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In this paper, we obtain some inequalities involving positive semidefnite 2 × 2 block matrices and their blocks.

1. Introduction

We denote by Mn the vector space of all complex n × n

matrices. For A ∈Mn, the conjugate transpose of A is
denoted by A∗. Te notation A≥ 0 is used to mean that A is
positive semidefnite. If A is a Hermitian element of Mn,
then we enumerate its eigenvalues as λ1(A)≥ · · · ≥ λn(A).
Te singular values of A are enumerated as s1(A)≥ · · · ≥
sn(A). Tese are the eigenvalues of the positive semidefnite
matrix |A| � (A∗A)1/2. Troughout this paper, we assume
that H is the positive semidefnite block matrix in the form

H �
M K

K
∗

N
  ∈M2n, (1)

where M, K, N ∈Mn.

Te block matrix M K
∗

K N
 , where M, K, N ∈Mn, is

positive partial transpose (i.e., PPT) if both M K
∗

K N
  and

M K

K
∗

N
  are positive semidefnite.

For 1≤ k≤ n, the norm ‖A‖(k) � 
k
j�1sj(A) is called the

Fan k-norm.Te norm ‖A‖(1) is called the spectral norm and
the norm ‖A‖(n) is called the trace norm. A norm ‖·‖ on Mn

is called unitarily invariant if ‖UAV‖ � ‖A‖ for any A ∈Mn

and any unitary U, V ∈Mn. Clearly, the spectral norm and
the trace norm are unitarily invariant. Recall that a unitarily
invariant norm may be considered as defned on Mn for all

orders n by the rule ‖A‖ �
A 0
0 0

�������

�������
.

Positive semidefnite matrices partitioned into four
blocks play important roles in matrix analysis [1–3] and
quantum theory [4, 5]. Te related inequalities aroused
much interest and several applications were given [6–9]. Of
these, the one germane to our discussion occurs in the paper
of Ulukök [9]. Ulukök in [9] obtained the following results.

Theorem 1

H
r ≤ 2 λ1(M) + λ1(N) 

r− 1
(M⊕N), (2)

for r≥ 1.

Theorem 2

λj H
r

( ≤ 2r− 1 λr
k(M⊕N) + λr

j−k+1(|K|⊕ |K|) , (3)

for r≥ 1, j, k � 1, 2, · · · , n, such that k≤ j.

Theorem 3

H
r

����
����
2 ≤ 4 M

2 ⊕N
2����
����(‖M⊕ 0‖ +‖N⊕ 0‖)

2r−2
, (4)

for r≥ 3/2.
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Theorem 4. Let f be a nonnegative increasing continuous
concave function on [0,∞). Ten,

‖f(H)‖ ≤ ‖f(M)⊕f(N)‖ +‖f(|K|)⊕f(|K|)‖. (5)

Theorem 5. Let f be a nonnegative increasing continuous
convex function on [0,∞). Ten,

‖f(H)‖≤
1
2

(‖f(2M⊕ 2N)‖ +‖f(2|K|⊕ 2|K|)‖). (6)

One of the questions that arise from Ulukök’s work is the
following. Are the conditions in every inequality essential?
Furthermore, it is natural to ask whether stronger inequalities
of (2)–(6) might be proved. Tis is the motivation for
our study.

In this paper, we present a refnement of inequality (2)
and a generalization of inequality (5). Next we derive a result
related to inequality (3) and give a new proof of inequality
(6). Additionally, we construct some counterexamples to
show that the conditions in (2)–(6) are necessary.

2. Main Result

We begin our discussion with inequality (2). We frstly give
an example to show inequality (2) is not always true for
0< r< 1.

Example 1. Take r � 1/2 in inequality (2) and let H �

4 0 2 1
0 4 1 2
2 1 3 1
1 2 1 3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
with M �

4 0
0 4 , N �

3 1
1 3 , and K �

2 1
1 2 . Ten,

λ1(M) � λ1(N) � 4, M⊕N �

4 0 0 0

0 4 0 0

0 0 3 1

0 0 1 3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

λ4 2 λ1(M) + λ1(N) 
− 1/2

(M⊕N) − H
1/2

  ≈ − 0.065.

(7)

It is known that [6] A≥ 0 if and only if A � A∗ and
λj(A)≥ 0. Using this, we see inequality (2) is not always true
for 0< r< 1.

Next, we use block matrix technique to derive some
inequalities related to 2 × 2 positive semidefnite matrices.

Theorem 6. Let H �
M K

K
∗

N
  be PPT. Ten,

H
r ≤ 2λr−1

1 (M + N)(M⊕N), (8)

for r≥ 1.

