + \mu_h)R_h,
$$

$$
\frac{dS_m}{dt} = \Lambda_m - (\lambda_m + \mu_m)S_m,
$$

$$
\frac{dI_m}{dt} = \lambda_m S_m - \mu_m I_m,
$$

where

$$
\lambda_m = \frac{k_2 e_m(t_s + t)}{N_h} S_m,
$$

$$
\lambda_c = \frac{k_1 e_c I_m S_h}{N_h},
$$

$$
\lambda_y = \frac{k_1 e_y I_m S_h}{N_h},
$$

represent the force of infection of preschool age, young age, and mosquito.

All parameters in Table 1 are positive.

3. Model Analysis

3.1. Positivity of the Solution of the Model. For the system of differential equations in (6), to ensure that the solutions of the system with positive initial conditions remain positive
\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{flow_diagram.png}
\caption{Flow diagram.}
\end{figure}

\begin{table}[h]
\centering
\caption{Description of parameters.}
\begin{tabular}{ll}
\hline
Parameter & Parameter description \\
\hline
ω_1 & Natural recovery rate of preschool age \\
δ_1 & Recovery rate by treatment of preschool age \\
ω_2 & Natural recovery rate of young age \\
δ_2 & Recovery rate by treatment of young age \\
ϕ & Transfer rate of human from P_h to S_h \\
τ & Transfer rate of human from S_h to P_h \\
Λ_h & Constant recruitment rate for humans \\
β & Rate of loss of immunity \\
ϕ & Proportion of humans who lose their immunity that become S_h \\
$(1 - \phi)$ & Proportion of humans who lose their immunity that become P_h \\
γ & Proportion of new recruitments that are protected \\
λ_C & Force of infection for preschool age \\
λ_y & Force of infection of young age \\
λ_m & Force of infection of mosquitoes \\
η & Maturation rate from I_C to I_y \\
μ_{d1} & Disease-induced mortality rate of preschool age \\
μ_{d2} & Disease-induced mortality rate of young age \\
μ_m & Mortality rate of mosquitoes \\
μ_h & Natural mortality rate of human \\
ε_C & Number of bites on preschool-age people \\
ε_y & Number of bites on young-age people \\
K_1 & Fraction of bites that successfully infect human \\
K_2 & Fraction of bites that successfully infect mosquitoes \\
\hline
\end{tabular}
\end{table}
for all $t > 0$, it is necessary to prove that all the state variables are nonnegative, so we have the following theorem.

Theorem 1. Let M be a positive region in \mathbb{R}^7:
\[M = \{S_h, P_h, I_c, I_y, R_h, S_m, I_m\} \subset \mathbb{R}^7, \]
and the initial value for the malaria model (2) be
\[S_h(0) > 0, P_h(0) > 0, S_m(0) > 0, I_c(0) \geq 0, \]
\[I_y(0) \geq 0, R_h(0) \geq 0, I_m(0) \geq 0. \]

Then, the solution of $S_h(t), P_h(t), I_c(t), I_y(t), R_h(t), S_m(t), I_m(t)$ of the nonlinear system of differential equation above is positive for all $t > 0$.

Similarly, all state variables at t could not be zero and positive. From this, we conclude that all solutions of (2) in \mathcal{R}_+^7 for all $t > 0$ provided that initial conditions are positive.

3.2. Invariant Region. The invariant region is a region where solutions of model equation (2) exist biologically [27]. Biological entities cannot be negative; therefore, all the solutions of model equation (2) are positive for all time $t \geq 0$ [27]. The total population size N_h and N_m can be defined as in equation (1). In the absence of malaria disease, the DEs for N_h are given as
\[\frac{dN_h}{dt} = (1 - \gamma)\Lambda_h + \varphi P_h + \beta \varphi R_h - (\tau + \lambda_c + \lambda_y + \mu_h)S_h, \]
\[\frac{dS_h}{dt} = (\tau + \lambda_c + \lambda_y + \mu_h)S_h - (1 - \gamma)\Lambda_h + \varphi P_h + \beta \varphi R_h, \]
\[S_h(t) = e^{\tau + \mu_h t} \int h(t) dt S_h(0) + e^{\tau + \mu_h t} \int h(t) dt (1 - \gamma)\Lambda_h + \varphi P_h + \beta \varphi R_h dt, \]
since $e^{\tau + \mu_h t} \int h(t) dt > 0, S_h(0) > 0$, and $P_h(t) > 0, R_h(t) > 0$; also, exponential function is always positive; then, the solution $S_h(t) > 0$.

Similarly, all state variables at t could not be zero and positive. From this, we conclude that all solutions of (2) in \mathcal{R}_+^7 for all $t > 0$ provided that initial conditions are positive.

The DEs for N_h are given as
\[\frac{dN_h}{dt} \leq \Lambda_h - \mu_h N_h \Rightarrow N_h(0) \leq \frac{\Lambda_h}{\mu_h}, \]
\[\text{The DEs for } N_m \text{ are also given as } \]
\[\frac{dN_m}{dt} \leq \Lambda_m - \mu_m N_m \Rightarrow N_m(0) \leq \frac{\Lambda_m}{\mu_m} \]
\[\text{Therefore, the feasible solution set for model (2) is given by} \]
\[M = \{S_h, P_h, I_c, I_y, R_h, S_m, I_m\} \subset \mathcal{R}_+^7. \]

Theorem 2. Model (2) has a feasible solution which is contained in the region
\[M = \{S_h, P_h, I_c, I_y, R_h, S_m, I_m\} \subset \mathcal{R}_+^7. \]

Proof. Let
\[\{S_h, P_h, I_c, I_y, R_h, S_m, I_m\} \subset \mathcal{R}_+^7 \]
be any solution of the system with nonnegative initial condition. Using (7),
\[\frac{dN_h}{dt} \leq \Lambda_h - \mu_h N_h \Rightarrow N_h(0) \leq \frac{\Lambda_h}{\mu_h}. \]
\[\text{Hence, the compact set } M \text{ is positively invariant, and the solutions are bounded (i.e., all solutions with initial conditions in } M \text{ remain in } M \text{ for all time } t). \]

3.3. Disease-Free Equilibrium Point. At the disease-free equilibrium, all the disease classes are zero. It is a scenario which depicts an infection-free state in the community or society. Further, at the disease equilibrium point of people and mosquitoes, $I_c = 0, I_y = 0, I_m = 0$. Disease-free equilibrium of system is given by $\varepsilon_0 = (S_h^0, P_h^0, 0, 0, 0, S_m^0, 0)$, where
$p_h^0 = \frac{(\tau + \gamma_1 h_1) \Lambda_h}{(\tau + \mu h \phi) \mu_h}$

$s_h^0 = \frac{(\phi + (1 - \gamma) \mu h_1) \Lambda_h}{(\tau + \mu h + \phi) \mu_h}$

$N_h(0) = p_h^0 + s_h^0 = \frac{\Lambda_h}{\mu_h}$

$N_m(0) = \frac{\Lambda_m}{\mu_m}$

3.3.1. The Basic Reproduction Number. The average number of secondary cases a typical infected person produces in their entire life as infectious or an infectious period when introduced or allowed to exist in a group of susceptible individuals is known as the basic reproduction number or R_0 [28]. R_0 is a threshold quantity computed using the next-generation method which is used to handle the future dynamical behavior of the pandemic and used to study the spread of an infectious disease in epidemiological modeling [28, 29]. It is defined as

$$R_0 = \rho(\text{FV}^{-1}) \text{ where } \text{FV}^{-1} = \left(\frac{\partial F}{\partial \xi(x_0)}\right)\left(\frac{\partial v}{\partial \xi(x_0)}\right)^{-1},$$

using the next-generation method.

The dominant eigenvalue or reproduction number becomes

$$R_0 = \rho(\text{FV}^{-1}) \text{ where } \text{FV}^{-1} = \left(\frac{\partial F}{\partial \xi(x_0)}\right)\left(\frac{\partial v}{\partial \xi(x_0)}\right)^{-1},$$

3.4. Local Stability of Disease-Free Equilibrium Point

Theorem 3. The disease-free equilibrium point of the system of ordinary differential equation (2) is locally asymptotically stable if $R_0 < 1$ and unstable if $R_0 > 1$.

Proof. To show the local stability of disease-free equilibrium point, we use (7×7) Jacobian matrix and the Routh–Hurwitz (RH) criterion.

$$J(\xi_0) = \begin{pmatrix} c & \phi & 0 & 0 & \beta \Phi & 0 & -V_1 \\ \tau & M_1 & 0 & 0 & (1 - \Phi)\beta & 0 & 0 \\ 0 & 0 & a & 0 & 0 & V_2 & 0 \\ 0 & 0 & \eta & b & 0 & 0 & V_3 \\ 0 & 0 & (\omega_1 + \delta_1) & (\omega_2 + \delta_2) & f & 0 & 0 \\ 0 & 0 & -V_4 & -V_5 & 0 & g & 0 \\ 0 & 0 & V_4 & V_5 & 0 & 0 & M_2 \end{pmatrix},$$

and let $c = -(\tau - \mu h), M_1 = -(\phi + \mu h), a = -(\mu d_1 + \mu h + \eta + \omega + \delta_1), b = -(\mu d_2 + \delta_2 + \omega + \delta_2), f = -(\beta + \mu h), g = -\mu m, M_2 = -\mu m.$
Journal of Mathematics

We consider only the first and the second column of 7×7 matrix; when we consider the fifth and the seventh column, we will get zero matrix because of zero column matrix. Through the reduction process, we obtain two negative eigenvalues $\lambda_1 = -\mu_m$ and $\lambda_2 = -(-\beta + \mu_h)$ and the reduced submatrix becomes

$$J(\epsilon_0) = \begin{pmatrix} c - \lambda & \varphi & 0 & 0 & \beta \Phi & 0 & -V_1 \\ \tau & M_1 - \lambda & 0 & 0 & (1 - \Phi) \beta & 0 & 0 \\ 0 & 0 & a - \lambda & 0 & 0 & 0 & V_2 \\ 0 & 0 & \eta & b - \lambda & 0 & 0 & V_3 \\ 0 & 0 & (\omega_1 + \delta_1) & (\omega_2 + \delta_2) & f - \lambda & 0 & 0 \\ 0 & 0 & -V_4 & -V_5 & 0 & g - \lambda & 0 \\ 0 & 0 & V_4 & V_5 & 0 & 0 & M_2 - \lambda \end{pmatrix}.$$

