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In the feld of chemical data modeling, it is common to encounter response variables that are constrained to the interval (0, 1). In
such cases, the beta regressionmodel is often amore suitable choice for modeling. However, like any regressionmodel, collinearity
can present a signifcant challenge. To address this issue, the Liu-type estimator has been used as an alternative to the maximum
likelihood estimator, but it sufers from bias. In this paper, we introduce the Jackknifed Liu-type estimator and its modifed
version, which demonstrate improved bias reduction compared to the original Liu-type estimator. We assess the theoretical and
numerical performance of these estimators through Monte Carlo simulations and real-data examples from the feld of chemistry.
Our fndings highlight the signifcant improvements ofered by the proposed estimators in terms of accuracy and reliability.

1. Introduction

Regression models are widely employed in various felds,
including chemometrics, for modeling data (see [1–4], for
example). Diferent types of regression models, such as
linear, generalized linear, nonlinear, and nonparametric
regression models, have been introduced. However,
selecting the appropriate model is crucial to obtain reliable
and precise results. Te nature and distribution of the re-
sponse variable should be carefully considered when
choosing a regression model.

In certain areas of research, the possible values of the
response variable are limited to the interval (0, 1), such as
rates and proportions. To address this, the beta regression
model (BRM) was introduced by Ferrari and Cribari-Neto
[5]. However, the quality of parameter estimation has
a signifcant impact on the use of BRMs. Te maximum
likelihood estimation (MLE) is commonly used for pa-
rameter estimation in BRMs, but if the independent vari-
ables are ill-conditioned, the results may be unsatisfactory.
Te variable selection methods, such as adjusted R2 [6] or
the swarm optimization method [7], can help to deal with

this issue. However, this issue often necessitates the use of
biased estimators, such as Stein-type estimators [8], ridge
estimators [9, 10], modifed ridge-type estimators [11], Liu
estimators [12, 13], two-parameter estimators [14], Dawoud-
Kibria estimators [15], and also Liu-type estimators [16, 17]
which is of particular interest in this paper. Furthermore,
there has been recent interest in a class of almost unbiased
estimators for parameter estimation in regression models
based on biased estimators. Notable examples of these es-
timators include the work of Ohtani [18], Amin et al. [19],
Wu and Asar [20, 21], Varathan and Wijekoon [22], and
Asar and Korkmaz [23]. On the other hand, the Jackknife
approach has emerged as a viable method for reducing
estimator bias. Te Jackknife approach was initially de-
veloped by Quenouille [9] and Tukey [24] to signifcantly
reduce the bias of estimators. Singh et al. [25] suggested an
unbiased ridge estimator for linear regression models using
this technique. Later, Batah et al. [26] suggested a modifed
Jackknifed ridge estimator in linear regression models and
demonstrated its superiority over the generalized ridge es-
timator, Jackknifed ridge estimator, and LASSO [27]. In
gamma regression models, Algamal [28, 29] employed the
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Jackknife technique to mitigate the bias of the ridge esti-
mator. Yildiz [30] and Chaubey et al. [31] both presented
Jackknifed Liu-type estimators and conducted theoretical
and numerical analyses to explore their properties. In this
paper, we apply the Jackknife technique to minimize the bias
of the Liu-type estimator in BRMs.

Te paper is organized as follows: Section 2 provides an
overview of the BRM and determines the MLE of the pa-
rameters. In Section 3, the Jackknife procedure is applied to
the Liu-type estimator and its modifed version is in-
troduced. Te properties of the proposed estimators such as
bias, covariance, and the means squared error are de-
termined in Section 4. A theoretical comparison of the

estimators is presented in Section 5, followed by a Monte
Carlo simulation experiment in Section 6 to evaluate their
performance. Section 7 showcases two applications of the
proposed estimator in chemometrics. Finally, Section 8
presents the conclusions of the study.

2. Beta Regression Model

BRMs are commonly employed for analyzing data that is
expressed as proportions and rates, such as migration rates
and unemployment rates. Tese models rely on the fun-
damental assumption that the response variable follows
beta(μτ, (1 − μ)τ); e.g.,

f(y | μ, τ) �
Γ(τ)

Γ(μτ)Γ((1 − μ)τ)
y
μτ− 1

(1 − y)
(1− μ)τ− 1

; 0< μ, y< 1, τ > 0. (1)

Te model, introduced by Ferrari and Cribari-Neto [5],
assumes a constant precision parameter, τ, over observa-
tions. Let y1, y2, . . . , yn represent the response observations
with the density defned in equation (1). Te regression
model can be expressed as follows:

g μi( 􏼁 � xT
i β � ηi; i: 1, 2, . . . , n, (2)

where β � (β0, β1, β2, . . . , βp)T ∈ Rp and xi �

(1, xi1, xi2, . . . , xip)T is the i th observation of the in-
dependent variables and the link function, g(.) which maps
(0,1) into R is a continuous and double diferentiable
function. To derive the MLE of parameters, β, one can use
the iterative re-weighted least-squares algorithm.
Let y∗ � (y∗1 , y∗2 , . . . , y∗n )T, μ∗ � (μ∗1 , μ∗2 , . . . , μ∗n )T,
y∗i � logit(yi), and μ∗i � ψ(μiτ) − ψ((1 − μi)τ), where ψ(.)

denotes the digamma function. Terefore, the MLE in the
BRM will be [9, 10]

􏽢βBMLE � XT 􏽢VX)
− 1XT 􏽢VZ,􏼐 (3)

where
V̂ � diag v̂1, · · · , v̂n􏼐 􏼑,

v̂i � τ ψ′ μ̂iτ􏼐 􏼑 − ψ′ 1 − μ̂i􏼐 􏼑τ􏼐 􏼑􏽮 􏽯
1

g′ μ̂i􏼐 􏼑􏽮 􏽯
2,

Ẑ � XTβ̂ + V̂
− 1 y
∗

− μ∗( 􏼁

g′(μ̂)􏽮 􏽯
2 .

