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A second-order numerical method for two-sided tempered fractional convection-diffusion equations is studied in this paper, both
convection term and diffusion term are approximated by the tempered weighted and shifted Griinwald difference operators, the
first time partial derivative is discretized by the Crank-Nicolson method, and then a class of second-order numerical schemes is
derived. By means of matrix method, numerical schemes are proved to be unconditionally stable and convergent with order
O(7* + h*). The validity of the proposed numerical scheme is verified by numerical experiments.

1. Introduction

In this paper, the following two-sided space tempered
fractional convection-diftusion equations is considered

' ou(x,t) ] ™My (x, t) o af’A‘u(x, t)
ot ¢ ox" ¢ ox” ’

Fu(x,t) N Fu(x,t)

ol Lo + f(x,1), (x,t) € (a,b) x (0, T], (1)

u(x,0) = ¢(x), x € [a,b],

| u(a,t) =y, (t),u(b,t) =y, (1), t e [0,T],
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where 0<a <1, 1<f<2, and A;,14, >0, and parameters [,
7o lﬁ’ and r4 are nonnegative constants, which satisfy that
I + rE#O(AE € {a, B}) and y; (1) E}LO if [y #0, and y, () = 0 if
re#0. (af’ u(x,t)/0x%) and (ai u(x,1)/0x%) represent the
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normalized left and right Riemann-Liouville tempered
fractional derivatives, respectively, which are defined as
[1-3].

Ed
N
%:aDi’ku(x, £) = Au(x,b), 0<é<l,
x
af’)‘u(x, t) 3 10u(x,t)
;zuDi’u(x,t)—/\"tu(x,t)—f/\‘r_ , 1<é<2,
axE ax
(2)
[ 0%} (x, 1) N :
szDg’“(x’t)_A u(x,t), 0<é<l,
X
M ulnt) g : £ 0u(x, 1)
————= Dy u(x,t) - Xu(x,t) + " ——— 1<&<2,
axs ax

let n = [&], where aDi’Au(x, t) and xDi”‘u (x,t) represent
the left and right Riemann-Liouville tempered fractional
derivatives, respectively, are defined by the following

equation:
e (JX Mu(r,t) )
_ ———dt ),
T(n-¢& ox"\Ja (x - )"

3] 3 (-1)"™ 9" [ (b eMu(r,t)
Dyu(x,t) = Th-D W(L 7(7_ T dr |,

A
aDi u(x,t) =

(3)

the T'(-) in here is the gamma function. In fact, when
A, = A, =0, the equation is a well-known space fractional
advection-dispersion equation [4], and in particular, if [, =
r, = —(1/(2 cos(na/2))) and lﬁ =rg= —(1/(2 cos(ma/2))),
the equation is the Riesz space fractional advection-dis-
persion equation [5]. In addition, when I, =, =0, the
equation is the space tempered fractional diffusion equation
[2, 3]; especially, if lﬂ =rg= —(1/(2 cos(na/2))), the equa-
tion is the Riesz space tempered fractional diffusion equation
(6, 7].

Fractional derivatives have a long history, but due to the
lack of practical background, until the recent decades, many
scholars find that the application of fractional derivatives in
plasma physics, groundwater hydrology, fluid mechanics,
and many other fields can better describe the actual phe-
nomenon and thus obtain many fractional models
[1, 3, 4, 8-12]. Due to the nonlocality of fractional de-
rivatives, analytical solutions for fractional models are often
difficult to obtain, so it is urgent to develop numerical
methods with high accuracy. Fortunately, many scholars
have made a lot of important achievements [2, 6, 12-26] on
the corresponding fractional model.

