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Tülay Erişir
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Spinors can be expressed as Lie algebra of infnitesimal rotations. Spinors are also defned as elements of a vector space which
carries a linear representation of the Cliford algebra typically. Te motivation for this study is to defne a new and particular
sequence. An essential feature of this sequence is that while a generalization is being made, spinors, which have a lot of use in
physics, are used. Tis new sequence defned using spinor representations is called the Horadam spinor sequence; formulas such
as the Binet formula, generating function formula, and Cassini formula are given. Te Horadam spinors given in this study are
a generalization of the spinor representations of Horadam quaternion sequences.

1. Introduction

Number sequences are quite remarkable in mathematics.
Te frst number sequence that comes to mind is the number
sequences obtained by Leonardo Fibonacci (1170–1250).
Tere are many number sequences similar to Fibonacci
number sequence written after the second term as the sum of
the two preceding terms but defned by diferent initial
values. Some of them, such as Lucas, Pell, modifed Pell,
Pell–Lucas, Jacobsthal, and Jacobsthal–Lucas numbers, were
defned with diferent initial values [1–8]. Fibonacci and
Lucas number sequences, which have found themselves in
many felds from the past to the present, have been also
associated with polynomials and quaternions. Te associa-
tion with polynomials was frst given by Belgian mathe-
matician Catalan and German mathematician Jacobsthal in
1883. In [4], the frst example of this is the quaternions
whose coefcients were formed by the terms of the Fibonacci
number sequence. Te same author also examined quater-
nion recurrence relations [5]. Today, many studies have been
carried out on the generalizations of number sequences. On
the other hand, in the studies [9, 10], besides Fibonacci and
Lucas number sequences, there were quaternion sequences
formed by taking coefcients from diferent number se-
quences. Iyer [11] also studied the relationship between
Fibonacci and generalized Fibonacci quaternions. Also, the

same author conducted studies on the relationship between
Fibonacci and Lucas quaternions in [12]. In [13], Halıcı
expressed the Fibonacci and Lucas quaternions. In addition
to that, in [14], Polatlı studied on a new generalization of
Fibonacci and Lucas quaternions and gave the sum formulas
for these new generalized quaternions. Horadam number
sequence was defned by Horadam [4]. Ten, Haukkanen
gave information about linear compositions and generator
functions of Horadam sequences in [15]. Moreover, in
[16, 17], the new families of Horadam numbers were given.
Çimen and İpek introduced a new quaternion sequence, Pell
and Pell–Lucas quaternions in [18]. In [19], Flaut and
Shpakivskyi studied generalized Fibonacci and Fibo-
nacci–Narayana quaternions. After that, Polatlı and Kesim
obtained binomial sum formulas by using Binet formulas in
their studies [20]. Halıcı gave the complex Fibonacci qua-
ternions in [21]. Halıcı and Karataş [22] introduced Hor-
adam quaternions, which are a generalization of previously
defned quaternion sequences. In the same study, they were
interested in the Binet formula, Cassini identity, sum for-
mulas, and norm value of this quaternion sequence. In [23],
the Fibonacci generalized quaternions were obtained.

Spinors can be defned, with a simple defnition, as
vectors of a space whose transformations are related in
a particular way to rotations in physical space. Cartan was
the frst to introduce spinors in geometric meaning [24].
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Cartan’s study [24] is a remarkable reference to the geometry
of spinors because it gave spinor representations of the most
basic geometric expressions. Another important study
giving spinor representation of motion geometry was given
by Vivarelli [25]. In Vivarelli’s study [25], a relationship
between quaternions and spinors was introduced, and by
considering the relationship between quaternions and ro-
tations in 3-dimensional Euclidean space, the spinor rep-
resentations of these 3-dimensional rotations were obtained.
In a study of Del Castillo and Barrales, the spinor repre-
sentation of curve theory was expressed [26]. Also, in this
study, the spinor formulations of Frenet frame and curva-
tures of a curve in 3-dimensional Euclidean space were given
[26]. On the other hand, Kişi and Tosun gave the spinor
representation of the Darboux frame in 3-dimensional
Euclidean space [27]. In addition, in [28], the spinor
equations of the Bishop frame of curves in 3-dimensional
Euclidean space were expressed. Ten, the hyperbolic
spinors were introduced and the hyperbolic spinor repre-
sentation of a given curve in Minkowski space was expressed
[29]. Terefore, many studies for hyperbolic spinors were
obtained [30–32]. In addition to these studies, Erişir and
Güngör defned Fibonacci spinors, which are spinor rep-
resentations of Fibonacci and Lucas quaternion sequences
[33]. In addition, spinor expressions of Pell and Pell–Lucas
quaternions were given in [34]. Apart from these, Jacobsthal
spinors were expressed in [35]. Horadam spinors given in
this study are a generalization of the spinor representations
of all these quaternion sequences.