(4)

Te values of 􏽢V and 􏽢Z are evaluated at the fnal iteration.
As n increases, the distribution of 􏽢βBMLE approaches normal
distribution with the mean vector β and covariance matrix
1/τ(XT 􏽢VX)− 1. As a consequence, the scalar mean squared
error (MSE) of 􏽢βBMLE can be represented as

MSE 􏽢βBMLE􏼐 􏼑 �
1
τ
tr C− 1

􏼐 􏼑 �
1
τ

􏽘

p+1

k�1

1
qk

, (5)

where qk is the k th eigenvalue of C � XT 􏽢VX.
It should come as no surprise that the ill-condition of the

matrix XT 􏽢VX negatively impacts both the variance of MLE
and the accuracy of parameter estimates. To overcome this
issue in estimating parameters, Qasim et al. [12] and
Abonazel and Taha [10] proposed the beta ridge estimator
(BRE) as follows:

􏽢βBRE � C + λIp􏼐 􏼑
− 1
C􏽢βBMLE, λ> 0. (6)

Te beta Liu estimator (BLE) is proposed by Karlsson
et al. [32] as

􏽢βBLE � C + Ip􏼐 􏼑
− 1

C + dIp􏼐 􏼑􏽢βBMLE, 0<d< 1, (7)

and also, the beta Liu-type estimator (BLTE) is proposed by
Algamal and Abonazel [16] as

􏽢βBLTE � C + λIp􏼐 􏼑
− 1

C − dIp􏼐 􏼑C− 1XT 􏽢VZ

� C + λIp􏼐 􏼑
− 1

C − dIp􏼐 􏼑􏽢βBMLE

� Ip − (λ + d) C + λIp􏼐 􏼑
− 1

􏼔 􏼕􏽢βBMLE,

(8)

where λ > 0 and d ∈ R. Te beta Liu-type estimator (BLTE)
encompasses the beta ridge estimator (BRE) and beta Liu
estimator (BLE) as specifc cases. Algamal and Abonazel [16]
demonstrated that the BLTE outperforms both of these
estimators.

3. Suggested Estimators

Te bias of BLTE is given by

B 􏽢βBLTE􏼐 􏼑 � E 􏽢βBLTE􏼐 􏼑 − β

� C + λIp􏼐 􏼑
− 1

C − dIp􏼐 􏼑β − β

� − (d + λ) C + λIp􏼐 􏼑
− 1
β.

(9)

2 Journal of Mathematics



Te substantial bias exhibited by the BLTE is an un-
desirable characteristic for researchers. To mitigate this bias,
the Jackknife approach was developed by Quenouille [9] and
Tukey [24] to signifcantly reduce the bias of estimators. In
this section, we will follow the approach of Singh et al. [25]
and Batah et al. [26] to derive the Jackknifed form of the
BLTE. In addition, we present a modifed version of this
estimator. If we delete the j th observation, (xj, yj), from the
data then

􏽢βBLTE(− j) � C(− j) + λIp􏼐 􏼑
− 1

C(− j) − dIp􏼐 􏼑􏽢βBMLE(− j)
. (10)

After some algebraic manipulations, we have

􏽢βBLTE(− j) � M − xjV̂jx
T
j􏽨 􏽩

− 1
XTV̂Z − xT

j V̂jzj􏼐 􏼑, (11)

where

M
− 1

� C + λIp􏼐 􏼑
− 1

C − dIp􏼐 􏼑C− 1
. (12)

Tus,

􏽢βBLTE(− j) � M
− 1

+
M

− 1xj
􏽢Vjx

T
j M

− 1

1 − xT
j M

− 1 􏽢Vjxj

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ XT 􏽢VZ − xT
j

􏽢Vjzj􏼐 􏼑

� M
− 1XT 􏽢VZ − M

− 1xj
􏽢Vjzj 1 +

xjM
− 1 􏽢Vjx

T
j

1 − xT
j M

− 1 􏽢Vjxj

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

+
M

− 1xj
􏽢Vjx

T
j M

− 1

1 − xT
j M

− 1 􏽢Vjxj

M
− 1XT 􏽢VZ

� 􏽢βBLTE −
xjM

− 1 􏽢Vjx
T
j

1 − xT
j M

− 1 􏽢Vjxj

+
M

− 1xj
􏽢Vjx

T
j M

− 1

1 − xT
j M

− 1 􏽢Vjxj

􏽢βBLTE

� 􏽢βBLTE −
M

− 1xj
􏽢Vjej

1 − wj

,

(13)

where ej � zj − xT
j

􏽢βBLTE and wj � 1 − xT
j M

− 1 􏽢Vjxj. We
consider weighted pseudovalues in the weighted Jackknife
method as

uj � 􏽢βBLTE + n 1 − wj􏼐 􏼑 􏽢βBLTE − 􏽢βBLTE(− j)􏽨 􏽩. (14)

Terefore, the weighted Jackknifed estimator will be

􏽢βBJLTE �
1
n

􏽘

n

j�1
uj � 􏽢βBLTE + M

− 1
􏽘

n

j�1
xj

􏽢Vjej, (15)

and

􏽘

n

j�1
xj

􏽢Vjej � 􏽘
n

j�1
xj

􏽢Vj zj − xT
j

􏽢βBLTE􏽨 􏽩

� 􏽘
n

j�1
xj

􏽢Vjzj − 􏽘
n

j�1
xj

􏽢Vjx
T
j

􏽢βBLTE

� XT 􏽢VZ − C􏽢βBLTE.