(19)

and the characteristic equation of the first submatrix,

$$(C - \lambda)(M_1 - \lambda) - \varphi(\tau) = 0,$$

(20)

is

$$A_2 \lambda^2 - A_1 + A_0 = 0,$$

(22)

where $A_2 = 1$, $A_1 = (C + M_1)$, $A_0 = CM_1 - \varphi \tau$, and all coefficients A_i of submatrix (21) of the characteristic equation and the first column of the RH array are positive, so by the RH stability criterion, the two eigenvalues λ_3 and λ_4 of Jacobian have negative real part. The second submatrix is given by

$$\begin{pmatrix} a - \lambda & 0 & V_2 \\ \eta & b - \lambda & V_3 \\ V_4 & V_5 & \mu_m - \lambda \end{pmatrix} = 0,$$

(23)

and the characteristic equation of the second submatrix is

$$A_3 \lambda^3 - A_2 \lambda^2 + A_1 \lambda + A_0 = 0,$$

(24)

where

$$A_3 = -1, A_2 = (a + b + M_2),$$
$$A_1 = (V_3 V_4 + V_1 V_5 - aM_2 - bM_2 - ab),$$
$$A_0 = abM_2 + V_2 V_3 \eta - aV_3 V_5 - V_2 V_4 b.$$

(25)

All the first columns of the RH array are positive; then, the remaining eigenvalues of the Jacobian are negative real part for $R_0 < 1$. Thus, the disease-free equilibrium point ϵ_0 is locally asymptotically stable for $R_0 < 1$ and unstable for $R_0 > 1$. □

3.5. Global Stability of Disease-Free Equilibrium Point

Theorem 4. If the reproduction number $R_0 < 1$, the disease-free equilibrium point ϵ_0 of model (2) is globally asymptotically stable in the feasible region M.

Proof. To prove the global asymptotic stability of the disease-free equilibrium point ϵ_0, we use the method of Lyapunov function. Let us define an appropriate Lyapunov function $V(t)$ by applying the approach in [27]. $V = C_1 I_c + C_2 I_y + C_3 I_m$, where C_1, C_2, C_3 are positive constants and I_c, I_y, I_m are positive state variables.

$$\frac{dv}{dt} = C_1 \frac{dl_c}{dt} + C_2 \frac{dl_y}{dt} + C_3 \frac{dl_m}{dt}$$

(26)

By substituting expressions for $dl_c/dt, dl_y/dt$, and dl_m/dt from (2) in (26) and by collecting like terms of the equation, we obtain
\[
\frac{dv}{dt} = C_1 \frac{k_1 \varepsilon_m S_h}{N_h} - C_1 a I_c + \frac{k_1 \varepsilon_m S_h}{N_h} + C_2 \eta I_c - C_2 b I_y
\]
\[+ C_3 \frac{k_2 \varepsilon_m I_m S_m}{N_h} + C_3 \frac{k_2 \varepsilon_m I_m S_m}{N_h} - C_3 \mu_m I_m + C_3 \frac{k_3 \varepsilon_m I_m S_m}{N_h} + C_2 \eta - C_1 a = 0,
\]

(27)

and by taking coefficients of \(I_c\) and \(I_y\) equal to zero for \(dv/dt \leq 0\),

\[
C_3 \frac{k_2 \varepsilon_m I_m S_m}{N_h} - C_2 b = 0,
\]

(28)

\[
\frac{dv}{dt} = C_1 \frac{k_1 \varepsilon_m S_h}{N_h} + C_2 \frac{k_2 \varepsilon_m I_m S_m}{b N_h} - C_3 \mu_m I_m,
\]

(29)

\[
C_3 \frac{k_2 \varepsilon_m I_m S_m}{N_h} + C_2 \eta - C_1 a = 0.
\]

(30)

From (28),

\[
C_2 = C_3 \frac{k_2 \varepsilon_m I_m S_m}{b N_h}.
\]

(31)

By substituting \(C_2\) in (30), we obtain

\[
C_1 = C_3 \left(\frac{k_2 \varepsilon_m S_m}{d N_h} + \frac{k_2 \varepsilon_m S_m}{\eta} \right).
\]

(32)

After substituting \(C_1\) and \(C_2\) in (29) and after some calculation, we obtain \([R_0^2 - 1] I_m \leq 0\); from this, for \(I_m = 0\), \(R_0 \leq 1\). Finally, we obtain \(dv/dt \leq 0\); then, \(dv/dt = 0\). This shows that the disease-free equilibrium is globally asymptotically stable.

3.6. Endemic Equilibrium Point. Endemic equilibrium points are steady-state solutions where the disease persists in the population. The solution for the endemic equilibrium is obtained in terms of the infected humans, which is also expressed in terms of \(R_0\).

Theorem 5. If \(R_0 > 1\), then the system of DEs of the model has a unique endemic equilibrium point.

\[
e^* = (S_m^*, P_h^*, I_c^*, I_y^*, R_h^*, S_m^*, I_m^*)
\]

(33)

Proof. After some algebraic manipulation, we have

\[
S_h^* = \frac{P_1 \pi}{\pi P_4 + (P_2 K_1 \varepsilon_c + P_3 K_1 \varepsilon_y) I_m^*}
\]

\[
I_c^* = \frac{P_1 \pi K_1 \varepsilon_c I_m^*}{\pi P_4 + a(P_2 K_1 \varepsilon_c + P_3 K_1 \varepsilon_y) I_m^*}
\]

\[
I_y^* = \frac{(K_1 \varepsilon_c a + \eta K_1 \varepsilon_c) P_1 I_m^*}{R_0^2 a b(P_2 K_1 \varepsilon_c + P_3 K_1 \varepsilon_y) I_m^* + \pi P_4}
\]

\[
R_h^* = \frac{P_1 (d a K_1 \varepsilon_y + K_1 \varepsilon_y (\eta d + b e)) R_0^2 I_m^*}{a b f(P_2 K_1 \varepsilon_c + P_3 K_1 \varepsilon_y) I_m^* + \pi P_4}
\]

\[
P_h^* = \frac{P_1 (P_5 + K_1 \varepsilon_y P_6 + P_2 K_1 \varepsilon_c + K_1 \varepsilon_y) + \gamma \Delta h a b f(P_2 K_1 \varepsilon_c + P_3 K_1 \varepsilon_y) R_0^2 I_m^* + \pi P_4}{a b g(P_2 K_1 \varepsilon_c + P_3 K_1 \varepsilon_y) I_m^* + \pi P_4}
\]

\[
S_m^* = \frac{\Lambda a b T_1 I_m^* + \pi P_4}{(T_2 + a b T_1) I_m^* + \pi P_4 \mu_m}
\]

(34)
and after some steps and simplification, the degree three polynomial is reduced to quadratic:

\[AI_m^{*2} + BI_m^{*} + C = 0, \] \hspace{1cm} (35)

\[A = R_1^2 \left(ab\mu_m T_1 (T_2\mu_m + ab\mu_m T_1) \right), \]
\[B = \left(ab\pi T_1 \right) P_4 + R_0^2 \left(\pi P_4 (T_2\mu_m + ab\mu_m T_1) - T_3 P_1 \xi \right), \]
\[C = \frac{\mu^2}{\mu_m} \left(\mu_m + 1 - R_0^2 \right), \] \hspace{1cm} (36)

where \(P_1 = \Lambda g_3 \beta \mu_h \), \(P_2 = g_3 \beta (\eta + \beta) \), \(P_3 = g_3 \beta \mu - (\beta \eta + \beta) \eta \), \(P_4 = \left(\beta \eta + \beta \right) \beta \eta \), \(T_1 = \frac{1}{\beta \eta + \beta} \), \(T_2 = P_1 \), \(T_3 = b k_2 \), \(T_4 = k_2 \), \(T_5 = \mu \).

From quadratic equation (35), the endemic equilibrium exists for

\[B^2 - 4AC \geq 0. \] \hspace{1cm} (37)

The number of possible positive real roots for (35) depends on the signs of \(A \), \(B \), and \(C \). This can be analyzed by using the Descartes rule of signs on the quadratic

\[f(x) = AI_m^{*2} + BI_m^{*} + C. \] \hspace{1cm} (38)

As indicated in [30], Descartes’s rule of sign is used to determine the number of real zeros of a polynomial function; it indicates that the number of positive real zeros in a polynomial function \(f(I_m^{*}) \) is equal to or less than the number of coefficient sign changes, on an even number basis.

In Table 2, the existence of multiple endemic equilibria when \(R_0 < 1 \) suggests the possibility of backward bifurcation. The change of stability occurring at \(R_0 = 1 \) is often followed by the emergence of branch of steady states. This is referred to as bifurcation; this may happen for values of \(R_0 \) slightly greater than one which is called forward bifurcation, and if \(R_0 \) is slightly less than one, this is called backward bifurcation. In quadratic equation (15),

\[I_m^{*} = \frac{-B + \sqrt{B^2 - 4AC}}{2A}, \] \hspace{1cm} (39)

\[I_m^{*} = \frac{-B - \sqrt{B^2 - 4AC}}{2A}. \]

If \(R_0 > 1 \) or \(C < 0 \), then (15) has a unique positive root:

\[I_m^{*} = \frac{-B + \sqrt{\Delta}}{2A}. \] \hspace{1cm} (40)

where \(\Delta > 0 \). If \(R_0 = 0 \) or \(C = 0 \), then (15) has a unique positive solution. \(I_m^{*} = -B/2A \), provided that \(B < 0 \). Here, if \(B = 0 \), then \(I_m^{*} = 0 \) which shows DFE, and if \(B > 0 \), then \(I_m^{*} < 0 \), and this does not show meaning in epidemiology. For \(R_0 < 1 \) or \(C > 0 \) and \(\Delta > 0 \), we consider two cases.

and at \(I^* = 0 \), there was DFE.

(i) If \(B > 0 \), then \(I_m^{*} < 0 \), that is, (15) has no solution.

(ii) If \(B < 0 \), that is, if \(B < -2 \sqrt{AC} < 0 \), then (15) has two endemic equilibria.

By considering such different cases of the solution of (15), a theorem is established as follows.

\[\square \]

Theorem 6. The age-structured malaria model has

1. A unique endemic equilibrium if

 (a) \(C < 0 \) if \(R_0 > 0 \)

 (b) \(B < 0 \) and \(C = 0 \) or \(B^2 - 4AC = 0 \)

2. Two endemic equilibria if \(C > 0, B < 0, \) and \(B^2 - 4AC > 0 \).

3. No endemic equilibrium in all other ways.

In the theorem for \(R_0 < 1 \), stable DFE and stable EE come together; this indicates the probability of backward bifurcation. Analysis of backward bifurcation was carried out by employing center manifold theory.