Among them, Meerschaert and Tadjeran [16] find that
for the advection-dispersion equation, if the standard

Griinwald difference operator is used to approximate the
space fractional derivative, then either the explicit or implicit
Euler method is unconditionally unstable, so in order to
overcome this drawback, the shifted Griinwald difference
operator is proposed, which combine with the implicit Euler
method to derive an unconditionally stable and convergent
numerical scheme with order O (7t + h). Later, Meerschaert
and Tadjeran [17] develop a numerical scheme for the two-
sided space fractional diffusion equation by utilizing the
shifted Griinwald difference operators to approximate the
left and right Riemann-Liouville fractional derivatives, but
the convergence order is only O (7 + k). In order to improve
the convergence order, Tian et al. [20] propose the weighted
and shifted Griinwald difference operator and combine
Crank-Nicolson time discretization to construct a class of
second-order numerical schemes with O (7? + h?) for solving
the two-sided space fractional diffusion equation. Thereafter,
the unconditionally stable quasicompact scheme [23] and
compact scheme [15] for the two-sided space fractional
diffusion equation are quickly proposed, and the conver-
gence order reaches O (7? + h*) and O (7% + h*), respectively.

Recently, a new variant of fractional calculus, in which
power laws are tempered by an exponential factor, has
attracted the attention of researchers because of its math-
ematical and practical advantages [3]. In fact, the space
tempered fractional derivative and the time tempered
fractional derivative obtain the space tempered fractional
diffusion equation [8] and the time tempered fractional
diffusion equation [27], respectively. It is important to de-
velop the effective high-precision algorithms for the tem-
pered fractional diffusion equation. Baeumer and
Meerschaert [1] first propose the tempered shifted Griinwald
difference operator to approximate the Riemann-Liouville
tempered fractional derivative. Based on this, a class of the
tempered weighted and shifted Griinwald difference oper-
ators with second-order precision is constructed by Li and
Deng [2] to approximate the left and right
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Riemann-Liouville tempered fractional derivatives, and
numerical schemes with convergent order O(7* + h?) for
solving the two-sided tempered fractional diffusion equation
is obtained by combining the Crank-Nicolson method. Due
to the influence of the exponential factor in the tempered
fractional derivative, Yu et al. [12] only consider the compact
technique in the numerical solution of one-sided tempered
fractional diffusion equation, and combine with the implicit
Euler method to obtain a numerical scheme with un-
conditional stability and convergence order O(r +h?),
higher-order numerical schemes need to be further de-
veloped. The nonlinear tempered fractional diffusion
equation is also studied by Zhao et al. [28], where a robust
preconditioner is developed and analyzed to speed up the
solution of the Jacobian matrix for the nonlinear all-at-once
system obtained from the equation. For the time tempered
fractional models, Feng et al. obtain some important results
as detailed in [29, 30]. Since finite difference schemes for the
(tempered) fractional diffusion equations usually produce
Toeplitz matrices, which are expensive to compute directly,
fast computation methods have been developed [31]. More
work on tempered fractional models is shown in references

[6,7, 10, 13, 14, 32-34]. According to the existing literature,
there are many researches on the effective numerical
methods for space tempered fractional diffusion equation,
but there are few research studies on the effective numerical
methods for space tempered fractional convection-diffusion
equation. In this paper, an unconditionally stable finite
difference method for solving the equation is presented.
The rest of this article is arranged as follows. In Section 2,
second-order difference approximations for the tempered
fractional derivatives are introduced. Numerical schemes for
solving the problem (1) are derived in Section 3. Section 4
discusses the stability and convergence theory of numerical
schemes. In Section 5, the effectiveness of the proposed
numerical scheme is demonstrated by numerical experi-
ments. Section 6 concludes the work of this paper in brief.

2. Second-Order Difference Approximations for
the Tempered Fractional Derivatives

In order to derive numerical schemes, we need some aux-
iliary knowledge.

S (R) = {v v € L, (R),and JR (] +[w])™ 5 (w)]dw < oo}, (4)

is a fractional Sobolev space STE (R), where 7(w) =
va(x)e”'wxdx is the Fourier transform of v(x).