(16)

By replacing (16) in (15), the beta Jackknifed Liu-type
estimator (BJLTE) is given by

β̂BJLTE � β̂BLTE + M
− 1XTV̂Z − M

− 1Cβ̂BLTE

� 2Ip − M
− 1C􏽨 􏽩β̂BLTE

� 2Ip − C + λIp􏼐 􏼑
− 1

C − dIp􏼐 􏼑􏼔 􏼕β̂BLTE

� Ip − (λ + d)
2 C + λIp􏼐 􏼑

− 2
􏼔 􏼕β̂BMLE.

(17)

We also defne a modifed version of the BJLTE which is
obtained by replacing 􏽢βBLTE instead of 􏽢βBMLE, that is

β̂BMJLTE � Ip − (λ + d)
2 C + λIp􏼐 􏼑

− 2
􏼔 􏼕β̂BLTE

� Ip − (λ + d)
2 C + λIp􏼐 􏼑

− 2
􏼔 􏼕 Ip − (λ + d) C + λIp􏼐 􏼑

− 1
􏼔 􏼕β̂BMLE.

(18)

4. Properties of the Estimators

To simplify the analysis and understand the properties of the
estimators, we derive their canonical form. Consider qi for
i � 1,2, . . . , p + 1 as the eigenvalues of matrix C such that
C � ETQE, where Q � diag(q1, q2, . . . , qp+1) and
E � [e1, e2, . . . , ep+1] which the columns are the eigenvector
of C. So, the canonical forms can be used to express in the
terms of U � XE and γ � ETβ. Specifcally, we denote the
canonical form of BMLE as γ̂BMLE.

4.1. Properties of BLTE. Te canonical form of BLTE of γ is
given by

γ̂BLTE � A− 1
λ Q − dIp􏼐 􏼑γ̂BMLE; λ> 0, d ∈ R, (19)

whereAλ � Q + λIp. Te bias and covariance of γ̂BLTE will be

B γ̂BLTE􏼐 􏼑 � − (d + λ)A− 1
λ γ, (20)

Cov γ̂BLTE􏼐 􏼑 �
1
τ
A− 1

λ Q − dIp􏼐 􏼑Q− 1 Q − dIp􏼐 􏼑
T
A− 1

λ . (21)
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Te matrix MSE (MMSE) and scalar MSE (SMSE) are
given, respectively, by

MMSE γ̂BLTE􏼐 􏼑 �
1
τ
A− 1

λ Q − dIp􏼐 􏼑Q− 1 Q − dIp􏼐 􏼑
T
A− 1

λ +(d + λ)
2A− 1

λ γγTA− 1
λ ,

SMSE γ̂BLTE􏼐 􏼑 �
1
τ

􏽘

p+1

i�1

qi − d( 􏼁
2

qi qi + λ( 􏼁
2 +(d + λ)

2
􏽘

p+1

i�1

c
2
i

qi + λ( 􏼁
2.

(22)

4.2. Properties of BJLTE. Te canonical form of BJLTE of γ is
given by

γ̂BJLTE � B2γ̂BMLE; λ> 0, d ∈ R, (23)

where B2 � Ip − (λ + d)2A− 2
λ . Te bias and covariance of

γ̂BJLTE are as follows:

B γ̂BJLTE􏼐 􏼑 � − (d + λ)
2A− 2

λ γ, (24)

Cov γ̂BJLTE􏼐 􏼑 �
1
τ
B2Q

− 1BT
2 . (25)

Te MMSE and SMSE are given, respectively, by

MMSE γ̂BJLTE􏼐 􏼑 �
1
τ
B2Q

− 1BT
2 +(d + λ)

4A− 2
λ γγTA− 2

λ ,

SMSE γ̂BJLTE􏼐 􏼑 �
1
τ

􏽘

p+1

i�1

qi − d( 􏼁
2

qi + d + 2λ( 􏼁
2

qi qi + λ( 􏼁
4 +(d + λ)

4
􏽘

p+1

i�1

c
2
i

qi + λ( 􏼁
4.

(26)

4.3.PropertiesofBMJLTE. Te canonical form of BMJLTE of
γ is given by

γ̂BMJLTE � B2B1γ̂BMLE ; λ> 0, d ∈ R, (27)

where B1 � Ip − (λ + d)A− 1
λ . Te bias and covariance of

γ̂BMJLTE are given by

B γ̂BMJLTE􏼐 􏼑 � − (d + λ)HA− 1
λ γ, (28)

Cov γ̂BMJLTE􏼐 􏼑 �
1
τ
B2B1Q

− 1BT
1B

T
2 , (29)

where H � Ip + (d + λ)A− 1
λ − (d + λ)2A− 2

λ . Te MMSE and
SMSE are given, respectively, by

MMSE γ̂BMJLTE􏼐 􏼑 �
1
τ
B2B1Q

− 1BT
1B

T
2 +(d + λ)

2HA− 1
λ γγTA− 1

λ HT
,

SSMSE γ̂BMJLTE􏼐 􏼑 �
1
τ

􏽘

p+1

i�1

qi − d( 􏼁
4

qi + d + 2λ( 􏼁
2

qi qi + λ( 􏼁
6

+(d + λ)
2

􏽘

p+1

i�1

c
2
i qi + λ( 􏼁

2
+(λ + d) qi − d( 􏼁􏼐 􏼑

2

qi + λ( 􏼁
6 .

(30)

 . Theoretical Comparison of Estimators

In this section, we conduct a theoretical comparison between
the proposed estimators and the BLTE, focusing on the
squared bias (SB) and MMSE. We begin by evaluating the
SB, which is defned as follows:

SB(􏽢β) � [B(􏽢β)]
T
[B(􏽢β)]. (31)

For comparison among the MMSE estimators, we need
the following lemma.