3.6.1. Center Manifold Theory. Computation of eigenvalues of the Jacobian matrix can be used to determine the stability of the disease at an endemic equilibrium point. The bifurcation analysis is performed at the disease-free equilibrium by using center manifold theory as presented in Martcheva [28]. To apply the center manifold theory, the following simplification and change of variables are made on the model which are rewritten by using state variables of malaria model and center manifold approach on the system.

Let \(X_1 = S_h, X_2 = P_h, X_3 = I_c, X_4 = I_y, X_5 = R_h, X_6 = \Lambda N_h, X_7 = I_m, \)

\[N_h = X_1 + X_2 + X_3 + X_4 + X_5, \]
\[N_m = X_6 + X_7. \] \hspace{1cm} (41)

Further by using the vector,

\[X = (X_1, X_2, X_3, X_4, X_5, X_6, X_7)^T. \] \hspace{1cm} (42)

The system can be written in the form

\[F = (f_1, f_2, f_3, f_4, f_5, f_6, f_7)^T \] \hspace{1cm} (43)
and as follows writing the system in vector forms:

\[
\begin{align*}
\frac{dx}{dt} &= F(x_1), \\
\frac{dx_1}{dt} &= f_1 = (1 - \gamma)\Lambda_h + \phi X_2 + \beta \Phi X_5 - \left(rX_1 - \frac{k_1 \epsilon X_7 X_1}{N_h} - \frac{k_1 \epsilon X_1}{N_h} - \mu_h X_1 \right), \\
\frac{dx_2}{dt} &= f_2 = \gamma \Lambda_h + rX_1 + (1 - \Phi)\beta X_5 - (\varphi + \mu_h)X_2, \\
\frac{dx_3}{dt} &= f_3 = \frac{k_1 \epsilon X_7 X_1}{N_h} - (\mu_{d_1} + \mu_h + \eta + (\omega_1 + \delta_1))X_3, \\
\frac{dx_4}{dt} &= f_4 = \frac{k_1 \epsilon X_7 X_1}{N_h} + \eta X_3 - (\mu_{d_1} + \mu_h + (\omega_2 + \delta_2))X_4, \\
\frac{dx_5}{dt} &= f_5 = ((\omega_2 + \delta)X_4 + (\omega_1 + \delta))X_3 - (\beta \phi + (1 - \phi)\beta + \mu_h)X_5, \\
\frac{dx_6}{dt} &= f_6 = \Lambda_m - \frac{k_2 \epsilon_m (X_3 + X_4)}{N_h} - \mu_h X_6, \\
\frac{dx_7}{dt} &= f_7 = \frac{k_2 \epsilon_m (X_3 + X_4)}{N_h} - \mu_m X_7.
\end{align*}
\]

Choose \(k_1 \) as bifurcation parameter, and solving for \(R_0 = 1 \),

\[
k_1 = \frac{abN_h^2 \mu_m}{a k_2 \epsilon_m S_m \epsilon_7 S_0 + (bk_2 \epsilon_m S_m \mu_m + \eta k_2 \epsilon_m \mu_m S_m) \epsilon_7 \epsilon S_0}.
\]

The Jacobian matrix evaluated at disease-free equilibrium:

\[
J(\epsilon_0) = \begin{pmatrix}
c & \varphi & 0 & 0 & \beta \Phi & 0 & -V_1, \\
\tau & M_1 & 0 & 0 & (1 - \Phi)\beta & 0 & 0 \\
0 & a & 0 & 0 & 0 & 0 & V_2 \\
0 & 0 & \eta & b & 0 & 0 & V_3 \\
0 & 0 & (\omega_1 + \delta_1) & (\omega_2 + \delta) & f & 0 & 0 \\
0 & 0 & -V_4 & -V_5 & 0 & g & 0 \\
0 & 0 & V_4 & V_5 & 0 & 0 & M_2
\end{pmatrix}.
\]

Eigenvalues of Jacobian are \(\lambda_1 = -\mu_m, \lambda_2 = -(\beta + \mu_h) \).
\[\lambda_3 = \frac{-(C + m_1) + \sqrt{(C + m_1)^2 - 4(Cm_1 - \phi)}}{2} \]
\[\lambda_4 = \frac{-(C + m_1) - \sqrt{(C + m_1)^2 - 4(Cm_1 - \phi)}}{2} \]

Using RH criteria, the remaining eigenvalues of Jacobian are negative real for \(R_0 < 1 \). Hence, the center manifold theory can be used to analyze the dynamics of the system for the case when \(R_0 = 1 \), and it can be shown that the Jacobian matrix has a right eigenvector.

\[
W = \begin{pmatrix}
W_1 \\
W_2 \\
W_3 \\
W_4 \\
W_5 \\
W_6 \\
W_7
\end{pmatrix}
\]

Using RH criteria, the remaining eigenvalues of Jacobian are negative real for \(R_0 < 1 \). Hence, the center manifold theory can be used to analyze the dynamics of the system for the case when \(R_0 = 1 \), and it can be shown that the Jacobian matrix has a right eigenvector.

\[
W_1 = \frac{k_1}{abf} \left[\frac{M_2C(1 - \phi) + \tau(1 - \phi)(\tau\phi - CM_2)}{(\tau\phi - CM_2)} + V_1 \right] W_7,
\]

\[
W_2 = \left[\frac{\beta(\omega_1 + \delta_1)V_2b + (\omega_2 + \delta_2)(bV_2 + aV_3)}{abf(\tau\phi - CM_2)} \right] (C(1 - \phi) + \tau\phi) + V_1 W_7,
\]

\[
W_3 = \frac{V_2W_7}{a},
\]

\[
W_4 = \left(\frac{\eta V_2 + aV_3}{ab} \right) W_7,
\]

\[
W_5 = \left[(\omega_1 + \delta_1)V_2b + (\omega_2 + \delta_2)(\eta V_2 + aV_3) \right] W_7,
\]

\[
W_6 = \left(\frac{V_4V_2b + V_5(\eta V_2 + aV_3)}{ab} \right) W_7.
\]

Similarly, the components of the left eigenvector of \(I \) correspond to zero eigenvalue, and it can be done by transposing Jacobian matrix.
\[
\begin{pmatrix}
c & \varphi & 0 & 0 & \beta \Phi & 0 & -V_1 \\
\tau & M_1 & 0 & 0 & (1 - \Phi) \delta & 0 & 0 \\
0 & 0 & a & 0 & 0 & V_2 \\
0 & 0 & \eta & b & 0 & 0 & V_3 \\
0 & 0 & (\omega_1 + \delta_1) & (\omega_2 + \delta_2) & f & 0 & 0 \\
0 & 0 & -V_4 & -V_5 & 0 & g & 0 \\
0 & 0 & V_4 & V_5 & 0 & 0 & M_2 \\
\end{pmatrix}
\begin{pmatrix}
y_1 \\
y_2 \\
y_3 \\
y_4 \\
y_5 \\
y_6 \\
y_7 \\
\end{pmatrix},
\]
(50)

where
\[
y_3 = \left(\frac{yV_2 - V_4}{b} \right)y_7,
\]
y_4 = \frac{-V_5y_7}{b}, y_7 > 0,
(51)
y_1 = y_2 = y_5 = y_6 = y_7 = 0.

Now, we shall establish the conditions on parameter values that cause a backward bifurcation to occur in system (45) based on the use of center manifold theory in Martcheva [28].

Computation of \(a\) and \(b\) for the transformed system of (45) is associated with nonzero partial derivatives of \(f\) evaluated at the DFE \((s_0^n, P_1^n, 0, 0, s_0^n, 0)\).

\[
a = \sum_{i,j,k=1}^{7} y_i W_i W_j \frac{\partial^2 f_3(e_0, k_1)}{\partial X_i \partial X_j} + \sum_{i,j,k=1}^{7} y_i W_i W_j \frac{\partial^2 f_4(e_0, k_1)}{\partial X_i \partial X_j} + \sum_{i,j,k=1}^{7} y_i W_i W_j \frac{\partial^2 f_5(e_0, k_1)}{\partial X_i \partial X_j},
\]
(52)

It is not necessary to calculate the derivatives of \(f_1, f_2, f_5, f_6\) in computing \(b\) because \(y_1, y_2, y_5, y_6\) are all 0. From

\[
b = \sum_{i,k=1}^{7} y_i W_i \frac{\partial^2 f_k(e_0, k_1)}{\partial X_i \partial k_1},
\]
(53)

where
\[
b = \left[y_3 W_3 \frac{\partial f_3(e_0, k_1)}{\partial X_3 \partial k_1} + y_4 W_4 \frac{\partial f_4(e_0, k_1)}{\partial X_4 \partial k_1} \right].
\]

It is not necessary to calculate the derivatives of \(f_1, f_2, f_5, f_6\) in computing \(b\) because \(y_1, y_2, y_5, y_6\) are all 0. From

\[
b = \left(\frac{y_3 W_3 \varepsilon_s (\varphi + (1 - \gamma) \mu_h)}{\tau + \mu_h + \varphi} + y_4 W_4 \frac{\varepsilon_s (\varphi + (1 - \gamma) \mu_h)}{\tau + \mu_h + \varphi} \right) > 0,
\]
when we come to a,

$$a = y_3 W_7 k_1 \frac{\varepsilon_y (\phi + (1 - \gamma) \mu_h) \mu_h}{(\tau + \mu_h + \phi) \Lambda_h} (-W_2 - W_3 - W_4 - W_5)$$

$$+ y_4 W_7 k_1 \frac{\varepsilon_y (\phi + (1 - \gamma) \mu_h) \mu_h}{(\tau + \mu_h + \phi) \Lambda_h} (-W_2 - W_3 - W_4 - W_5)$$

$$+ \left[y_5 W_7^2 \frac{\varepsilon_{m1} \Lambda_m \mu_h^2}{\mu_m \Lambda_h} + y_5 W_7^2 \frac{\varepsilon_{m2} \Lambda_m \mu_h^2}{\mu_m \Lambda_h} \right] (-W_2 - W_3 - W_4 - W_5)$$

$$+ \left[y_3 W_7 k_1 \frac{\varepsilon_y (\phi + (1 - \gamma) \mu_h) \mu_h}{(\tau + \mu_h + \phi) \Lambda_h} + y_4 W_7 k_1 \frac{\varepsilon_y (\phi + (1 - \gamma) \mu_h) \mu_h}{(\tau + \mu_h + \phi) \Lambda_h} \right] \left(1 - \frac{\Lambda_m \mu_h}{\Lambda_h \mu_m} \right) W_6^+. \quad (54)$$

Let

$$Z_1 = -(W_2 + W_3 + W_4 + W_5),$$

$$Z_2 = -(W_2 + W_3 + 2W_4 + 2W_5),$$

$$a = y_3 (W_3 + W_4) k_1 \frac{\varepsilon_{m1} \mu_h}{\Lambda_h} \left(1 - \frac{\Lambda_m \mu_h}{\Lambda_h \mu_m} \right) W_6 \quad (55)$$

and by considering F_1 and F_2, a is positive if $F_1 > F_2$. As we observed b is positive, according to center manifold theory, if $a > 0$, $b > 0$, then the given age-structured malaria model undergoes backward bifurcation at $R_0 = 1$ whenever $b > 0$ and $F_1 > F_2$.