Proof. Te idea of proof is similar to that in [9], Teorem
3.3. It sufces to show λ1(XX∗ + YY∗)≤ λ1(X∗X + Y∗Y). In
[7], Hiroshima proved that ‖A‖≤ ‖

m
j�1Ajj‖ for PPTmatrix

A � [Aij]
m

i,j�1 and any unitarily invariant norm.
Let H � [X, Y]∗[X, Y] be PPT, where X, Y are matrices

with 2n rows and n columns. Using Hiroshima’s result, we
obtain λ1(H) � λ1(XX∗ + YY∗)≤ λ1(X∗X + Y∗Y). □

Example 2. Let r � 1/2 and H �

4 0 1 1
0 4 1 2
1 1 3 1
1 2 1 3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
with M �

4 0
0 4 , N �

3 1
1 3 , K �

1 1
1 2 , and j � k � 1 in in-

equality (3). A calculation shows that

λ1 H
1/2

  ≈ 2.5667,

λ1/21 (|K|⊕ |K|) ≈ 1.6180,

λ1/21 (M⊕N) � 2.

(9)

Hence,

λ1 H
1/2

  − 2− 1/2 λ1/21 (M⊕N) + λ1/21 (|K|⊕ |K|)  ≈ 0.008.

(10)

Inequality (3) is violated in this case.

Lemma 7 (see [6]). Let A, B≥ 0. Ten,

λj(A + B)≤ λk(A) + λj−k+1(B), (11)

for j, k � 1, 2, · · · , n such that k≤ j.

Theorem 8. Let H �
M K

K
∗

N
  be positive semidefnite and

let 0≤ r≤ 1. Ten,

λj H
r

( ≤ λr
k(M⊕N) + λr

j−k+1(|K| +|K|), (12)

for j, k � 1, 2, · · · , n such that k≤ j.

Proof. Let j, k ∈ 1, 2, · · · , n{ } such that k≤ j. Ten, by
Lemma 7,

λj H
r

(  � λr
j(H)

≤ λr
j

M 0

0 N
  +

K
∗
 0

0 |K|
  

≤ λk

M 0

0 N
  + λj− k+1

K∗| | 0

0 |K|
  

r

≤ λr
k

M 0

0 N
  + λr

j−k+1
|K| 0

0 |K|
 .

(13)

Tis completes the proof. □
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Remark 9. Inequality (3) is a quick consequence ofTeorem
8 by using the convexity of xr(r≥ 1).

Example 3. Let r � 1/5 and H �

2 −1 1 −1
−1 3 −1 1
1 −1 3 0

−1 1 0 2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
with

M �
2 −1

−1 3 , N �
3 0
0 2 , and K �

1 −1
−1 1 . By using

MATLAB software to calculate, we have

M
2 ⊕N

2
�

5 −5 0 0

−5 10 0 0

0 0 9 0

0 0 0 4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

λ1(H) ≈ 5.1401,

λ2(H) ≈ 2.5712,

λ3(H) ≈ 1.5622,

λ4(H) ≈ 0.7265,

trH
1/5

 
2
≈ 21.4062, 4tr M

2 ⊕N
2

 

· (tr(M ⊕ 0) + tr(N⊕ 0))
− 8/5 ≈ 2.8133.

(14)

Hence, inequality (4) is violated for these matrices and
the trace norm when 0< r< 3/2.

We give some unitarily invariant norm inequalities for
positive semidefnite 2 × 2 block matrices. To achieve our
goal, we need the following lemmas.

Lemma 10 (see [6]). Let A, B ∈Mn. Ten, ‖A + B‖≤
‖A‖ + ‖B‖.

Let x � (x1, x2, · · · , xn) be an element of Rn and x↓ be the
vectors obtained by rearranging the coordinates of x in
decreasing order.

Lemma 11 (see [6]). Let f(x) be an increasing convex
function and 

k
i�1x
↓
i ≤

k
i�1y
↓
i (k � 1, 2, · · · , n) with x, y ∈ Rn.

Ten,



k

i�1
f x
↓
i ≤ 

k

i�1
f y
↓
i , (k � 1, 2, · · · , n). (15)

Lemma 12 (see [10]). Let A, B≥ 0 and let f(t) be a non-
negative concave function on [0,∞). Ten, for all unitarily
invariant norms,

‖f(A + B)‖≤ ‖f(A) + f(B)‖. (16)

Lemma 13 (see [11]). Let A, B ∈Mn be positive semidefnite
and let f be an increasing nonnegative continuous convex
function on [0,∞). Ten,

f
A + B

2
 

�������

�������
≤

‖f(A) + f(B)‖

2
. (17)

Theorem 14. Let H �
M K

K
∗

N
  be positive semidefnite

and let f be a nonnegative concave function on [0,∞). Ten,

‖f(H)‖ ≤ ‖f(M)⊕f(N)‖ +‖f(|K|) ⊕f(|K|)‖, (18)

for all unitarily invariant norms.