Lemma 1. Let 􏽢βi for i � 1,2 be two estimators of β with the
covariance matrix Cov(􏽢βi) and the bias vector bi, then

MMSE 􏽢β1􏼐 􏼑 − MMSE 􏽢β2􏼐 􏼑 � D + b1b
T
1 − b2b

T
2 > 0, (32)

if and only if

b
T
2 D + b1b

T
1􏽨 􏽩b2 < 1, (33)

where D � Cov(􏽢β1) − Cov(􏽢β2) is a positive defned
matrix [33].
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5.1. Comparison between BLTE and BJLTE

Theorem 2. Te SB of BJLTE is smaller than the SB of BLTE
if

min
1≤ i≤p+1

qi − d( 􏼁 qi + d + 2λ( 􏼁􏼈 􏼉> 0. (34)

Proof. By using (20) and (24), we have

SB γ̂BLTE􏼐 􏼑 − SB γ̂BJLTE􏼐 􏼑 � (d + λ)
2γTA− 2

λ γ − (d + λ)
4γTA− 2

λ γγ

� (d + λ)
2

􏽘

p+1

i�1

c
2
i

qi + λ( 􏼁
2 − (d + λ)

4
􏽘

p+1

i�1

c
2
i

qi + λ( 􏼁
4

� (d + λ)
2

􏽘

p+1

i�1

c
2
i

qi + λ( 􏼁
4 qi + λ( 􏼁

2
− (d + λ)

2
􏼐 􏼑

� (d + λ)
2

􏽘

p+1

i�1

c
2
i

qi + λ( 􏼁
4 qi − d( 􏼁 qi + d + 2λ( 􏼁.

(35)

Tis equation is positive if (qi − d)(qi + d + 2λ)> 0 for
i � 1,2, . . . , p + 1 then the proof is completed. □

Theorem  . When max1≤ i≤p+1 (λ + d)(2qi + d + 3λ)􏼈 􏼉< 0,
the BMJLTE is superior to the BLTE in terms of MMSE if the
following inequality holds.

B γ̂BJLTE􏼐 􏼑
T
D1 + B γ̂BLTE􏼐 􏼑􏽨 􏽩

T
B γ̂BLTE􏼐 􏼑􏽨 􏽩􏼔 􏼕

− 1
B γ̂BJLTE􏼐 􏼑< 1,

(36)

where D1 � Cov(γ̂BLTE) − Cov(γ̂BJLTE).

Proof. By following Lemma 1, it is required to only show
that D1 is a defned positive matrix.

D1 � Cov γ̂BLTE􏼐 􏼑 − Cov γ̂BJLTE􏼐 􏼑

�
1
τ

A− 1
λ Q − dIp􏼐 􏼑Q− 1 Q − dIp􏼐 􏼑

T
A− 1

λ − B2Q
− 1BT

2􏼔 􏼕

�
1
τ
diag

qi − d( 􏼁
2

qi qi + λ( 􏼁
2 −

qi − d( 􏼁
2

qi + d + 2λ( 􏼁
2

qi qi + λ( 􏼁
4

⎛⎝ ⎞⎠

�
1
τ
diag

qi − d( 􏼁
2

qi qi + λ( 􏼁
4 − (d + λ) 2qi + d + 3λ( 􏼁􏼈 􏼉⎛⎝ ⎞⎠.

(37)

Tus, D1 will be positive if (λ + d)(2qi + d + 3λ)< 0, for
i � 1,2, . . . , p + 1. Hence, the proof is completed. □
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5.2. Comparison between BLTE and BMJLTE

Theorem 4. Te SB of BMJLTE is smaller than the SB of
BLTE if for i � 1,2, . . . , p + 1, we have d< − qi − 2λ or
− λ< d< qi or d> 2qi + λ.

Proof. By using (20) and (28), we have

SB γ̂BLTE􏼐 􏼑 − SB γ̂BMJLTE􏼐 􏼑 � (d + λ)
2γTA− 2

λ γ − (d + λ)
2γTA− 1

λ DTDA− 1
λ γ

� (d + λ)
2

􏽘

p+1

i�1

c
2
i

qi + λ( 􏼁
2 − (d + λ)

2
􏽘

p+1

i�1

c
2
i

qi + λ( 􏼁
6 qi + λ( 􏼁

2
+(λ + d) qi − d( 􏼁􏼐 􏼑

2

� (d + λ)
2

􏽘

p+1

i�1

c
2
i

qi + λ( 􏼁
6 qi + λ( 􏼁

4
− qi + λ( 􏼁

2
+(λ + d) qi − d( 􏼁􏼐 􏼑

2
􏼒 􏼓

� (d + λ)
2

􏽘

p+1

i�1

c
2
i

qi + λ( 􏼁
6 2 qi + λ( 􏼁

2
(λ + d) d − qi( 􏼁 − (λ + d)

2
qi + d( 􏼁

2
􏼐 􏼑.

(38)

Tis equation is positive if for i � 1,2, . . . , p + 1, hi(d) �

2(qi + λ)2(λ + d)(d − qi) − (λ + d)2(qi + d)2 be positive.
Tis function has four roots d1 � qi, d2 � − λ, d3 � 2qi + λ,
and d4 � − 2λ − qi. Since − 2λ − qi < − λ< qi < 2qi + λ, the
function hi(d) is positive if d< − qi − 2λ or − λ< d< qi or
d> 2qi + λ for i � 1,2, . . . , p + 1. □

Theorem 5. When d ∈ (λ −
�
2

√
(qi + λ), λ +

�
2

√
(qi + λ)) for

i � 1,2, . . . , p + 1, the BMJLTE superior the BLTE in terms of
MMSE if the following inequality holds

B γ̂BMJLTE􏼐 􏼑
T
D2 + B γ̂BLTE􏼐 􏼑􏽨 􏽩

T
B γ̂BLTE􏼐 􏼑􏽨 􏽩􏼔 􏼕

− 1
B γ̂BMJLTE􏼐 􏼑< 1,

(39)

where D2 � Cov(γ̂BLTE) − Cov(γ̂BMJLTE).

Proof. By following Lemma 1, it is enough to show thatD2 is
a defned positive matrix.