As we observed, an age-structured malaria model exhibits backward bifurcation whenever $a > 0$, and the epidemiological significance of backward bifurcation is that, in addition to generating $R_0 < 1$, more action is necessary to reduce the dynamics of malaria transmission in communities. Figure 2 shows the backward bifurcation phenomenon as evidence for the malaria model analysis. The stable equilibrium is represented by the solid line and the unstable equilibrium is represented by the dotted line. It confirms the results of the analysis, showing an endemic equilibrium.

3.7. The Local Stability of the Endemic Equilibrium Point. We conduct linear stability on the endemic equilibrium point using the Jacobian of the malaria model of the equations. Then, the following stability theorem is stated.

Theorem 7. The endemic equilibrium point $e^* = (S^*_0, P^*_0, I^*_0, R^*_0, S^*_m, I^*_m)$ of the malaria model is locally asymptotically stable if and only if $R_0 > 1$.
Proof. To show the local stability of the endemic equilibrium point, we use the method of the Jacobian matrix and RH stability criterion. The Jacobian of the malaria model at any point is

\[
\begin{pmatrix}
D_1 - \lambda & \varphi & 0 & 0 & \beta \Phi & 0 & -V_1 \\
\tau & D_2 - \lambda & 0 & 0 & (1 - \Phi) \beta & 0 & 0 \\
0 & 0 & D_3 - \lambda & 0 & 0 & 0 & V_2 \\
0 & 0 & \eta & D_4 - \lambda & 0 & 0 & V_3 \\
0 & 0 & (\omega_1 + \delta_1) & (\omega_2 + \delta_2) & D_5 - \lambda & 0 & 0 \\
0 & 0 & -V_4 & -V_5 & 0 & D_k - \lambda & 0 \\
0 & 0 & V_4 & V_5 & 0 & \lambda_m & D_7 - \lambda
\end{pmatrix},
\]

(57)

where \(D_1 = -(\tau + \lambda_c + \lambda_v \mu_h), D_2 = -(\varphi + \mu_h), D_3 = - (\mu_d + \mu_v + \eta + \omega + \delta_1), D_4 = -(\mu_d + \delta_3 + \omega_3 + \delta_3), D_5 = -(\beta + \mu_v), D_6 = -\mu_m, D_7 = -\mu_m V_1 = (K_i \epsilon y S_0^h / N_0^h + K_i \epsilon y S_0^v / N_0^v), V_2 = K_i \epsilon y S_0^v / N_0^v, V_3 = K_i \epsilon y S_0^v / N_0^v, V_4 = K_i \epsilon y S_0^v / N_0^v, -V_5 = K_i \epsilon y S_0^v / N_0^v.

By considering the first column and corresponding row of \(7 \times 7\) matrix,

\[
(D_1 - \lambda)
\]

\[
\begin{pmatrix}
D_2 - \lambda & 0 & 0 & (1 - \Phi) \beta & 0 & 0 \\
0 & D_3 - \lambda & 0 & 0 & 0 & V_2 \\
0 & \eta & D_4 - \lambda & 0 & 0 & V_3 \\
0 & (\omega_1 + \delta_1) & (\omega_2 + \delta_2) & D_5 - \lambda & 0 & 0 \\
0 & -V_4 & -V_5 & 0 & D_k - \lambda & 0 \\
0 & V_4 & V_5 & 0 & \lambda_m & D_7 - \lambda
\end{pmatrix},
\]

(58)

and if we consider \(|J - \lambda I| = 0\), the first column has a diagonal entry. Therefore, one of the eigenvalues is given by \(\lambda_1 = D_2 = -(\varphi + \mu_h).\) The reduced matrix becomes

\[
\begin{pmatrix}
0 & 0 & 0 & (1 - \Phi) \beta & 0 & 0 \\
0 & D_3 - \lambda & 0 & 0 & 0 & V_2 \\
0 & \eta & D_4 - \lambda & 0 & 0 & V_3 \\
0 & (\omega_1 + \delta_1) & (\omega_2 + \delta_2) & D_5 - \lambda & 0 & 0 \\
0 & -V_4 & -V_5 & 0 & D_k - \lambda & 0 \\
0 & V_4 & V_5 & 0 & \lambda_m & D_7 - \lambda
\end{pmatrix},
\]
and if we consider $|f - \lambda I| = 0$, the third column has a diagonal entry. Therefore, the second eigenvalue is \(\lambda_2 = D_5 = - (\beta + \mu_h) \).

The reduced matrix becomes

\[
(D_1 - \lambda) \begin{pmatrix}
D_3 - \lambda & 0 & 0 & V_2 \\
\eta & D_4 - \lambda & 0 & V_3 \\
- V_4 & - V_5 & D_b - \lambda & 0 \\
V_4 & V_5 & \lambda_m & D_7 - \lambda \\
\end{pmatrix}.
\]

By considering the second column of 7 by 7 Jacobian matrix, the reduced matrix after manipulation becomes

\[
(D_1 - \lambda) \begin{pmatrix}
D_3 - \lambda & 0 & 0 & V_2 \\
\eta & D_4 - \lambda & 0 & V_3 \\
- V_4 & - V_5 & D_b - \lambda & 0 \\
V_4 & V_5 & \lambda_m & D_7 - \lambda \\
\end{pmatrix}
\]

By taking the common of (1) and (2),

\[
(D_1 - \lambda - \varphi \tau) \begin{pmatrix}
D_3 - \lambda & 0 & 0 & V_2 \\
\eta & D_4 - \lambda & 0 & V_3 \\
- V_4 & - V_5 & D_b - \lambda & 0 \\
V_4 & V_5 & \lambda_m & D_7 - \lambda \\
\end{pmatrix}
\]

After manipulation and rearranging, we obtain the characteristic equation:

\[
A_3 \lambda^5 + A_4 \lambda^4 + A_3 \lambda^3 + A_2 \lambda^2 + A_1 \lambda + A_0 = 0.
\]

Using the RH stability criteria, we prove that when \(R_0 > 1 \), all roots of the polynomial equations have negative real parts. Thus, the endemic equilibrium point \(e^* \) is locally asymptotically stable if \(R_0 > 1 \). \(\square \)

3.8. The Global Stability of the Endemic Equilibrium Point

Theorem 8. The endemic equilibrium point

\[
V(x) = \left(S_h - S_h^* - S_h^* \ln \left(\frac{S_h}{S_h^*} \right) \right) + \left(P_h - P_h^* - P_h^* \ln \left(\frac{P_h}{P_h^*} \right) \right) + \left(I_c - I_c^* - I_c^* \ln \left(\frac{I_c}{I_c^*} \right) \right) + \left(I_f - I_f^* - I_f^* \ln \left(\frac{I_f}{I_f^*} \right) \right) + \left(R_h - R_h^* - R_h^* \ln \left(\frac{R_h}{R_h^*} \right) \right) + \left(S_s - S_s^* - S_s^* \ln \left(\frac{S_s}{S_s^*} \right) \right) + \left(I_m - I_m^* - I_m^* \ln \left(\frac{I_m}{I_m^*} \right) \right).
\]

By considering (3), (4), and (5),

\[
\varepsilon^* = \left(S_h^* \beta h, S_h^* \delta h \right)
\]

of the system is globally asymptotically stable if \(R_0 > 1 \).

Proof. Let us define an appropriate Lyapunov function \(V(x) \) by applying the approach [28] such that

\[
V(x) = \sum_{i=1}^{2} \left(X_i - X_i^* - X_i^* \ln \left(\frac{X_i}{X_i^*} \right) \right),
\]

where \(X_i \) represent the population of the compartment \(X_i \) and are endemic equilibrium points in \(R_0^* \), and thus,
By differentiating (64) with respect to \(t \) and replacing the derivatives in the equation from their respective expressions in the equation of the system, we obtain

\[
\frac{dV}{dt} = (1 - \gamma) \Lambda_h + \phi P_h + \beta \Phi R_h - (\tau + \Lambda_y + \lambda_y + \mu_h) S_h
\]

\[
- \frac{S_h}{S_h^0} \left((1 - \gamma) \Lambda_h + \phi P_h + \beta \Phi R_h - (\tau + \Lambda_y + \lambda_y + \mu_h) S_h \right)
\]

\[
+ \gamma \Lambda_h + \tau S_h + (1 - \Phi) R_h - (\varphi + \mu_h) P_h
\]

\[
- \frac{P_h}{P_h^0} (\gamma \Lambda_h + \tau S_h + (1 - \Phi) R_h - (\varphi + \mu_h) P_h)
\]

\[
+ \lambda C S_h - (\mu_d + \mu_h + \eta + (\omega_1 + \delta_1)) I_C
\]

\[
- \frac{I_y}{I_y^0} (\lambda C S_h - (\mu_d + \mu_h + \eta + (\omega_1 + \delta_1)) I_C)
\]

\[
- \lambda C S_h + \eta I_C - (\mu_d + \mu_h + (\omega_2 + \delta_2)) I_y
\]

\[
- \frac{I_y}{I_y^0} (\lambda C S_h - \eta I_C - (\mu_d + \mu_h + (\omega_2 + \delta_2)) I_y)
\]

\[
+ (\omega_2 + \delta_2) I_y + (\omega_1 + \delta_1) I_C - (\beta \phi + (1 - \Phi) \beta + \mu_h) R_h
\]

\[
- \frac{R_h}{R_h^0} (\omega_2 + \delta_2) I_y + (\omega_1 + \delta_1) I_C - (\beta \phi + (1 - \Phi) \beta + \mu_h) R_h
\]

\[
+ \gamma \Lambda_m - (\lambda_m + \mu_m) S_m
\]

\[
- \frac{S_m}{S_m^0} (\lambda_m - (\lambda_m + \mu_m) S_m) + \lambda_m S_m - \mu_m I_m
\]

\[
- \frac{I_m}{I_m^0} (\lambda_m S_m - \mu_m I_m),
\]

(65)
simplify equation (65) by gathering negative and positive terms, and yielding: \(dV/ dt = G_1 - G_2 \), where \(G_1 \) denotes positive terms and \(G_2 \) denotes negative terms. Therefore, if \(G_1 < G_2 \), \(dV/ dt \leq 0 \) and \(dV/ dt = 0 \) if and only if \(S_h = S_h^0, P_h = P_h^0, I_y = I_y^0, I_y = I_y^0, R_h = R_h^0, S_m = S_m^0, I_m = I_m^0 \). Hence \(V \) is, therefore, the Lyapunov function on \(M \). Based on this, we can observe that the biggest compact invariant singleton set in \(M = \{ S_h(t), P_h(t), I_y(t), I_y(t), R_h(t), S_m(t), I_m(t) \} \) is \(e^* = (S_h^0, P_h^0, I_y^0, I_y^0, R_h^0, S_m^0, I_m^0) \). Therefore, by the principle of LaSalle [31], the endemic equilibrium \(e_0 \) is globally asymptotically stable in the invariant region \(M \) if \(G_1 < G_2 \) for \(R_0 > 1 \).