Lemma 1 (see [1]). Letn—1<é<n(n=1,2) and 1 >0, the
shift number p is an integer, h is the step size, and v(x) is

( £ [(x—a)/h]+p
Athv(x) = E ];)

£ [(b—x)/h]+p
Appy(x) = — Z
/AN

then

ALy (x) =, DY (x) 215 (x) + O (h),
)
Ay ()= D5 () - Av(x) + O (h),

where g,if) = (—1)k( ¢ ) (k=0) denotes the normalized
Griinwald weights

defined on the bounded interval [a, b] and belongs to Siﬂf (R)
after zero extension on the interval x € (—00,a)U (b, +00).
The tempered and shifted Griinwald type difference operators
are defined as

i 1
9P PV, (6~ (k— p)h) - EG;E) (1)v(x),

(5)

) 1
g PPy (4 (K~ p)h) EG}(P (1) (x),

+00
Ah BYENS k-p)Ah k
G;,E)(s)zep (l—e 5) =Zg,§)e* PAR K (7)
k=0

Lemma 2 (see [2]). Let v(x) ¢ Si+E(R), n-1<&
<n(n=12), and A>0, if two difference operators are de-
fined as
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A

A , , A
Bi v(x) = yl(E)Ai’lv(x) + yz(E)Ai,Ov(x) + yéf)Ai’_lv(x)

1 [(x—a)/h]+1

ANt

Y wv(x— (k- D —%G“) (v (x),

(8)

64 =&A =&A =&A
B, v(x) = yl(E)Ah’lv(x) + yZ(E)Ah’Ov(x) + ygf)Ah,_lv(x)

1 [(b—x)/h]+1

== Y w®v(x+(k-Dh) - %@‘E) (1)v(x),

&

then

By (x) = D' v(x) = A (x) + O(),
)
By (x) = DY (x) - A (x) + O(H?),

@& (&

where

(€3] & (& & & —(k-1)Ah €3] &)
w =y + 109 + 1V, )e (k20,9% = g9 =0),

2+¢&
y == -y

>

§

©_.®_5
Y3 Y1 2

>

(10)

=)
GV (1) =yP6" (1) + G (1) + PGP ().

In this part, because yl(f) is a freely variable quantity,
therefore, a class of second-order operators for the Rie-
mann-Liouville tempered fractional derivatives is given. In
the later part, we will find that, in fact, numerical schemes
are valid only when yl(g) takes a certain range of values.

3. Numerical Discretization

The spatial interval [a,b] and temporal interval [0,T] are
uniformly meshed, respectively, the spatial step size is
denoted as h = (b—a)/M and the temporal step size is

1

According to Lemma 2, we further obtain

denoted as 7 = T/N, therefore x; = a + ih, 0<i< M, t, = nr,
and 0<n<N. Let v = u(x;,t,) and U} represent the exact
solution and the numerical solution at point (x;,t,), re-
spectively. Denoting t,,,, = (t, +t,,.,)/2, u? = (ul+
w2, f?ﬂ/z = f (% tyr)-

In this article, we always assume that the function u (x, -)
in problem (1) belongs to S/Zfrﬁ (R) after zero extension.

The Crank-Nicolson method is used to discrete problem
(1) at point (x;,t,,,1/,), and then, a semidiscretization form is
obtained

- u:”l_u:'_ l af’Alu n+1/2+r ai’)tlu n+1/2 +l ag))bu n+1/2
T - “\ ox« /, “\ ox* ). ﬁaxﬂi

aﬁ’Azu n+1/2
(B reot) oznen
X/

(11)
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n+1

1

~(l B n+1/2+ Bh Ay 4+1/2>+lﬁ(35,12u?+1/2 ﬁ/\ﬁ 18 n+1/2)

(12)

+r,3<B“2 n+1/2+/3/1/3 1 n+1/2>+ :’L+1/2+O(T2+h2)’ l<isM-1,
where 8,1 = (uf,, —ul )/ (2h). Denoting U2 = ((U? + U"*)/2), numerical schemes
can be obtained by eliminating the local truncation error

in (12)