D2 � Cov γ̂BLTE􏼐 􏼑 − Cov γ̂BMJLTE􏼐 􏼑

�
1
τ

A− 1
λ Q − dIp􏼐 􏼑Q− 1 Q − dIp􏼐 􏼑

T
A− 1

λ − B2B1A
− 1
λ BT

1B
T
2􏼔 􏼕

�
1
τ
diag

qi − d( 􏼁
2

qi qi + λ( 􏼁
2 −

qi − d( 􏼁
4

qi + d + 2λ( 􏼁
2

qi qi + λ( 􏼁
6

⎛⎝ ⎞⎠

�
1
τ
diag

qi − d( 􏼁
2

qi qi + λ( 􏼁
6 qi + λ( 􏼁

4
− qi − d( 􏼁

2
qi + d + 2λ( 􏼁

2
􏽮 􏽯⎛⎝ ⎞⎠

�
1
τ
diag

qi − d( 􏼁
2

qi qi + λ( 􏼁
6 − d

2
− 2dλ + λ2 + 2q

2
i + 4λqi􏽮 􏽯⎛⎝ ⎞⎠.

(40)

Tus,D2 will be positive if for i � 1,2, . . . , p + 1, fi(d) �

− d2 − 2dλ + λ2 + 2q2i + 4λqi be positive. Te discrimination
of fi(d) is Δ � 8(qi + λ)2 > 0; therefore, we will have two
following real roots:

d �
2λ ± 2

�
2

√
qi + λ( 􏼁

− 2
� λ ±

�
2

√
qi + λ( 􏼁. (41)

Tus, fi(d) is positive if
λ −

�
2

√
(qi + λ)< d< λ +

�
2

√
(qi + λ) and the proof is

fnished. □

5.3. Bias Parameter Selection. In the following subsection,
we will derive an estimator for the parameter d. In the search
for this estimator, we consider the BJLTE.Terefore, the frst
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derivation of the SMSE of BJLTE with respect to d is cal-
culated as follows:

z

zd
SMSE γ̂BJLTE􏼐 􏼑 �

1
τ

􏽘

p+1

i�1

− 2 qi − d( 􏼁 qi + d + 2λ( 􏼁
2

+ qi − d( 􏼁
2

qi + d + 2λ( 􏼁

qi qi + λ( 􏼁
2

+ 4(d + λ)
3

􏽘

p+1

i�1

c
2
i

qi + λ( 􏼁
4

�
1
τ

􏽘

p+1

i�1

4(d + λ)

qi qi + λ( 􏼁
4 τ (d + λ)

2
qic

2
i − qi − d( 􏼁 qi + d + 2λ( 􏼁􏼐 􏼑.

(42)

Tis equation equals zero if gi(d) �

τ(d + λ)2qic
2
i − (qi − d)(qi + d + 2λ) � 0 which is a qua-

dratic function of d. Tis function leads to the following real
roots:

d � − λ ±
λ + qi( 􏼁

��������

1 + τqic
2
i

􏽱 . (43)

Although there are various estimators for d, we only
recommend and utilize the following estimator in the
simulation study.

dopt � min
1≤ i≤p+1

− λ +
λ + qi( 􏼁

��������

1 + τqic
2
i

􏽱⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠. (44)

6. Simulation Study

In this section, we will evaluate the performance of the
proposed estimators in the BRM through a simulation study.
By considering various values for parameter
(n � 50,100,200), the number of independent variables
(p � 3,6,12), and the precision parameter (τ � 2,4), we will
present multiple potential outcomes that demonstrate the
efcacy of the proposed estimator.

Te n observations of the covariates are generated by

xij �

�����

1 − θ2
􏽱

uij + θuip+1, i � 1,2, · · · , n, j � 1,2, · · · , p,

(45)

where uij are generated from standard normal distribution
and θ is supplied to control the intensity of correlation
among the covariates. Te value of θ is considered to be 0.90,
0.095, and 0.99 to determine how the estimators are afected
by varying degrees of collinearity. Te values of coefcients
are considered as βj � 1/

�����
p + 1

􏽰
such that βTβ � 1. Finally,

the n observations of the response variable in the BRM with

logit link function are generated from the beta distribution,
beta(μiτ, (1 − μi)τ), where

μi � log
e
ηi

1 + e
ηi

􏼠 􏼡; ηi � β0 + β1xi1 + · · · + βpxip,   i � 1,2, · · · , n.

(46)

In order to determine the BLTE, we utilize the estimators
described in [16] for λ and d as follows:

􏽢λ �
qmin
􏽢τc

2
min

,

􏽢d �
􏽐

p+1
j�1 1 − 􏽢τ􏽢λc

2
j/ qj + 􏽢λ􏼐 􏼑

2
􏼒 􏼓

􏽐
p+1
j�1 1 + 􏽢τ􏽢λc

2
j/qj qj + 􏽢λ􏼐 􏼑

2
􏼒 􏼓

,

(47)

where

􏽢τ �
1

n − p − 1
􏽘

n

i�1

yi − 􏽢μi

􏽢μi

⎛⎝ ⎞⎠

2

. (48)

To evaluate the performance of the BJLTE and BMJLTE,
we utilize the same 􏽢λ for both estimators. For the parameter
􏽢d, we employ the estimator provided in equation (44). We
also conclude the BRE and BLE estimators in our simulation
study as well. For the ridge parameter, we use estimator 􏽢λ in
(47) and for the Liu estimator, we use the following esti-
mator proposed by Karlsson et al. [32]:

􏽢d �
􏽐

p+1
j�1 1 − 􏽢τc

2
j/ qj + 1􏼐 􏼑

2
􏼒 􏼓

􏽐
p+1
j�1 1 + 􏽢τc

2
j/qj qj + 1􏼐 􏼑

2
􏼒 􏼓

. (49)

In comparing the performance of the estimators, we
specifcally focus on the simulated MSE in addition to the
squared bias. Terefore, we repeat the experiment
1000 times and calculate the criteria using the following
formulas:
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MSE(􏽢β) �
1

1000
􏽘

1000

m�1

􏽢βm − β􏼐 􏼑
T 􏽢βm − β􏼐 􏼑,

SB(􏽢β) � (􏽢β − β)
T
(􏽢β − β),

(50)

where 􏽢βm is the estimation of β at the m th repetition of

simulation and 􏽢β is the mean of estimated values.
Te MSE and SB of estimators are presented in Tables 1

and 2, respectively. Based on the information provided in the
tables, the following conclusions can be drawn:

(i) Based on Table 1, BMJLTE always outperforms
other estimators in terms of MSE.