3.9. Sensitivity Analysis. The normalized direct sensitivity index of the variable \(R_0 \) depends on a parameter \(P_r \) defined as

\[
S_{P_r}^{R_0} = \frac{\partial R_0}{\partial P_r} \times \frac{P_r}{R_0}
\]

(66)

These small shear sensitivities allow us to determine the relative importance of different parameters on malaria transmission and prevalence. The most sensitive parameter in Table 3 has a sensitivity index greater than all other parameters.

<table>
<thead>
<tr>
<th>No.</th>
<th>Sensitivity indices at different parameters</th>
<th>Sign</th>
<th>Sensitivity indices at parameter value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(S_v^R)</td>
<td>+</td>
<td>(4.3 \times 10^{-4})</td>
</tr>
<tr>
<td>2</td>
<td>(S_v^R)</td>
<td>+</td>
<td>(1/2)</td>
</tr>
<tr>
<td>3</td>
<td>(S_v^R)</td>
<td>+</td>
<td>(1/2)</td>
</tr>
<tr>
<td>4</td>
<td>(S_v^R)</td>
<td>+</td>
<td>(1/2)</td>
</tr>
<tr>
<td>5</td>
<td>(S_v^R)</td>
<td>+</td>
<td>(1)</td>
</tr>
<tr>
<td>6</td>
<td>(S_v^R)</td>
<td>+</td>
<td>(1)</td>
</tr>
<tr>
<td>7</td>
<td>(S_v^R)</td>
<td>+</td>
<td>(-10.5)</td>
</tr>
<tr>
<td>8</td>
<td>(S_v^R)</td>
<td>+</td>
<td>(-1.83 \times 10^{-13})</td>
</tr>
<tr>
<td>9</td>
<td>(S_v^R)</td>
<td>+</td>
<td>(-1)</td>
</tr>
<tr>
<td>10</td>
<td>(S_v^R)</td>
<td>+</td>
<td>(-1/2)</td>
</tr>
<tr>
<td>11</td>
<td>(S_v^R)</td>
<td>+</td>
<td>(-2)</td>
</tr>
<tr>
<td>12</td>
<td>(S_v^R)</td>
<td>+</td>
<td>(-0.46)</td>
</tr>
<tr>
<td>13</td>
<td>(S_v^R)</td>
<td>+</td>
<td>(-0.11)</td>
</tr>
<tr>
<td>14</td>
<td>(S_v^R)</td>
<td>+</td>
<td>(-0.0006)</td>
</tr>
<tr>
<td>15</td>
<td>(S_v^R)</td>
<td>+</td>
<td>(-0.047)</td>
</tr>
<tr>
<td>16</td>
<td>(S_v^R)</td>
<td>+</td>
<td>(-0.0022)</td>
</tr>
<tr>
<td>17</td>
<td>(S_v^R)</td>
<td>+</td>
<td>(-0.044)</td>
</tr>
<tr>
<td>18</td>
<td>(S_v^R)</td>
<td>+</td>
<td>(-0.78)</td>
</tr>
</tbody>
</table>

4. Numerical Simulation of Integer-Order Malaria Model

The numerical simulations examine the effect of combinations of parameters of the modified model on the transmission of the disease by using MATLAB. The simulation is carried out by taking different values of parameters. The set of parameter values is given in Table 4 whose sources are mainly from literature as well as assumptions. We used differential equation solver ODE (45). The simulations and analysis made are based on these parameter values and initial conditions below.

The following initial conditions have been considered: \(S_h(0) = 25891, P_h(0) = 8285, I_y(0) = 1542, I_y(0) = 1530, R_h(0) = 1543, S_m(0) = 11998, I_m(0) = 2601 \).

4.1. Numerical Simulation with Sensitive Parameter. We consider two sensitive parameters, namely, number of bites on preschool-age human per female mosquito per time and the number of bites on young-age human per female mosquito per time.

5. The Fractional Malaria Model and Analysis
the system of DEs, and the mathematical model can be formulated through the following.

5.1. Some Basic Concepts from Fractional Calculus

Definition 9. Let $f : [a, b] \rightarrow \mathbb{R}$ be bounded and continuous function and let $a \in [0, 1]$. The Atangana–Baleanu fractional derivative for a given function of order α in Caputo sense is defined by

$$
^{ABC}_{t}D^_{a}f(t) = M(\alpha) / (1 - \alpha) \int_{a}^{t} df(\tau) / d\tau E_{\alpha}(-a(t - \tau)^{\alpha} / 1 - \alpha) d\tau
$$

where $M(\alpha) = (1 - \alpha) + a \Gamma(\alpha)$ denotes $M(0) = M(1) = 1$ and E_{α} is Mittag-Leffler function, defined by $E_{\alpha}(z) = \sum_{k=0}^{\infty} \frac{z^k}{\Gamma(\alpha k + 1)}, a \in \mathbb{C}, Re(\alpha) > 0$.

Definition 10 (see [33]). Let $f : [a, b] \rightarrow \mathbb{R}$ be bounded and continuous function; then, the corresponding fractional integral concerning AB fractional-order derivatives is defined as

$$
^{ABC}_{t}D^{-\alpha}_{a}f(t) = 1 - a/M(\alpha) f(t) + a/M(\alpha) \Gamma(\alpha) \int_{a}^{t} f(\tau)(t - \tau)^{\alpha - 1} d\tau.
$$

Theorem 11. Let $f : [a, b] \mapsto \mathbb{R}$ be bounded and continuous function; then, the following result holds as in [32]:

$$
\|^{ABC}_{t}D^a_{a}f(t) \leq \frac{M(\alpha)}{(1 - \alpha) f(t)} = \max(\alpha \leq t \leq b(f(t))).
$$

Furthermore, the Atangana–Baleanu derivative fulfills the Lipschitz condition [32] for two functions $f_1, f_2 \in L(a, b), b > a$; then, the AB fractional derivative satisfies the following inequality:

$$
\|^{ABC}_{t}D^a_{a}f_1(t) -^{ABC}_{t}D^a_{a}f_2(t) \| \leq \|f_1(t) - f_2(t)\|,
$$

where $0 < \alpha \leq 1$ is the order of fractional derivatives.

The fractional-order system of the differential equation of malaria is proposed as follows:

$$
\begin{align*}
^{ABC}_{t}D^a_{a}S_h(t) &= (1 - \gamma)\Lambda_h + \phi P_h + \beta_\phi R_h - (\tau + \lambda_c + \lambda_r + \mu_h)S_h, \\
^{ABC}_{t}D^a_{a}P_h(t) &= \gamma\Lambda_h + \tau S_h + (1 - \Phi)\beta R_h - (\varphi + \mu_h)P_h, \\
^{ABC}_{t}D^a_{a}I_c(t) &= \lambda_c S_h - (\mu_d + \mu_h + \eta + \omega_1 + \delta_1)I_c, \\
^{ABC}_{t}D^a_{a}I_r(t) &= \lambda_c S_h - (\mu_d + \mu_h + \omega_2 + \delta_2)I_r, \\
^{ABC}_{t}D^a_{a}R_h(t) &= (\omega_2 + \delta_2)I_r + (\omega_1 + \delta_1)I_c - (\beta \Phi + (1 - \Phi)\beta + \mu_h)R_h, \\
^{ABC}_{t}D^a_{a}S_m(t) &= \Lambda_m - (\lambda_m + \mu_m)S_m, \\
^{ABC}_{t}D^a_{a}I_m(t) &= \lambda_m S_m - \mu_m I_m.
\end{align*}
$$

The Atangana–Baleanu (AB) derivative is described by the system of DEs, and the mathematical model can be written as

$$
^{ABC}_{\omega}D^a_{\omega}X(t) = F(t, X(t)), \text{ where, } X(t) = (S_h(t), P_h(t), I_c(t), I_r(t), R_h(t), S_m(t), I_m(t)).
$$
In the fractional order of dynamical system (70), $F_i(t, X(t))$ for $i = 1, 2, 3, 4, 5, 6, 7$ are kernels of the dynamical system with initial conditions $S_h(0) = S_0, P_h(0) = P_0, I_h(0) = I_0, R_h(0) = R_0, S_m(0) = S_0, I_m(0) = I_0$.

5.2. Existence and Uniqueness of Solutions. To show the existence of solution of the given model, we use the Banach fixed point theorem, and to show the existence and uniqueness of the solution, we apply AB fractional integral to the proposed model [34]. Let

$$B = E(J) \times E(J) \times E(J) \times E(J) \times E(J) \times E(J) \times E(J)$$

be the Banach space of real-valued continuous functions defined on an interval $E(J) = [0, T]$ with the corresponding norm defined by

$$\|F_1(t, X(t)) - F_1(t, X_1(t))\| \leq L \|X(t) - X_1(t)\|$$

is contraction for $0 \leq L < 1$.