2. Preliminaries

In this section, the spinors, the relationship between the real
quaternions and spinors, and the Horadam quaternions are
introduced.

Now, the spinors given by Cartan [24] are given in
geometric meaning. Let any isotropic vector be v � (v1,

v2, v3) ∈ C3, and the three-dimensional complex vector
space is C3, where v1

2 + v2
2 + v3

2 � 0. Terefore, the set of
isotropic vectors in the complex vector space C3 forms
a two-dimensional surface in the complex space C2. Let this
two-dimensional surface be any surface parameterized by
coordinates η1 and η2, then v1 � η12 − η22, v2 � i(η12 + η22),
and v3 � − 2η1η2 are obtained. Moreover, equations η1 �

±
��������
v1 − iv2/2


and η2 � ±

���������
− v1 − iv2/2


are satisfed. Tere-

fore, it is known that every isotropic vector in C3 corre-
sponds to two vectors, (η1, η2) and (− η1, − η2) ∈ C2. On the
other hand, these vectors correspond to the same isotropic
vector v. Two-dimensional complex vectors mentioned
above are called as spinor by Cartan such that

η � η1, η2(  �
η1
η2

 , (1)

in spinor space S [24].
Let any real quaternion be q � q0 + iq1 + jq2 + kq3,

where q0, q1, q2, q3 ∈ R. 1, i, j, k  is called the quaternion
basis such that

i2 � j2 � k2 � − 1, ij � − ji � k, jk � − kj � i, ki � − ik � j,
(2)

as given in [36]. q0 � Sq and Vq � iq1 + jq2 + kq3 are called
scalar and vector parts of the real quaternion q, respectively.
Tis real quaternion can be written as q � Sq + Vq [36]. In
addition to that, suppose that two any real quaternion
p � Sp + Vp, q � Sq + Vq. Hence, the quaternion product of
these quaternions is as follows:

p × q � SpSq − 〈Vp,Vq〉 + SpVq + SqVp + Vp ∧Vq, (3)

where 〈, 〉 is the inner product and ∧ is the vector product in
R3 [36]. It is known that the product of two real quaternions
is noncommutative. On the other hand, the quaternion
conjugate and the norm of the real quaternion q are defned
as q∗ � Sq − Vq and

N(q) �

�����������������

q1
2

+ q2
2

+ q3
2

+ q4
2



. (4)

Let the norm of q be N(q) � 1; therefore, q is defned as
unit quaternion [36].

Vivarelli gave a relationship between quaternions and
spinors such that

f: H;⟶ S

q;⟶ f q0 + iq1 + jq2 + kq3(  �
q3 + iq0
q1 + iq2

  ≡ η,

(5)

where q � q0 + iq1 + jq2 + kq3 is any real quaternion [25].
Moreover, Vivarelli expressed a spinor representation of the
quaternion product q × p such that

q × p⟶ − iηρ, (6)

where the spinor ρ corresponds to the quaternion p with the
aid of the transformationf in equation (5), and the complex,
unitary, square matrix η can be written as follows:

η̂ �
q3 + iq0 q1 − iq2
q1 + iq2 − q3 + iq0

 , (7)

as given in [25]. Moreover, the spinor matrix ηL � − iη,
namely,

ηL �
q0 − iq3 − q2 − iq1
q2 − iq1 q0 + iq3

 , (8)

was called the left Hamilton spinor matrix or fundamental
spinor matrix of the real quaternion q [37].

Now, the some equalities about the Horadam quater-
nions given in [22] can be obtained.