(ii) In terms of MSE, BLE is worse than other
estimators.

(iii) Te MSE of BRE is only less than BLE.
(iv) Te BJLTE exhibits better performance than the

BLTE, BLE, and BRE based on the MSE values.

(v) When the intensity of correlation increases, the
MSE for all estimators increases.

(vi) When the dispersion value changes from τ � 2 to
τ � 4, the MSE of all estimators reduces.

(vii) Te MSE of estimators tends to increase as the
number of covariates increases.

(viii) For a fxed value of p, θ, and τ, increasing the
sample size results in a decrease in the MSE for all
estimators.

(ix) Table 2 shows that when p � 3 and 6, the BJLTE
has the lowest SB among the estimators.

(x) However, when p � 12 and there is a high cor-
relation (θ � 0.99), the BMJLTE has the lowest SB
and for θ � 0.90 and 0.95, the BJLTE still performs
better.

(xi) Te BLE has the largest squared bias among the
estimators in all scenarios.

Table 1: MSEs of estimators for diferent values of p, n, τ, and θ.

n θ
τ � 2 τ � 4

BMLE BRE BLE BLTE BJLTE BMJLTE BMLE BRE BLE BLTE BJLTE BMJLTE
p � 3

50
0.90 0.3022 0.3384 0.2923 0.2832 0.2147 0.1103 0.2478 0.2142 0.2319 0.1912 0.1543 0.0798
0.95 0.5794 0.6134 0.5468 0.5350 0.2909 0.1145 0.4436 0.3636 0.3873 0.2865 0.2282 0.0910
0.99 2.2172 2.8775 1.7931 1.7655 1.0641 0.2832 2.0901 1.6876 1.7618 1.2805 0.7917 0.2122

100
0.90 0.1333 0.1465 0.1129 0.0969 0.0917 0.0664 0.1127 0.0983 0.1096 0.0958 0.0865 0.0517
0.95 0.2543 0.2804 0.2127 0.2106 0.1654 0.0745 0.2122 0.1865 0.1975 0.1806 0.1302 0.0587
0.99 1.1973 1.2859 1.0951 0.9460 0.4728 0.1253 0.9914 0.8548 0.9764 0.7054 0.4091 0.1144

200
0.90 0.0893 0.0942 0.0827 0.0782 0.0646 0.0448 0.0525 0.0521 0.0524 0.0520 0.0464 0.0319
0.95 0.1306 0.1405 0.1224 0.1053 0.0994 0.0514 0.0965 0.0888 0.0937 0.0831 0.0712 0.0379
0.99 0.6009 0.6327 0.5507 0.5165 0.2801 0.0838 0.4587 0.3885 0.4271 0.3689 0.2175 0.0672

p � 6

50
0.90 0.8585 0.7101 0.8112 0.6779 0.5602 0.2451 0.6874 0.6137 0.6288 0.5241 0.4639 0.2073
0.95 1.7104 1.1514 1.3928 0.9291 0.9904 0.3846 1.2851 1.0236 1.1967 0.9009 0.7720 0.3015
0.99 8.6889 7.2763 7.4530 6.7188 4.5850 1.6188 5.9755 3.8911 4.5802 3.8891 3.1749 1.1342

100
0.90 0.3986 0.3477 0.3920 0.3255 0.3059 0.1569 0.2873 0.2803 0.2815 0.2742 0.2296 0.1201
0.95 0.7306 0.6585 0.6968 0.5220 0.4874 0.2020 0.5359 0.4857 0.5184 0.4563 0.3746 0.1594
0.99 3.5323 2.6366 2.9676 2.0615 1.8698 0.5925 2.6909 2.0213 2.2174 1.8216 1.4400 0.4598

200
0.90 0.2890 0.2430 0.2748 0.2355 0.1629 0.1024 0.1605 0.1535 0.1598 0.1351 0.1239 0.0772
0.95 0.4578 0.4176 0.4204 0.4034 0.2751 0.1376 0.2846 0.2661 0.2730 0.2548 0.2038 0.1032
0.99 1.5683 1.1589 1.3526 1.1169 0.8971 0.2909 1.2089 1.0617 1.1856 0.8241 0.7236 0.2431

p � 12

50
0.90 2.5243 1.6977 1.9620 1.1786 1.4256 0.9571 1.9009 1.2977 1.6209 0.8938 0.8331 0.4962
0.95 5.0245 4.2807 4.8692 4.0890 3.5342 3.2079 3.6854 2.7807 3.3092 2.4606 2.3068 1.3676
0.99 24.6431 12.8085 19.7217 9.6211 9.1361 8.7632 18.4751 10.9167 16.2137 6.7541 4.1255 2.2051

100
0.90 1.0469 0.8181 0.9835 0.6289 0.4407 0.3488 0.7490 0.6345 0.7184 0.4629 0.7442 0.6787
0.95 1.9974 1.3483 1.6154 0.9259 0.9349 0.6284 1.4818 1.0734 1.2275 0.6999 1.4447 1.2420
0.99 9.9571 5.2884 8.4150 3.7668 3.1380 2.8220 7.2307 4.7531 5.1546 3.5274 2.9461 1.6707

200
0.90 0.4948 0.4095 0.4673 0.3818 0.3940 0.2719 0.3489 0.2745 0.3076 0.2799 0.3484 0.2333
0.95 0.9220 0.8566 0.9074 0.8478 0.6173 0.4505 0.6735 0.4526 0.5647 0.4105 0.3700 0.3224
0.99 4.3973 3.9470 4.1994 3.6736 2.8949 1.7720 3.2880 2.5741 2.8634 1.1837 1.9341 0.9379
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(xii) In general, as the sample size increases, the SB
values decrease. However, in most scenarios, the
SB values increase whenever the number of
covariates or the intensity of correlation increases.