Proof. Let the kernel of the first compartment, F_1, satisfy the Lipschitz condition and contraction if the inequality given below holds:

$$0 \leq \tau + \mu_h + \frac{K_{1, h}}{M(N_h)} + \frac{K_{1, y}}{M(N_h)} < 1,$$

$$\left\| F_1(t, S_h) - F_1(t, S_w) \right\| \leq (1 - \gamma)\Lambda_h + \varphi P_h + \beta \varphi R_h - \left(\tau + \mu_h + \frac{K_{1, h}}{M(N_h)} + \frac{K_{1, y}}{M(N_h)} \right) I_m S_h$$

$$\leq \left(\tau + \mu_h + \frac{K_{1, h}}{M(N_h)} + \frac{K_{1, y}}{M(N_h)} \right) I_m \left\| S_h - S_w \right\|.$$

Suppose that

$$L_1 = \left(\tau + \mu_h + \frac{K_{1, h}}{M(N_h)} + \frac{K_{1, y}}{M(N_h)} \right) Z_7,$$

where

$$\left\| S_h \right\| = \sup_{t \in J} S_h(t) = Z_1, \left\| P_h \right\| = \sup_{t \in J} P_h(t) = Z_2,$$

$$\left\| I_h \right\| = \sup_{t \in J} I_h(t) = Z_3,$$

$$\left\| I_y \right\| = \sup_{t \in J} I_y(t) = Z_4, \left\| R_h \right\| = \sup_{t \in J} R_h(t) = Z_5,$$

$$\left\| S_m \right\| = \sup_{t \in J} S_m(t) = Z_6, \left\| I_m \right\| = \sup_{t \in J} I_m(t) = Z_7$$

where $\left\| I_m \right\| \leq Z_7$.

References:

[33, 34].
is bounded function, so

$$\| F_1(t, S_h) - F_1(t, S_{h_i}) \| \leq L_1 \| S_h(t) - S_{h_i}(t) \|, \quad (77)$$

and thus for F_1, the Lipschitz condition is obtained, and if

$$0 \leq \left(\tau + \mu + \frac{K_1 \varepsilon_y}{M(N_h)} + \frac{K_1 \varepsilon_y}{M(N_h)} \right) Z \tau < 1, \quad (78)$$

then F_1 is contraction. Similarly,

$$L_2 = (\phi + \mu_h),$$

$$L_3 = (\mu_d + \mu_h + \eta) + (\omega_1 + \delta_1),$$

$$L_4 = (\mu_d + \mu_h + \eta) + (\omega_2 + \delta_2),$$

$$L_5 = \beta \phi + (1 - \phi) \beta + \mu_h,$$

$$L_6 = \frac{K_2 \varepsilon_m (Z_3 + Z_4)}{M(N_h)} + \mu_h,$$

$$L_7 = \mu_m$$

and we express the difference between successive terms by using recursive formula in (80).

$$X_n(t) = \frac{1 - \alpha}{M(\alpha)} F(t, X_{(n-1)}) + \frac{\alpha}{M(\alpha) \Gamma(\alpha)} \int_{t_0}^t F(\tau, X_{n-1}(\tau))(t - \tau)^{\alpha-1} d\tau, \quad (80)$$

From (81), the difference between successive terms is expressed as follows:

$$A_n(t) = X_n(t) - X_{n-1}(t)$$

$$= \frac{1 - \alpha}{M(\alpha)} [F_1(t, X_{n-1}(t)) - F_1(t, X_{n-2}(t))]$$

$$\cdot \frac{\alpha}{M(\alpha) \Gamma(\alpha)} \int_{t_0}^t F_1(\tau, X_{n-1}(\tau)) - F_1(\tau, X_{n-2}(\tau))(t - \tau)^{\alpha-1} d\tau. \quad (81)$$
\[A_{1n}(t) = S_{h_n}(t) - S_{h_{n-1}}(t) = \frac{1}{M(a)} \left[F_1(t, S_{h_{n-1}}(t)) - F_1(t, S_{h_n}(t)) \right] \]

\[\frac{\alpha}{M(a)\Gamma(a)} \int_0^t F_1(\tau, S_{h_{n-1}}(\tau)) - F_1(\tau, S_{h_n}(\tau)) (t - \tau)^{a-1} d\tau, \]

\[A_{2n}(t) = P_{h_n}(t) - P_{h_{n-1}}(t) = \frac{1}{M(a)} \left[F_2(t, P_{h_{n-1}}(t)) - F_2(t, P_{h_n}(t)) \right] \]

\[\frac{\alpha}{M(a)\Gamma(a)} \int_0^t F_2(\tau, P_{h_{n-1}}(\tau)) - F_2(\tau, P_{h_n}(\tau)) (t - \tau)^{a-1} d\tau, \]

\[A_{3n}(t) = I_{c_n}(t) - I_{c_{n-1}}(t) = \frac{1}{M(a)} \left[F_3(t, I_{c_{n-1}}(t)) - F_3(t, I_{c_n}(t)) \right] \]

\[\frac{\alpha}{M(a)\Gamma(a)} \int_0^t F_3(\tau, I_{c_{n-1}}(\tau)) - F_3(\tau, I_{c_n}(\tau)) (t - \tau)^{a-1} d\tau, \]

\[A_{4n}(t) = I_{y_n}(t) - I_{y_{n-1}}(t) = \frac{1}{M(a)} \left[F_4(t, I_{y_{n-1}}(t)) - F_4(t, I_{y_n}(t)) \right] \]

\[\frac{\alpha}{M(a)\Gamma(a)} \int_0^t F_4(\tau, I_{y_{n-1}}(\tau)) - F_4(\tau, I_{y_n}(\tau)) (t - \tau)^{a-1} d\tau, \]

\[A_{5n}(t) = R_{h_n}(t) - R_{h_{n-1}}(t) = \frac{1}{M(a)} \left[F_5(t, R_{h_{n-1}}(t)) - F_5(t, R_{h_n}(t)) \right] \]

\[\frac{\alpha}{M(a)\Gamma(a)} \int_0^t F_5(\tau, R_{h_{n-1}}(\tau)) - F_5(\tau, R_{h_n}(\tau)) (t - \tau)^{a-1} d\tau, \]

\[A_{6n}(t) = S_{m_n}(t) - S_{m_{n-1}}(t) = \frac{1}{M(a)} \left[F_6(t, S_{m_{n-1}}(t)) - F_6(t, S_{m_n}(t)) \right] \]

\[\frac{1}{\Gamma(a)} \int_0^t F_6(\tau, S_{m_{n-1}}(\tau)) - F_6(\tau, S_{m_n}(\tau)) (t - \tau)^{a-1} d\tau, \]

\[A_{7n}(t) = I_{m_n}(t) - I_{m_{n-1}}(t) = \frac{1}{M(a)} \left[F_7(t, I_{m_{n-1}}(t)) - F_7(t, I_{m_n}(t)) \right] \]

\[\frac{1}{\Gamma(a)} \int_0^t F_7(\tau, I_{m_{n-1}}(\tau)) - F_7(\tau, I_{m_n}(\tau)) (t - \tau)^{a-1} d\tau, \]

with initial conditions

\[S_{h_n}(0) = S_h(0), P_{h_n}(0) = P_h(0), I_{c_n}(0) = I_c(0), I_{y_n}(0) = I_y(0), \]

\[R_{h_n}(0) = R_h(0), S_{m_n}(0) = S_m(0), I_{m_n}(0) = I_m(0). \]

Equation (70) can be reduced using definition of the norm.

\[\|A_{1n}(t)\| = \|S_{h_n}(t) - S_{h_{n-1}}(t)\| = \frac{1}{M(a)} \left\| F_1(t, S_{h_{n-1}}(t)) - F_1(t, S_{h_n}(t)) \right\| \]

\[\frac{\alpha}{M(a)\Gamma(a)} \int_0^t F_1(\tau, S_{h_{n-1}}(\tau)) - F_1(\tau, S_{h_n}(\tau)) (t - \tau)^{a-1} d\tau. \]
Applying triangular inequality,

\[\left\| S_{h_n}(t) - S_{h_{n-1}}(t) \right\| \le \frac{1 - \alpha}{M(a)} \left| F_1(t, S_{h_{n-1}}(t)) - F_1(t, S_{h_{n-1}}(t)) \right| + \left\|\frac{\alpha}{M(a)\Gamma(a)} \int_0^t F_1(r, S_{h_{n-1}}(r)) - F_1(r, S_{h_{n-1}}(r))(t - r)^{a-1} dr \right\|, \tag{85} \]

and by integrating (73), we obtained

\[\left\| A_{1n}(t) \right\| = \left\| S_{h_n}(t) - S_{h_{n-1}}(t) \right\| \le \frac{1 - \alpha}{M(a)} L_1 \left\| S_{h_n}(t) - S_{h_{n-1}}(t) \right\| \]
\[+ \frac{t^a}{M(a)\Gamma(a)} L_1 \left\| S_{h_n}(t) - S_{h_{n-1}}(t) \right\| \left\| A_{1n}(t) \right\| \]
\[\le \left\| A_{1n-1}(t) \right\| \left(\frac{1 - \alpha}{M(a)} + \frac{t^a}{M(a)\Gamma(a)} \right)^n. \tag{86} \]

Similarly,

\[\left\| A_{2n}(t) \right\| \le \left\| A_{2n-1}(t) \right\| \left(\frac{1 - \alpha}{M(a)} + \frac{t^a}{M(a)\Gamma(a)} \right)^n, \]
\[\left\| A_{3n}(t) \right\| \le \left\| A_{3n-1}(t) \right\| \left(\frac{1 - \alpha}{M(a)} + \frac{t^a}{M(a)\Gamma(a)} \right)^n, \]
\[\left\| A_{4n}(t) \right\| \le \left\| A_{4n-1}(t) \right\| \left(\frac{1 - \alpha}{M(a)} + \frac{t^a}{M(a)\Gamma(a)} \right)^n, \]
\[\left\| A_{5n}(t) \right\| \le \left\| A_{5n-1}(t) \right\| \left(\frac{1 - \alpha}{M(a)} + \frac{t^a}{M(a)\Gamma(a)} \right)^n, \]
\[\left\| A_{6n}(t) \right\| \le \left\| A_{6n-1}(t) \right\| \left(\frac{1 - \alpha}{M(a)} + \frac{t^a}{M(a)\Gamma(a)} \right)^n, \]
\[\left\| A_{7n}(t) \right\| \le \left\| A_{7n-1}(t) \right\| \left(\frac{1 - \alpha}{M(a)} + \frac{t^a}{M(a)\Gamma(a)} \right)^n. \tag{87} \]