For n≥ 2, the nth Horadam quaternion is defned as

Qw,n � Wn + iWn+1 + jWn+2 + kWn+3, (9)
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where the nth Horadam number Wn � Wn(a, b; p, q) �

pWn− 1 + qWn− 2 and W0 � a and W1 � b. Terefore, the
recurrence relation of the Horadam quaternions is as
follows:

Qw,n � pQw,n− 1 + qQw,n− 2, (10)

with initial conditions

Qw,0 � a + ib + j(pb + qa) + k p
2
b + pqa + qb ,

Qw,1; � b + i(pb + qa) + j p
2
b + pqa + qb  + k p

3
b + p

2
qa + 2pqb + q

2
a ,

(11)

as given in [22]. Moreover, Binet’s formula for the Horadam
quaternions is given as follows:

Qw,n �
1

α − β
A α

�
αn

− B β
�

βn
 , (12)

where the quaternions α
�
and β

�

are α
�

� 1 + iα + jα2 + kα3 and

β
�

� 1 + iβ + jβ2 + kβ3, and α � (p +
������
p2 + 4q


/2) and β �

(p −
������
p2 + 4q


/2) are roots of the characteristic equation

x2  − px − q � 0, and A � b − aβ and B � b − aα [22]. On
the other hand, the generating function of the Horadam
quaternions is found such that

g(t) �
Qw,0 + Qw,1 − pQw,0 t

1 − pt − qt
2 , (13)

and the Cassini formula for the Horadam quaternions is
obtained as follows:

Qw,n− 1Qw,n+1 − Q
2
w,n �

ABαn− 1βn− 1

α − β
β α

�
β
�

− α β
�

α
�

 , (14)

as given in [22]. Consequently, the sum formula of the
Horadam quaternions is given by the following equation:



n

k�0
Qw,k �

1
α − β

B β
�

βn+1

1 − β
−

A α
�
αn+1

1 − α
⎛⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎠ + K, (15)

where

K �
(a + b − pa) + i(b + qa) + j(pb + qa + qb) + k p

2
+ q b + pq(a + b) + q

2
a 

(1 − p − q)
, (16)

as given in [22].

3. Main Theorems and Proofs

It is known that there is a spinor for every real quaternion by
means of the transformation f in equation (5).With the help
of this information in this study, a new transformation
between Horadam quaternions and spinors is defned and
the spinors corresponding to Horadam quaternions are
given. Terefore, these spinors associated with Horadam
quaternions are called as Horadam spinors. Ten, some

formulas, such as Binet, Cassini, sum formulas, and gen-
erating functions for Horadam spinors and theorems,
are given.

Defnition 1. Let Qw,n � Wn + iWn+1 + jWn+2 + kWn+3 be
nth Horadam quaternion, where Wn is nth Horadam
number and the set of Horadam quaternions be Qw.
Terefore, considering the linear transformation between
the spinors and quaternions in equation (5) the following
linear transformation:

fw: Qw⟶ S,

Qw,n⟶ fw Wn + iWn+1 + jWn+2 + kWn+3(  � Sw,n �
Wn+3 + iWn

Wn+1 + iWn+2
 ,

(17)

can be defned, where i, j, k coincide with basis vectors given
for Horadam quaternions and i2 � − 1. Terefore, a new
sequence for the spinors related with Horadam quaternions

is introduced, and this sequence is called as “Horadam
spinor sequence.” Te set of this Horadam spinor sequence
is defned as follows:
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Sw,n 
∞
n ∈ N �

p
2
b + pqa + qb  + ia

b + i(pb + qa)
⎡⎣ ⎤⎦,

p
3
b + p

2
qa + 2pqb + q

2
a  + ib

(pb + qa) + i p
2
b + pqa + qb 

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦, . . . . . . ,
Wn+3 + iWn

Wn+1 + iWn+2
 , . . . . . .

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
, (18)

where Sw,n �
Wn+3 + iWn

Wn+1 + iWn+2
  is nth Horadam spinor and

Wn is nth Horadam number.

Now, the recurrence relation of Horadam spinor se-
quence with the following equations can be obtained.

Let the (n)th and (n + 1)th Horadam spinors be Sw,n and
Sw,n+1, respectively. In this case, for the Horadam spinor
pSw,n+1 + qSw,n, the following equation can be written:

pSw,n+1 + qSw,n � p
Wn+4 + iWn+1

Wn+2 + iWn+3
  + q

Wn+3 + iWn

Wn+1 + iWn+2
 

�
pWn+4 + qWn+3 + i pWn+1 + qWn( 

pWn+2 + qWn+1 + i pWn+3 + qWn+2( 
 .