Ut~y ~a) _ ~BA _
{ i - i —(IO‘BZ'A'Uf+1/2+raB: lUf+1/2)+lﬁ(B£’)LzU?+1/2 —[u/zj 15xU:’+1/2) +7’ﬂ(3£ ZU;M/Z +ﬁ/\§ 15XU?+1/2)+f?+1/2, (13)
that is
1 i+1 U Un+l n Un+1 1 M-i+1 Un Un+1
UM = U =7 Ly Y w® ket T ik +r) St 1 Y w® ikt T ik
s 2 & 2

P, 1 i+l Uft + Ut’H’l U + Un+1 1 M-i+l U»n + UT’H g Un+1 + U _ U,.HI _ Ufl
+T<lﬁ— Z wiﬁ) i—k+1 i—k+1 (l + r,B) —G (1) +rg— Z LUIE/;) i+k—1 ithk—1 _ ﬁ/\g 1(1[3 _ Tﬂ) i+1 i+1 i-1 i-1

W& 2 P 2 4h
+ Tf’«”l/z.
(14)
Further, the matrix form of numerical schemes (14) is
T(l B@ 4 r B(“)T) T(l B® 4+ r B(ﬂ)T> B-1
« « 8 B By (15— 1) .
I+ o - 3 + C |U
2h 2h 4h
4 (15)
(@) @7 ® (ﬁ)T) )
T(laB +7,B ) T<lﬁB + 1B 1/3/1123 (l/; _ rﬁ) ) e
=| I- = + - C |{U +tF >
2h P 4h

where U" = (ULUY,...,U% .U )T and C = tridiag
{-1,0,1} is (M — 1) order tridiagonal matrix
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wff) - G(g) (1) wéf)
wp wW—GG%D wﬁ
BY , §e(0Dorée(1,2), (16
=~ (&)
wz(\?_z wl(é)_3 wl(\f[)_4 wl(f) -G (1) w(()f)
=~ (§)
wz(v?q wz(\j)-z wl(v?_3 ... éE) wff) -G (1)
the term F"*'2 is given by
( T Un+1/2 T
Fr2 :( ?+1/2> 21+1/2’ L X/ﬁ/lz) _ (;10‘ (lawzrx) + T’awé“),law;a), o ’lawz(\f;))
Un+1/2 T n+1/2 T
- ];\14“ (rlxwl(\ff), .. ,rawga),rawé‘x) + lawé“)) + Zﬂ (lﬁwéﬁ) + rﬁwéﬁ),lﬁwgﬂ), .. ,lﬂw](\f)) (17)
n+1/2 l _ /\ﬁ*l
M B B B N (/5 rﬁ)ﬁ 2 n+1/2 n+1/2\T
\+ . (rﬁwM,...,rﬁw3 S TgW,  + lgwy ) _T(_UO ,0,...,0,U}; ) .
4. Theoretical Analysis of Numerical Schemes B B0 0P 0P S 18
y wy +wy” >0,w” <0,w >0 (k>3), (18)

Before giving a detailed theoretical analysis, let’s first give
some lemmas that will be used.

Lemma 3 (see [35]). Real matrix A of order M is positive
definite if and only if D = (A + AT)/2 is positive definite.
Lemma 4 (see [2]). For 1<f<2, 1,>0, and h>0, if max
{ @B +3B-9)/ (B +3B+2), (B +3B)/ (B +3B+4)} <
yP < (3B +3B-2)/(2(B + 3B +2)), then satisfy

the matrix BP in (15) is negative definite.