Theorem 13. The mathematical model involving Atanga-\-na–\-Baleanu fractional model given in (69) has solution if there exists \(y_0 \) such that

\[\left(\frac{1 - \alpha}{M(a)} + \frac{t^a}{M(a)\Gamma(a)} \right) L_1 < 1, \quad i = 1, 2, 3, 4, 5, 6, 7. \tag{88} \]

Proof. Using techniques of recursive formula, we obtain

\[\left\| A_{1n}(t) \right\| \le \left\| S_{h_n}(0) \right\| L_1 \left(1 - \frac{\alpha}{M(a)} + \frac{t^a}{M(a)\Gamma(a)} \right)^n. \tag{89} \]

Similarly,

\[\left\| A_{2n}(t) \right\| \le \left\| A_{2n-1}(t) \right\| \left(1 - \frac{\alpha}{M(a)} + \frac{t^a}{M(a)\Gamma(a)} \right)^n, \]
\[\left\| A_{3n}(t) \right\| \le \left\| A_{3n-1}(t) \right\| \left(1 - \frac{\alpha}{M(a)} + \frac{t^a}{M(a)\Gamma(a)} \right)^n, \]
\[\left\| A_{4n}(t) \right\| \le \left\| A_{4n-1}(t) \right\| \left(1 - \frac{\alpha}{M(a)} + \frac{t^a}{M(a)\Gamma(a)} \right)^n, \]
\[\left\| A_{5n}(t) \right\| \le \left\| A_{5n-1}(t) \right\| \left(1 - \frac{\alpha}{M(a)} + \frac{t^a}{M(a)\Gamma(a)} \right)^n, \]
\[\left\| A_{6n}(t) \right\| \le \left\| A_{6n-1}(t) \right\| \left(1 - \frac{\alpha}{M(a)} + \frac{t^a}{M(a)\Gamma(a)} \right)^n, \]
\[\left\| A_{7n}(t) \right\| \le \left\| A_{7n-1}(t) \right\| \left(1 - \frac{\alpha}{M(a)} + \frac{t^a}{M(a)\Gamma(a)} \right)^n. \tag{90} \]

Now we are going to show functions which are \(S_{h}, P_{h}, I_c, I_y, R_{h}, S_{m}, I_m \) that are solutions of (69).

Assume

\[S_{h}(t) - S_{h}(0) = S_{h_n}(t) - A_{1n}(t), \tag{91} \]

and by repeating the process of recursive formula, we obtain

\[\left\| A_{1n}(t) \right\| \le \left\| S_{h_n}(0) \right\| L_1 \left(1 - \frac{\alpha}{M(a)} + \frac{t^a}{M(a)\Gamma(a)} \right)^n, \tag{92} \]

for \(t = y_0 \), and (92) becomes
\[\|A_{tn}(t)\| \leq \left(\frac{1 - \alpha}{M(a)} + \frac{\gamma^2}{M(a)\Gamma(a)} \right)^{n+1} \left(L_i \|S_h(t) - S_{h_{n+1}}(t)\| \right)^{n+1}, \]

and by taking the limit of (93),

\[n \to \infty, A_{tn}(t) \to \infty, \left(\frac{1 - \alpha}{M(a)} + \frac{\gamma^2}{M(a)\Gamma(a)} \right) L_i < 1. \]

(94)

This completes the proof of existence of the solution of the given model using the Banach fixed point theorem; the same is true for the remaining expressions.

\[\Box \]

Theorem 14. The Atangana–Balcaen fractional model has a unique solution if

\[\left(\frac{1 - \alpha}{M(a)} + \frac{\gamma^2}{M(a)\Gamma(a)} \right) L_i < 1. \]

Let \(X^* = (S_{h1}, P_{h1}, I_{c1}, I_{y1}, R_{h1}, S_{m1}, I_{m1}) \) be solutions of the proposed fractional model

\[X(t) - X^*(t) = \frac{1 - \alpha}{M(a)}F_i(t, X(t)) - F_i(t, X^*(t)) \]

\[+ \frac{\alpha}{M(a)\Gamma(a)} \int_{t_0}^t F_i(r, X(r)) - F_i(r, X^*(r))(t - r)^{\alpha - 1} dr. \]

(96)

By taking the norm of both sides and after integrating, we obtain

\[\|X(t) - X^*(t)\| \leq \frac{1 - \alpha}{M(a)}L\|X(t) - X^*(t)\| + \frac{\alpha}{M(a)\Gamma(a)}L\|X(t) - X^*(t)\|. \]

(97)

when \(0 \leq \varepsilon \leq x, \forall \varepsilon \in (a, b] \). From the lemma above, if

\[f(x) \in C[0, b], 0^ABC\mathcal{D}_t^\alpha f(x) C[a, b], \]

\[0^ABC\mathcal{D}_t^\alpha f(x) \geq 0, \forall \varepsilon \in [0, b], \]

(102)

when \(0 < \alpha \leq 1 \) \(f(x) \) is nondecreasing, and for

\[0^ABC\mathcal{D}_t^\alpha f(x) \leq 0, \forall \varepsilon \in [0, b], \]

(103)

\[f(x) \] is nonincreasing. Let us show that \(M \) is positively invariant; using the above lemma, we have

\[0^ABC\mathcal{D}_t^\alpha |S_h = 0 = (1 - \gamma)\Lambda_h + \varphi P_h + \beta\Phi R_h \geq 0, \]

(104)

\[0^ABC\mathcal{D}_t^\alpha |P_h = 0 = \gamma\Lambda_h + \tau S_h + (1 - \Phi)\beta R_h \geq 0, \]

Similarly, each of the remaining solutions of the model is nonnegative and remains in \(M \). To show that the solution of the system is bounded, we have to obtain the fractional derivatives of total population by summing up all the relations in the system, so

\[0^ABC\mathcal{D}_t^\alpha |I_c = 0 = \lambda_s S_h \geq 0. \]

(105)

By applying Laplace transform on both sides of the above inequality,
\[
L\left(0^\text{ABC} D_t^\alpha N_h + \mu_h N_h\right) \leq L(A_h),
\]
\[
L(N_h) \leq \left(1 - \frac{\tau-a}{1-\alpha}(1-\alpha)\right)^{-1} \left[\frac{1}{1-\tau} - \frac{\tau-a}{1-\alpha} \right] F(\alpha) \left(1 + \frac{\alpha-a}{1-\alpha} \right) \frac{\Lambda_h}{S} + N_0 \frac{1}{(1-\tau)S},
\]
where
\[
\tau = \frac{\mu_h (1-\alpha)}{F(\alpha)},
\]
and by applying the inverse Laplace transform [37], the solution is given by
\[
N_h(t) = \frac{\Lambda_h}{\mu_h} \frac{d}{dt} \int_0^t E_\alpha \left(\frac{\tau-a}{1-\alpha}(1-\alpha)\right) N(0),
\]
where \(E_{\alpha,\beta}\) refers to Mittag-Leffler function, and it has asymptotic behavior.
\[
E_{\alpha,\beta}(z) = \sum_{\tau=1}^\infty \frac{z^\tau}{\Gamma(\beta - \alpha \tau)},
\]
as, \(t \to \infty\), \(N_h(t)\) \(\leq \Lambda_h/\mu_h\) as \(t \to 0\) hence it is a biologically feasible region that means for \(t \geq 0\) we have \(0 < N_h(t) \leq (N_h(t))/\mu_h\) this indicates that the total human population is bounded. In the same way, mosquito population is also bounded because \(N_m(t) \leq A_m/\mu_m\) as \(t \to 0\).

Theorem 17. The disease-free equilibrium of (69) is locally asymptotically stable if \(R_0 < 1\) and unstable if \(R_0 > 1\).

To show the local stability of disease-free equilibrium of (69), we use \(7 \times 7\) Jacobian matrix and RH criterion. As indicated in (11), the disease-free equilibrium (\(\varepsilon_0\)) of (69) is locally asymptotically stable for \(R_0 < 1\) and unstable for \(R_0 > 1\).

By using the same Lyapunov type function as in (14) of classical model (45), we prove that DFE of fractional model (69) is globally asymptotically stable in \(M\) whenever \(R_0 \leq 1\). Thus, the following result is valid.

Theorem 18. For any \(\alpha \in (0,1]\), the disease-free equilibrium point \(\varepsilon_0\) of model (69) is globally asymptotically stable in the feasible region \(M\) if \(R_0 < 1\) [39].

Theorem 19. The endemic equilibrium point \(\varepsilon^* = (S^*_h, P^*_h, I^*_h, I^*_m, R^*_h, S^*_m, I^*_m)\) of the malaria model of (69) is locally asymptotically stable if and only if \(R_0 > 1\).

To show the local stability of the endemic equilibrium point, we used the method of the Jacobian matrix and RH stability criterion.

As indicated in (21), endemic equilibrium point \(\varepsilon^*\) is locally asymptotically stable if \(R_0 > 1\).

Theorem 20. The endemic equilibrium point \(\varepsilon^* = (S^*_h, P^*_h, I^*_h, I^*_m, R^*_h, S^*_m, I^*_m)\) of the system is globally asymptotically stable if \(R_0 > 1\).

As we observe from (26) of this paper, \(\varepsilon_0\) is globally asymptotically stable in the invariant region \(M\) if \(G_1 < G_2\) for \(R_0 > 1\).