(19)

It is known that the recurrence relation of the Horadam
number sequence is Wn � pWn− 1 + qWn− 2, where n≥ 2 and
with initial conditionsW0 � a, W1 � b.Terefore, the equation

pSw,n+1 + qSw,n �
Wn+5 + iWn+2

Wn+3 + iWn+4
  � Sw,n+2, (20)

is obtained, and there is the recurrence relation Sw,n+2 �

pSw,n+1 + qSw,n for the Horadam spinors, where considering
the transformation fw in equation (17), the initial condition
for n � 0 is as follows:

Sw,0 �
p
2
b + pqa + qb  + ia

b + i(pb + qa)
⎡⎣ ⎤⎦, (21)

and the initial condition for n � 1 is as follows:

Sw,1 �
p
3
b + p

2
qa + 2pqb + q

2
a  + ib

(pb + qa) + i p
2
b + pqa + qb 

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦. (22)

Consequently, we can give the following defnition.

Defnition 2. Assume that n≥ 0 and n ∈ Z and the (n + 1)th,
(n + 2)th Horadam spinors are Sw,n+1 and Sw,n+2, re-
spectively. Ten, the recurrence relation of this Horadam
spinor is as follows:

Sw,n+2 � pSw,n+1 + qSw,n, (23)

with initial conditions

Sw,0 �
p
2
b + pqa + qb  + ia

b + i(pb + qa)
⎡⎣ ⎤⎦,

Sw,1 �
p
3
b + p

2
qa + 2pqb + q

2
a  + ib

(pb + qa) + i p
2
b + pqa + qb 

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦.

(24)

Considering the Horadam spinors, Table 1 can be given.

Proposition 3. Let the nth Horadam spinor Sw,n be the spinor
corresponding to the nth Horadam quaternion Qw,n. In this
case, the Horadam spinor representation of the quaternion
norm is as follows:

N
2

Qw,n  � Sw,n

t
Sw,n. (25)

Proof. Assume that nth Horadam spinor Sw,n corresponds to
the nth Horadam quaternion Qw,n. Terefore, considering
the transformation fw in equation (17), the following
equation can be obtained as:

Sw,n

t
Sw,n � Wn+3 − iWn Wn+1 − iWn+2 

Wn+3 + iWn

Wn+1 + iWn+2
  � Wn

2
+ Wn+1

2
+ Wn+2

2
+ Wn+3

2
. (26)

Consequently, it can be said that the Horadam spinor
representation Sw,n

t
Sw,n gives the norm of the Horadam

quaternions. □

It is known that there is a spinor representation of the
quaternion product given by equation (6). In this case, with
the aid of equations (6) and (8), the following defnition can
be given.

Defnition 4. Assume that Sw,n is the nth Horadam spinor
corresponding to the nth Horadam quaternion Qw,n. Ten,
the fundamental Horadam spinor matrix is as follows:

Sw,n 
L

� − i Sw,n �

Wn − iWn+3 − Wn+2 − iWn+1

Wn+2 − iWn+1 Wn + iWn+3

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦,

(27)
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where Sw,n �
Wn+3 + iWn Wn+1 − iWn+2

Wn+1 + iWn+2 − Wn+3 + iWn

 . At the same

time, the fundamental Horadam spinor matrix (Sw,n)L

corresponds to the left Hamilton spinor matrix of the nth
Horadam quaternion.

Now, Binet’s formula for the Horadam spinors can be
given with the following theorem.

Theorem 5. Let the nth Horadam spinor be Sw,n. In this case,
Binet’s formula for the Horadam spinors is given by the
following expression:

Sw,n �
1

α − β
Aαn

Sα − Bβn
Sβ , (28)

where α � (p +
������
p2 + 4q


/2), β � (p −

������
p2 + 4q


/2), A � b −

aβ, B � b − aα, Sα �
α3 + i
α + iα2

 , and Sβ �
β3 + i
β + iβ2

 .

Proof. Suppose the nthHoradam spinor be Sw,n. It is known
that for the nth Horadam number, Binet’s formula is Wn �

(Aαn − Bβn/α − β) where α � (p +
������
p2 + 4q


/2), β � (p −

������
p2 + 4q


/2), A � b − aβ, and B � b − aα. Terefore, for the

nth Horadam spinor, the following expression can be given:

Sw,n �
1

α − β

Aαn+3
− Bβn+3

+ i Aαn
− Bβn

( 

Aαn+1
− Bβn+1

+ i Aαn+2
− Bβn+2

 

⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎦. (29)

Consequently, if the necessary arrangements can be
made, it can obtain the following equation:

Sw,n �

Wn+3 + iWn

Wn+1 + iWn+2

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ �
1

α − β
Aαn

α3 + i

α + iα2
⎡⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎦ − Bβn
β3 + i

β + iβ2
⎡⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎦⎛⎜⎝ ⎞⎟⎠, (30)

or

Sw,n �
1

α − β
Aαn

Sα − Bβn
Sβ , (31)

where Sα �
α3 + i
α + iα2

  and Sβ �
β3 + i
β + iβ2

  are the spinors

corresponding to the quaternions α � 1 + iα + jα2 + kα3 and
β � 1 + iβ + jβ2 + kβ3, respectively. □

Especially, for Fibonacci spinors as a � 0, b � 1, p � 1,

q � 1, we can calculate A � b − aβ � 1 and B � b − aα � 1,
where α � (1 +

�
5

√
/2) and β � (1 −

�
5

√
/2). Terefore, the

Binet formula in equation (28) for Horadam spinors cor-
responds to the Binet formula for Fibonacci spinors in [33].
Moreover, for Lucas spinors as a � 2, b � 1, p � 1, q � 1, we
can calculate A �

�
5

√
and B � −

�
5

√
and this Binet formula

pairs with in [33]. Similarly, for Pell spinors as a � 0, b � 1,

p � 2, q � 1, the equalities A � 1 and B � 1 and the Binet
formula for Pell spinors are obtained in [34]; for Pell–Lucas
spinors as a � 2, b � 2, p � 2, q � 1, the equalities A � 2

�
2

√

and B � − 2
�
2

√
and the Binet formula for Pell–Lucas spinors

are obtained in [34]; for Jacobsthal spinors as a � 0, b � 1,

p � 1, q � 2, the equalities A � 1 and B � 1 and the Binet
formula for Jacobsthal spinors are obtained in [35]; and
fnally, for Jacobsthal–Lucas spinors as a � 2, b � 1, p � 1,

q � 2, the equalities A � 3 and B � − 3 and the Binet formula
for Jacobsthal–Lucas spinors are obtained in [35].

Theorem 6. Te generating function for the nth Horadam
spinor is obtained by the following expression:

Gs(t) �
1

1 − pt − qt
2 Sw,0 + t Sw,1 − pSw,0  , (32)

where

Sw,0 �
p
2
b + pqa + qb  + ia

b + i(pb + qa)
⎡⎣ ⎤⎦,

Sw,1 �
p
3
b + p

2
qa + 2pqb + q

2
a  + ib

(pb + qa) + i p
2
b + pqa + qb 

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦.

(33)

Proof. Assume that Sw,n is the nth Horadam spinor and the
generating function of the Horadam spinors is Gs(t).
Terefore, if the generating function formula Gs(t) �


∞
n�0t

nSw,n is used, it can obtain the generating formula for
the Horadam spinors as follows. First, the functions − pt

Gs(t) and − qt2Gs(t) are calculated. Terefore, the following
equation is found:

Gs(t) − ptGs(t) − qt
2
Gs(t) � Sw,0 + tSw,1 − ptSw,0, (34)

with the aid of the recurrence relation of Horadam spinor
sequence in equation (23). Consequently, for the Horadam
spinors, the generating function is obtained as follows:

Table 1: Horadam spinors according to initial values.

Horadam spinors Initial conditions (a, b; p, q)

Fibonacci spinors (0, 1; 1, 1) [33]
Lucas spinors (2, 1; 1, 1) [33]
Pell spinors (0, 1; 2, 1) [34]
Pell–Lucas spinors (2, 2; 2, 1) [34]
Jacobsthal spinors (0, 1; 1, 2) [35]
Jacobsthal–Lucas spinors (2, 1; 1, 2) [35]
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Gs(t) �
1

1 − pt − qt
2 Sw,0 + t Sw,1 − pSw,0  . (35)

In addition to Teorem 6, if the Horadam spinors Sw,0 +

tSw,1 − ptSw,0 are calculated, the following corollary can be
given as a result of Teorem 6. □

Corollary  . Te generating function for nth Horadam
spinor can be written as

Gs(t) �
1

1 − pt − qt
2

p
2
b + pqa + qb + t pqb − q

2
a  + i(a + t(b − pa))

b + tqa + i(pb + qa + tqb)

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦. (36)

Theorem 8. Assume that m, n ∈ Z and the (n + m)th

Horadam spinor is Sw,n+m. In this case, the generating
function for (n + m)th Horadam spinor is given by the fol-
lowing expression:

Gs(t) �
1

1 − pt − qt
2 Sw,m + qtSw,m− 1 . (37)

Proof. Let Sw,n+m be the (n + m)th Horadam spinor. It is
known that with the aid of equation (28), Binet’s formula for
the (n + m)th Horadam spinor Sw,n+m is as follows:

Sw,n+m �
1

α − β
Aαn+m

α3 + i

α + iα2
⎡⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎦ − Bβn+m
β3 + i

β + iβ2
⎡⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎦⎛⎜⎝ ⎞⎟⎠.