(xiii) When the dispersion value changes from τ � 2 to
4, the SB values decrease.

7. Application to Real Data

In this section, two chemical datasets are utilized to dem-
onstrate the performance of proposed estimators.

7.1.GasolineYieldData. Tefrst dataset used in this study is
sourced from Prater [2]. Te objective is to investigate the
impact of several covariates on a response variable, which
represents the percentage of crude oil converted to gasoline
through the process of distillation and fractionation. Ini-
tially, this dataset was analyzed by [34] using a linear re-
gression model. However, it was discovered that the error
term distribution was not symmetrical. As a result, the data
were transformed to ensure that the dependent variable took
values along the real number line. Lemonte et al. [35]

adopted an alternative approach to address this issue. Tey
used the beta distribution for analysis and found that it
provided more robust outcomes for infuential observations
compared to the method employed by Atkinson [34]. Te
covariates in this dataset are: the crude oil gravity (x1), the
vapor pressure of the crude oil (x2), the temperature at
which 10 percent of crude oil has vaporized (x3), and fnally
the temperature at which all the gasoline is vaporized (x4).
Qasim et al. [12] also used this dataset to illustrate the
application of ridge beta regression.

Te left-side plot in Figure 1 reveals a signifcant cor-
relation among the variables, particularly between X2 and
X3. Furthermore, we compute the condition index (CI ���������

qmax/qmin
􏽰

) of matrix XT 􏽢VX as 10613.01. Both the cor-
relation plot and CI indicate the presence of multi-
collinearity in the dataset.Terefore, we apply the proposed
estimators described in this paper. To evaluate the per-
formance of the proposed estimators, we employ the
bootstrapping method with sample size n � 15 and 1000
bootstrap iterations. We consider the BMLE as the true
value of the coefcient vector and compute the mean
squared error (MSE) and the mean absolute error (MAE) of
various estimators by

Table 2: SBs of estimators for diferent values of p, n, τ, and θ.

n θ
τ � 2 τ � 4

BRE BLE BLTE BJLTE BMJLTE BRE BLE BLTE BJLTE BMJLTE
p � 3

50
0.90 0.0068 0.0097 0.0070 0.0027 0.0063 0.0029 0.0077 0.0032 0.0003 0.0019
0.95 0.0051 0.0074 0.0052 0.0019 0.0044 0.0035 0.0019 0.0037 0.0025 0.0034
0.99 0.0046 0.0145 0.0108 0.0011 0.0034 0.0067 0.0030 0.0082 0.0016 0.0026

100
0.90 0.0083 0.0210 0.0056 0.0015 0.0036 0.0016 0.0097 0.0023 0.0003 0.0019
0.95 0.0059 0.0134 0.0063 0.0031 0.0058 0.0017 0.0079 0.0014 0.0004 0.0012
0.99 0.0046 0.0270 0.0064 0.0035 0.0044 0.0019 0.0079 0.0046 0.0004 0.0022

200
0.90 0.0038 0.0282 0.0036 0.0013 0.0026 0.0004 0.0096 0.0009 0.0001 0.0005
0.95 0.0035 0.0184 0.0034 0.0014 0.0040 0.0011 0.0131 0.0011 0.0003 0.0009
0.99 0.0044 0.0061 0.0061 0.0041 0.0045 0.0015 0.0068 0.0021 0.0012 0.0014

p � 6

50
0.90 0.0141 0.0521 0.0148 0.0088 0.0102 0.0023 0.0085 0.0035 0.0012 0.0013
0.95 0.0150 0.3049 0.0168 0.0101 0.0128 0.0024 0.0087 0.0031 0.0017 0.0026
0.99 0.0179 2.8894 0.0176 0.0156 0.0162 0.0039 0.0916 0.0065 0.0035 0.0045

100
0.90 0.0161 0.0134 0.0166 0.0109 0.0130 0.0040 0.0081 0.0043 0.0023 0.0034
0.95 0.0169 0.0316 0.0192 0.0151 0.0186 0.0033 0.0112 0.0045 0.0028 0.0041
0.99 0.0228 1.2182 0.0203 0.0172 0.0186 0.0071 0.0142 0.0040 0.0032 0.0035

200
0.90 0.0188 0.0231 0.0164 0.0119 0.0134 0.0040 0.0094 0.0037 0.0022 0.0032
0.95 0.0191 0.0251 0.0190 0.0153 0.0120 0.0040 0.0135 0.0040 0.0028 0.0039
0.99 0.0189 0.1154 0.0206 0.0196 0.0201 0.0053 0.0097 0.0048 0.0044 0.0046

p � 12

50
0.90 0.0831 0.2812 0.0829 0.0772 0.0803 0.0681 0.2812 0.0668 0.0648 0.0665
0.95 0.0978 0.7763 0.0955 0.0938 0.0948 0.0878 0.7763 0.0865 0.0850 0.0858
0.99 0.1104 7.6194 0.1124 0.1103 0.1023 0.1104 7.6194 0.1104 0.1016 0.1007