Proof. We need only to prove the theorem when f(0) � 0,
since the general case follows by a limit argument due to
Lee [12].

Notice that for positive defnite matrices, singular
values and eigenvalues are the same. Since H≤

M + |K
∗
| 0

0 N + |K|
  and using the fact 0≤A≤B includes

that λj(A)≤ λj(B) [1], we obtain

sj(H)≤ sj

M 0

0 N
  +

K
∗
 0

0 |K|
  . (19)

By Fan’ s dominance principle [6], we obtain

‖f(H)‖≤ f M + K
∗
 ⊕(N +|K|) 

�����

�����

≤ f(M)⊕f(N) + f K
∗
 ⊕f(|K|)

�����

�����

≤ ‖f(M)⊕f(N)‖ + f K
∗
 ⊕f(|K|)

�����

�����

� ‖f(M)⊕f(N)‖ +‖f(|K|)⊕f(|K|)‖,

(20)

where the frst inequality follows from inequality (19) and
the fact that f(t) is nondecreasing, the second inequality is
due to Lemma 12, and the third inequality follows from
Lemma 10.

Tis completes the proof. □

Corollary 15. Let f be a nonnegative increasing continuous
concave function on [0,∞). Ten,

‖f(H)‖ ≤ ‖f(M)⊕f(N)‖ +‖f(|K|)⊕f(|K|)‖, (21)

for all unitarily invariant norms.

Example 4. Let H �

5 0 1 −1
0 4 −1 2
1 −1 2 −1

−1 2 −1 2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
with M �

5 0
0 4 ,

N �
2 −1

−1 2 , K �
1 −1

−1 2 , and f(x) � x2. Ten,
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λ1(f(M) ⊕f(N)) � 25,

λ1(f(|K|)⊕f(|K|)) ≈ 6.8541,

λ1(f(H)) ≈ 40.8662,

λ1(f(H)) − λ1(f(M) ⊕f(N)) + λ1(f(|K|)⊕f(|K|)) ≈ 9.0121,(

(22)

which shows inequality (5) is not always true without the
condition that f is concave.

Finally, we give a new proof of inequality (6).

Theorem 16. Let H �
M K

K
∗

N
  be positive semidefnite

and let f be a nonnegative increasing continuous convex
function on [0,∞). Ten,

‖f(H)‖≤
1
2

(‖f(2M⊕ 2N)‖ +‖f(2|K|⊕ 2|K|)‖). (23)

Proof. An application of the polar decomposition reveals
0 K
∗

K 0 ≤ |K| 0
0 |K

∗
|

 , and we see that

H≤
1
2

2M 0

0 2N

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ +
2 K
∗
 0

0 2|K|

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦⎛⎜⎝ ⎞⎟⎠. (24)

Using the fact 0≤A≤B implies that λj(A)≤ λj(B) [1],
and we get



k

j�1
λj(H)≤

1
2



k

j�1
λj

2M 0

0 2N

⎡⎢⎣ ⎤⎥⎦ +
2 K
∗
 0

0 2|K|

⎡⎢⎢⎣ ⎤⎥⎥⎦⎛⎝ ⎞⎠. (25)

By the spectral mapping theorem, we have f(λj(A)) �

λj(f(A)) for A≥ 0. Since f is an increasing convex function,
by Lemma 10, Lemma 11, and Lemma 13 and Fan’ s
dominance principle [6], we obtain



k

j�1
λj(f(H)) ≤ 

k

j�1
λj f

1
2

2M 0

0 2N

⎡⎢⎣ ⎤⎥⎦ +
2 K
∗
 0

0 2|K|

⎡⎢⎢⎣ ⎤⎥⎥⎦⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎛⎝ ⎞⎠ (26)

≤
1
2



k

j�1
λj f

2M 0
0 2N

   +
1
2



k

j�1
λj f

2 K
∗
 0

0 2|K|
  . (27)

Inequality (27) is equivalent to

‖f(H)‖≤
1
2

(‖f(2M⊕ 2N)‖ +‖f(2|K|⊕ 2|K|)‖). (28)

Tis completes the proof. □

Example 5. Let H �

2 1 1 −1
1 4 −1 1
1 −1 2 0

−1 1 0 4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
with M �

2 1
1 4 ,

N �
2 0
0 4 , K �

1 −1
−1 1 , and f(x) � x1/5. As we see, f

is concave. By computation,



4

j�1
λj(f(H)) ≈ 4.6056,


4

j�1
λj(f(2M⊕ 2N)) ≈ 5.6408,



4

j�1
λj(f(2|K| ⊕ 2|K|)) ≈ 2.6390.

(29)

Hence,

‖f(H)‖>
1
2

(‖f(2M⊕ 2N)‖ +‖f(2|K|⊕ 2|K|)‖), (30)

for the trace norm, which shows that inequality (6) is not
always true if f is not a convex function.
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