(38)

Terefore, if the generating function formula Gs(t) �


∞
n�0t

nSw,n+m is used for the (n + m)th Horadam spinor
Sw,n+m, the following equation:

Gs(t) �
1

α − β
Aαm



∞

n�0
αn

t
n

α3 + i,

α + iα2
⎡⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎦ − Bβm


∞

n�0
βn

t
n

β3 + i,

β + iβ2
⎡⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎦⎛⎜⎝ ⎞⎟⎠, (39)

is calculated. Now, assume that f(t) � 
∞
n�0α

ntn and g(t) �


∞
n�0β

ntn. In this case, one can see that f(t) � (1/1 − αt) and
g(t) � (1/1 − βt). Ten, the following equation can be
obtained:

Gs(t) �
1

(α − β)(1 − αt)(1 − βt)
Aαm

(1 − βt)
α3 + i

α + iα2
⎡⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎦ − Bβm
(1 − αt)

β3 + i

β + iβ2
⎡⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎦⎛⎜⎝ ⎞⎟⎠. (40)

If the necessary arrangements in the last equation are
made consequently, the following equation is obtained:

Gs(t) �
1

1 − pt − qt
2 Sw,m + qtSw,m− 1 , (41)

or

Gs(t) �
1

1 − pt − qt
2

Wm+3 + qtWm+2 + i Wm + qtWm− 1( 

Wm+1 + qtWm + i Wm+2 + qtWm+1( 

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦. (42)

□

Now, the Cassini formula for the Horadam spinors is
given. For this, it is useful to remember one subject frst.Tat

is to say that the product of two real quaternions q × p is
represented by the spinor product ηLρ, where ηL is the
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fundamental spinor matrix of the real quaternion q and ρ is
the spinor corresponding to the real quaternion p with the
aid of the transformation f according to equations (7) and
(8). Terefore, for the product of the Horadam quaternions
Qw,n− 1Qw,n+1 − Q2

w,n, the Horadam spinor product (Sw,n− 1)L

Sw,n+1 − (Sw,n)LSw,n should be written (where Qw,n+1Qw,n− 1 −

Q2
w,n can be also chosen). In this case, (Sw,n+1)LSw,n− 1 −

(Sw,n)LSw,n should be calculated. Terefore, the Cassini
formula for the Horadam spinors can be given.

Theorem 9. Let the nth Horadam spinor be Sw,n. In this case,
the spinor representation of the Cassini formula for Horadam
spinors is as follows:

Sw,n− 1 
L
Sw,n+1 − Sw,n 

L
Sw,n � − AB(− q)

n− 1
p p

2
+ 2q  + i q

3
− q

2
+ q + 1 

p 1 + q
2

  + i p
2

+ q (1 + q) − q
2

+ q 

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦, (43)

where α � (p +
������
p2 + 4q


/2), β � (p −

������
p2 + 4q


/2), A �

b − aβ, and B � b − aα.

Proof. Let the (n − 1)th, (n)th, and (n + 1)th Horadam
spinors be Sw,n− 1, Sw,n, and Sw,n+1, respectively. In this case, it
can be written as the product of these Horadam spinors
(Sw,n− 1)LSw,n+1 − (Sw,n)LSw,n corresponding to the product of
Horadam quaternions Qw,n− 1Qw,n+1 − Q2

w,n. Hence, with the
aid of Binet’s formula in equation (28), the fundamental
Horadam spinor matrices

Sw,n 
L

�
1

α − β
Aαn

Sα( L − Bβn
Sβ 

L
 ,

Sw,n− 1 
L

�
1

α − β
Aαn− 1

Sα( L − Bβn− 1
Sβ 

L
 ,

(44)

are obtained with the aid of equation (27), where

Sα �
α3 + i

α + iα2
⎡⎣ ⎤⎦, Sβ �

β3 + i

β + iβ2
⎡⎣ ⎤⎦, Sα( L �

1 − iα3 − α2 − iα

α2 − iα 1 + iα3
⎡⎣ ⎤⎦,

Sβ 
L

�
1 − iβ3 − β2 − iβ

β2 − iβ 1 + iβ3
⎡⎣ ⎤⎦.