6. Numerical Scheme and Simulation of Fractional-Order Model

The numerical scheme for the solution of fractional-order differential equation is defined by Toufi and Atangana [40]. Consider nonlinear FDEs
The numerical scheme for (112) is defined as in [34].

\[
\begin{align*}
X_{n+1} &= X_0 + \frac{1 - \alpha}{M(\alpha)} (t_n, X(t_n)) \\
&+ \frac{\alpha}{M(\alpha) \Gamma(\alpha)} \sum h^\alpha f(t_k, X(t_k)) (n+1-k)^\alpha (n+2-k+\alpha) - (n-k)^\alpha (n+2-k+2\alpha) \\
&- \frac{h^\alpha f(t_{k-1}, X(t_{k-1})) (n+1-k)^{\alpha+1} - (n-k)^\alpha (n+1-k+\alpha)}{\Gamma(\alpha+2)}.
\end{align*}
\]

By adopting the procedure in [40], the numerical scheme of each compartment in the fractional model (69) takes

\[
\begin{align*}
S_h(t_{n+1}) &= S_h(t_0) + \frac{1 - \alpha}{M(\alpha)} F_1(t, S_h(t), P_h(t), I_c(t), I_y(t), R_h(t), S_m(t), I_m(t)) \\
&+ \frac{\alpha}{M(\alpha) \Gamma(\alpha)} \sum h^\alpha F_1(t, S_h(t), P_h(t), I_c(t), I_y(t), R_h(t), S_m(t), I_m(t)) \\
&\cdot (n+1-k)^\alpha (n+2-k+\alpha) - (n-k)^\alpha (n+2-k+2\alpha) \\
&- \frac{h^\alpha F_1(t, S_h(t), P_h(t), I_c(t), I_y(t), R_h(t), S_m(t), I_m(t)) (n+1-k)^{\alpha+1} - (n-k)^\alpha (n+1-k+\alpha)}{\Gamma(\alpha+2)}.
\end{align*}
\]

\[
\begin{align*}
P_h(t_{n+1}) &= P_h(t_0) + \frac{1 - \alpha}{M(\alpha)} F_2(t, S_h(t), P_h(t), I_c(t), I_y(t), R_h(t), S_m(t), I_m(t)) \\
&+ \frac{\alpha}{M(\alpha) \Gamma(\alpha)} \sum h^\alpha F_2(t, S_h(t), P_h(t), I_c(t), I_y(t), R_h(t), S_m(t), I_m(t)) \\
&\cdot (n+1-k)^\alpha (n+2-k+\alpha) - (n-k)^\alpha (n+2-k+2\alpha) \\
&- \frac{h^\alpha F_2(t, S_h(t), P_h(t), I_c(t), I_y(t), R_h(t), S_m(t), I_m(t)) (n+1-k)^{\alpha+1} - (n-k)^\alpha (n+1-k+\alpha)}{\Gamma(\alpha+2)}.
\end{align*}
\]

\[
\begin{align*}
I_c(t_{n+1}) &= I_c(t_0) + \frac{1 - \alpha}{M(\alpha)} F_3(t, S_h(t), P_h(t), I_c(t), I_y(t), R_h(t), S_m(t), I_m(t)) \\
&+ \frac{\alpha}{M(\alpha) \Gamma(\alpha)} \sum h^\alpha F_3(t, S_h(t), P_h(t), I_c(t), I_y(t), R_h(t), S_m(t), I_m(t)) \\
&\cdot (n+1-k)^\alpha (n+2-k+\alpha) - (n-k)^\alpha (n+2-k+2\alpha) \\
&- \frac{h^\alpha F_3(t, S_h(t), P_h(t), I_c(t), I_y(t), R_h(t), S_m(t), I_m(t)) (n+1-k)^{\alpha+1} - (n-k)^\alpha (n+1-k+\alpha)}{\Gamma(\alpha+2)}.
\end{align*}
\]

\[
\begin{align*}
I_y(t_{n+1}) &= I_y(t_0) + \frac{1 - \alpha}{M(\alpha)} F_4(t, S_h(t), P_h(t), I_c(t), I_y(t), R_h(t), S_m(t), I_m(t)) \\
&+ \frac{\alpha}{M(\alpha) \Gamma(\alpha)} \sum h^\alpha F_4(t, S_h(t), P_h(t), I_c(t), I_y(t), R_h(t), S_m(t), I_m(t)) \\
&\cdot (n+1-k)^\alpha (n+2-k+\alpha) - (n-k)^\alpha (n+2-k+2\alpha) \\
&- \frac{h^\alpha F_4(t, S_h(t), P_h(t), I_c(t), I_y(t), R_h(t), S_m(t), I_m(t)) (n+1-k)^{\alpha+1} - (n-k)^\alpha (n+1-k+\alpha)}{\Gamma(\alpha+2)}.
\end{align*}
\]
for step size $h(t_m, t_{m-1})$.

In the numerical simulation of dynamics of malaria disease, two categories of the species are considered: the host population which contains the human population and the vector which consists of mosquito. The two species are interconnected with each other. The effect of embedded vector which consists of mosquito and high probability transmission rate from the infected population will increase due to high biting rate of mosquito and the infected population will continue to join the infected class; as a result, susceptible human population decreases rapidly as the infected population increases. After some interval of time, they go to zero due to lack of meal for their egg; then, the disease-free equilibrium point exists and is stable. The existence of this condition is due to the fact that $R_0 = 2.827 \times 10^{-5}$ which is less than one. This supports the theorem that the stability of disease-free equilibrium point exists when $R_0 < 1$, i.e., the society is free from the disease when $R_0 < 1$.

We also evaluated sensitivity indices of the parameter values shown in Table 2. In the case of malaria transmission, the most sensitive parameter is the rate of mosquito bites or the number of bites in people of preschool age (ε_p) and young age (ε_y); other parameters include the probability of transmission from an infectious mosquito to a susceptible person or a portion of the bite that successfully infects human (K_i) and the probability of disease transmission from infectious human to susceptible vector or a portion of the bite that successfully infects mosquito. As shown in Figure 4, the number of bites of mosquito increases and the susceptible human population decreases because when the contact between mosquito and the
two human age levels increases, the force of infection increases and individuals go to the infected class to increase the infected human class as shown in Figure 5. As the number of bites increases, the population of susceptible vector decreases because of increase in infected vector for some time interval initially and then decreases because infected vector goes to the susceptible human class to increase force of infection as shown in Figures 6–8. Susceptible human population decreases in three directions: firstly because of natural death rate, secondly because of increment in force of infection as shown in Figure 4, and thirdly because of increment in transfer rate \(\tau \) of human from susceptible class to protected class as shown in Figures 9 and 10 to increase protected class individuals as shown in Figure 11. As explained in assumption part, protection class is the class with individuals who use intervention mechanisms like ITNs and IRS; if individuals who use such control mechanisms increase, the force of infection decreases because of decrease in mosquito vector with lack of meal for their egg production. As shown in Figures 3 and 12, the number of infected humans decreases as the number of recovered humans increases because of increment in natural recovery rate and treatment rate, so this increment in recovery rate is one way to increase protected class individuals; increment in protected class is our target to control malaria disease; because of increment in protection class and recovery rate, infected preschool-age and young-age human population decreases as shown in Figures 13–15.

In Figures 16 and 17, we show the global asymptotic stability of the proposed model by varying the initial conditions of each compartment for time being, and to save time and space, we show only two compartments, namely, susceptible humans and infected preschool humans.

As indicated in Figures 18 and 19, as fractional order \(\alpha \) approaches 1 or integer order, the susceptible human population decreases which is similar to that of classical model result, that is, as the biting rate of mosquito increases, the susceptible human population decreases. The majority of
Figure 7: As the number of bites increases, the population of susceptible vector decreases because of the increment of infected vector.

Figure 10: Susceptible population decreases as increases transfer rate (τ) of human from susceptible to protected class.

Figure 8: The result shows that the infected vector population is increased for initial time interval then after decrease as time increase.

Figure 11: The dynamics of susceptible population with fractional order α which show the decay behavior for the given time t.

Figure 9: The population of infected vector increases for initial time interval and then decreases.

Figure 12: The result of recovered human population with fractional order θ shows that the recovery is increased for some time interval.
fractional-order model simulation results are roughly similar to those of classical order model simulation results when fractional order $\alpha \rightarrow 1$. However, as many studies have shown, the model with fractional derivatives (Atangana–Baleanu in Caputo sense) is superior to the model with integer-order derivatives. Based on theorem (21), we have demonstrated that even in the disease-free equilibrium, there is a chance of an

![Figure 13: The dynamics of protected human with fractional order α which show protected individuals increased for initial time interval and decreasing behavior for some time; and then increase finally.](image13)

![Figure 14: The result shows that the infected preschool-age human increased for the initial interval of time and then strictly slow or decrease as time increase.](image14)

![Figure 15: As the result showed that the infected young human increased for the initial interval of time and then decreased as that of infected preschool-age human, but the decrement is not strict.](image15)

![Figure 16: Global stability of infected preschool humans.](image16)

![Figure 17: Global stability of susceptible human compartment.](image17)

![Figure 18: As the value of τ increases, the protected class also increases.](image18)
Susceptible vector with different values of order alph:

(i) Our results in (21) indicate that responsible bodies need to increase the culture of using different control mechanisms like ITNs and IRS including different medical treatments to avoid backward bifurcation or inverse bifurcation.

(ii) Since the model indicates that the probability of disease transmission rate and mosquito biting rate play a major role in the disease’s spread, efforts should be made to reduce mosquito populations and biting rates through biological or chemical means, or any other method that will lower the rate of malaria infection.

(iii) Government agencies with accountability should start and continue efficient programs to guarantee that public health decision makers take into account intervention strategies aimed at reducing mosquito populations and biting rates when controlling malaria. Furthermore, we plan to expand the model in subsequent work to encompass

(a) Effects of different constant control mechanisms on malaria prevalence, optimal control, and cost analysis.

(b) The effects of temperature and rainfall on the spread of malaria on the mortality and survival probabilities via optimal control.

(c) Different fractional-order derivatives and integer-order derivatives, comparing their results and performing backward and forward bifurcation to identify the prevalence of malaria disease.

8. Conclusion

Integer- and fractional-order models were presented for the dynamics of malaria in human hosts with varying ages. A system of differential equations model with five human state variables and two mosquito state variables was examined. We demonstrated the existence of an area in which the model is both mathematically and epidemiologically well posed. The equilibrium point devoid of disease was discovered, and its stability was examined. We identified the basic reproduction number R_0 in terms of the model parameters that measure the intensity of the transmission of the disease. It has been demonstrated that during the course of the infectious period, R_0 predicts the anticipated number of additional infections (in mosquitoes and people) from one infectious individual (human or mosquito). It was also established that for the basic reproduction number $R_0 < 1$, the disease-free equilibrium point emerges. We showed that the endemic equilibrium point is unique for $R_0 > 1$, and also we showed numerical result for both fractional- and integer-order models. For the numerical simulation of integer order, we used ODE (45), and we used numerical technique developed by Toufik and Atangana for fractional order. Plasmodium parasites cause malaria. Since malaria is a global problem, the following measures should be taken to eradicate the disease. The biological explanation of (21) is that when backward bifurcation occurs, malaria can still exist in the community even when $R_0 < 1$, and such situation can lead to misunderstandings about malaria eradication programs. Responsible bodies like policy makers may think they have succeeded in bringing R_0 under one and hope malaria will disappear. Unfortunately, if backward bifurcation occurs, there will be a large endemic equilibrium due to the hysteresis that occurs when $R_0 < 1$.

Data Availability

The data used to support the findings of this study are included within the article. Actually, for the simulation, we used data from other articles. The papers are correctly referenced.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

The first author would like to thank the second author for his help in methodology and formal analysis.

References