100
0.90 0.0712 0.2431 0.1619 0.0581 0.0645 0.0803 0.0295 0.0741 0.0703 0.0726
0.95 0.0873 0.7990 0.1542 0.0766 0.0786 0.0864 0.0608 0.0914 0.0898 0.0903
0.99 0.1090 6.8720 0.1029 0.1007 0.0890 0.1109 6.8720 0.1122 0.1107 0.1005

200
0.90 0.0767 0.2249 0.1213 0.0515 0.0555 0.0767 0.2249 0.0740 0.0698 0.0717
0.95 0.0907 0.6941 0.1492 0.0666 0.0693 0.0917 0.0941 0.0918 0.0889 0.0910
0.99 0.1109 0.1663 0.1007 0.0803 0.0751 0.1109 0.1663 0.1056 0.1025 0.1001
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MSE 􏽢βj􏼐 􏼑 �
1

1000
􏽘

1000

m�1

􏽢β
(m)

j − 􏽢β
(m)

j(BMLE)􏼒 􏼓
2
, (51)

MAE 􏽢βj􏼐 􏼑 �
1

1000
􏽘

1000

m�1

􏽢β
(m)

j − 􏽢β
(m)

j(BMLE)

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌, (52)

where 􏽢β
(m)

j(BMLE) is the maximum likelihood estimation and
the 􏽢βj is one of the considered estimators of βj, e.g., BRE,
BLE, BLTE, BJLTE, and BMJLTE, in the m th bootstrap
replication. Te results in Table 3 show that the Jackknifed
estimators have signifcantly lower MSE and MAE values
compared to BLTE, BLE, and BRE. Specifcally, the BMJLTE
outperforms the other estimators in terms of MSE, and
BJLTE outperforms the other estimators in terms of MAE,
which is consistent with the simulation study results. Fur-
thermore, Table 4 reports the estimation of coefcients using
the mean of the bootstrap estimators.

7.2. Heat Treating Test Data. Te second dataset considered
in this study is the heat-treating test data obtained from [36].
It comprises fve covariates: furnace temperature (X1),
carbon concentration and duration of the carburizing cycle
(soakpct and soaktime) denoted as X2 and X3, and carbon
concentration and duration of the defuse time (Diftime and
Difpct) indicated as X4 and X5. Te response variable
captures the quality of a sound determined by the rate of
vibrations or the level of something which is referred to as
PITCH in the dataset and denotes the product presentation

to the customer’s heart. Since the response variable follows
a ratio form, we employ the beta regression model to analyze
it. However, before applying the beta regression model, we
verify whether the values of y follow a beta distribution.
We conduct an Anderson–Darling (AD) test using the ad
test function from the goftest package in the R pro-
gramming language. Te computed test statistic is
0.85967, with a p value of 0.439. Te estimated parameter
values are a � 4.9995 and b � 182.1799. Te p value
suggests that the beta distribution is suitable for modeling
the response variable.

We ft a model by including an intercept term and
compute the condition index of the matrix XT 􏽢VX, which
results in a value of 303772.7. Te correlation matrix of the
covariates is displayed in the right-side plot of Figure 1. Both
observations indicate the presence of multicollinearity in the
dataset. Consequently, we apply the proposed estimators to
this dataset as well. To evaluate the efciency of the proposed
estimators, similar to the frst dataset, we employ the
bootstrapping method with a sample size of n � 15 and 1000
bootstrap iterations.

We calculate the MSE and MAE of each estimator by
using (51) and (52), respectively. Based on Table 5, the
Jackknifed estimators are superior to the BLTE, BLE, and
BRE due to having the lowest value of MSE and MAE. Te
MSE of the BMJLTE is lower than that of BJLTE but for the
MAE, it is the opposite. Te estimation of the coefcients by
using the proposed estimators is presented in Table 6 which
is obtained by using the mean of the estimation for all
bootstrap estimations.
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Figure 1: Visualization of correlation among the covariates for datasets.

Table 3: MSE and MAE of estimators for gasoline yield data.

BRE BLE BLTE BJLTE BMJLTE
MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Intercept 10.077 2.8984 119.65 30.339 8.0875 2.6083 0.9055 0.2408 1.8979 0.8661
x1 0.0006 0.0223 0.0578 0.2152 0.0005 0.0200 1.5 E − 05 0.0015 6.0 E − 05 0.0063
x2 0.0058 0.0585 1.0483 0.7870 0.0047 0.0526 0.0011 0.0066 0.0019 0.0197
x3 6.4 E − 05 0.0070 0.0083 0.0793 5.2 E − 5 0.0063 8.0 E − 6 0.0006 1.5 E − 5 0.0021
x4 2.0 E − 06 0.0006 4.40 E − 05 0.0038 2.0 E − 06 0.0006 1.7 e − 09 2.4 E − 05 4.7 e − 08 0.0001
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8. Conclusion

In this paper, we have addressed the bias issue in the Liu-
type estimator used in BRMs. By applying the Jackknife
methodology, we were able to reduce the bias of the beta Liu-
type estimator and introduce a modifed estimator. We have
analytically established the conditions under which both
proposed estimators outperform the beta Liu-type estimator.
To evaluate the performance of the proposed estimators and
compare them to the BMLE, BRE, BLE, and BLTE, we
conducted a comprehensive simulation study. Te simula-
tion experiment considered various aspects to observe the
behavior of the proposed estimators. Te results indicate
that the proposed estimators, especially the modifed esti-
mator, outperformed the BRE, BLE, and BLTE in terms of
MSE and squared bias (SB). Furthermore, we have dem-
onstrated the efciency of the proposed estimators through
two real-life examples in the feld of chemometrics. In both
cases, the proposed Jackknifed estimators exhibited smaller
MSE and MAE compared to the alternative estimators.
Based on these fndings, we recommend researchers utilize
the proposed estimators, especially the modifed Jackknifed
Liu-type estimator whenever multicollinearity is present in
BRMs. Te proposed estimators ofer improved perfor-
mance in terms of bias reduction and estimation accuracy.
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