(45)

If the long algebraic calculations are made in the
products of the Horadam spinors, (Sw,n− 1)LSw,n+1 − (Sw,n)L

Sw,n can be obtained as follows:

Sw,n− 1 
L
Sw,n+1 − Sw,n 

L
Sw,n

�
AB

(α − β)
2(αβ)

n− 1 αβ − β2  Sα( LSβ + αβ − α2  Sβ 
L
Sα 

�
AB

α − β
(− q)

n− 1 β Sα( LSβ − α Sβ 
L
Sα ,

(46)

and consequently,

Sw,n− 1 
L
Sw,n+1 − Sw,n 

L
Sw,n � − AB(− q)

n− 1
p p

2
+ 2q  + i q

3
− q

2
+ q + 1 

p 1 + q
2

  + i p
2

+ q (1 + q) − q
2

+ q 

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦, (47)
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where α � (p +
������
p2 + 4q


/2), β � (p −

������
p2 + 4q


/2),A � b −

aβ, and B � b − aα. □

Theorem 10. Assume that the nth Horadam spinor is Sw,n.
Terefore, the sum formula of the Horadam spinors is as
follows:



n

k�0
Sw,k �

1
p + q − 1

Sw,n+1 − Sw,0 + q Sw,n − Sw,− 1  . (48)

Proof. Let Sw,n be the nth Horadam spinor. Hence, with the
aid of Binet’s formula, the sum formula of the Horadam
spinors can be written as follows:



n

k�0
Sw,k � 

n

k�0

1
α − β

  Aαk
α3 + i

α + iα2
⎡⎢⎢⎣ ⎤⎥⎥⎦ − Bβk

β3 + i

β + iβ2
⎡⎢⎢⎣ ⎤⎥⎥⎦⎛⎝ ⎞⎠.

(49)

It is known as the geometric sequences 
n
k�0α

k � (1 −

αn+1)/(1 − α) and 
n
k�0β

k � (1 − βn+1)/(1 − β). In this case,
the following equation is obtained:



n

k�0
Sw,k �

1
α − β

A 1 − αn+1
 

1 − α
α3 + i

α + iα2
⎡⎢⎢⎣ ⎤⎥⎥⎦ −

B 1 − βn+1
 

1 − β
β3 + i

β + iβ2
⎡⎢⎢⎣ ⎤⎥⎥⎦⎛⎝ ⎞⎠. (50)

Consequently, if some necessary arrangements in the last
equation are made, it is obtained as follows:



n

k�0
Sw,k �

1
(1 − α)(1 − β)

(1 − p)Sw,0 + Sw,1 +(p − 1)Sw,n+1 − Sw,n+2 ,



n

k�0
Sw,k �

1
p + q − 1

Sw,n+1 − Sw,0 + q Sw,n − Sw,− 1  .

(51)

Te proof is completed. □

4. Conclusion

Te concept of spinors, which is frequently encountered in
physics, is defned as the elements of a minimal left ideal of
Cliford algebra. Tis left ideal is called spinor space. Inner
products can be defned on minimal left ideals by also making
use of minimal right ideal representations. Cliford algebras
can be constructed over any number feld. Among these, the
complex number feld is important. Te aim of this study is to
connect the spinor structure, which is frequently used in
physics and algebra, with quaternions used in geometry and
algebra. In this context, the counterparts of quaternions in
spinor space have an important place. Terefore, in this study,
the counterparts of Horadam quaternions, which are a gen-
eralization of quaternion sequences, in spinor space are in-
vestigated. With this matching, the importance of this study is
that Horadam spinors given in this study are a generalization
of the spinor representations of all these quaternion sequences.
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(k,t)-Horadam numbers,” Asian-European Journal of Math-
ematics, vol. 15, no. 12, Article ID 22502254, 2022.
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[35] T. Erişir and M. A. Güngör, “On new spinor sequence of
Jacobsthal quaternions,” In Review, 2023.

[36] H. H. Hacisalihoglu, Geometry of Motion and Teory of
Quaternions, Science and Art Faculty of Gazi University Press,
Ankara, Turkey, 1983.
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