Lemma 5. For 0<a<1, A, >0, h>0, if the following con-
dition is satisfied
2( + 30— 4)

(19)
o +3a+2

<y@ <o,

then the matrix B\ in (15) is positive definite.
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Proof. Note that
P [0
9 =(-1) ) k=0
9" =1
2
9" = -a, (20
k-1-«a
9" == el <0 (k=2
@ _ (@ (@ @ (@ , (@ (@) k-Dih @ _ ()
w” =g + g +1"g 5 )e T (k20,99 =917 =0)
If y{ <0,
a+2
w” =991” +7:,795" = ~(a+ Dy + =720,
0l = PP (10 gl g
2 2 (21)
o +3a+2 o +3a _
— y{(x)e)tlh +( . yfa) _ . )e A h

2 2
o +3a+4 o +3a\ _
£< 5 y@ - 5 )e Mk <o,

More  generally, if p\® > (k(o® + 3a + 4 - 2k))/
(2(o? +3a+ 2)) (k=3), we obtain

k-1-a)(k-2-a) k-2-«a k=11,
T S E

(22)

_ a2 +3a+2 («) (X2 +3a+4 -2k (@) ~(k-1)Ah <0
= —" - - e <0,
k(k-1) 2(k-1)

because (k(a® +3a+4-2k))/(2(a® +3a+2)) is de- a<((vI7 -3)/2) and p{” has a range of values

creasing monotonically, so make y{* > (3(a? + 3a —2))/ (3(a +3a—2))/ (2(a? + 3a +2)) <p'¥ <0, therefore,
(2(a? +3a +2)).

() (o) (o) (o)
wy,” +w,” <0, w;"=20,w,” <0(k=>3). (23)
Further, positive root of equation (3(a? +3a—2))/ 0 2 r ! k ( )
2(a* +3a+2)=0 is a= ((vVI7 -3)/2), when 0< Let D= (B@W + B@")/2 = (di)j)M,l)M,l, we have



eigenvalues of matrix D are all positive. That is, matrix D is
positive definite, from Lemma 3, matrix B is positive
definite.

When (V17 - 3)/2)<oc<1 we find that y{"‘) has no
range, so we take y V> (2(a? + 3a — 4))/ (& + 3o + 2), that
is 0>y, @) > (2(a? + 30— 4))/ (¢® + 3 + 2), but in this case,

8 Journal of Mathematics
@ _g@yloo@, @ 1 @ 1 @ 1 @
w -G (1) E(woa wza) 5 ws” EwAg—z sz\?—l
1 ~ () 1 1 1
E(wé“) + wz(“)) wf“) -G () 2( (0 4 wz( )) Ew](\,'f),3 Ew](\f;),z
D= (24)
1 1 1 ~ 1
() () (a) () (o) (a) ()
szvofcfz sz\fﬂs 5”’1\374 w” =G (1) 5(“’0 +w,” )
1 @ 1 @ 1 @ Lo @, @) @ _a@
5 Mot 5 M2 5 M3 : 2( * +w2a) w” =G (1)
Because the following relationship is established (a) + wé“) <0, (a) >0,w!® )>0, wk ) <0(k=4), (28)
+00
Z wk“) = Z(yf“) g,i"‘) + Yz gk 1 + y3“) g,i“)z) kDA let us construct a new symmetric Toeplitz matrix
k=0 k=0 P e RM-Dx(M-1),
=176 (D 417G () + 76 (1) pi P2 Py
_ é(a) ),
(25) P> P1 P2 P
it is easy to check from (23)
M1 @ Ps P> P1 P2 Ps
Y w? -G (1)>0, (26) P = , (29)
k=0
that is
M-1
d;> - Z dij i=12... . M~-1 (27) Ps P2 P P2
J#
Utilizing the Gershgorin theorem [36], we know that the Ps P2 P

where p, = —w{?/2 and p, +2p, + 2p; = 0, which should
be negative definite and can make D + P~ is positive definite.
In order to get the negative definite result, a similar cal-
culation idea [12] is used to get p; = 6p; and p, = —4p;. Itis
easy to check matrix D + P~ is positive definite, from Weyl’s
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theorem [37], matrix D is positive definite, that is, B is
positive definite. When 0 < a < (/17 - 3)/2,1et (2 (a? + 3 —
)/ (@ +3a+2) <y < (3(a? +3a-2))/(2(a? + 3a+ 2)),
similar provability, B*) is positive definite.

In summary, for all a€ (0,1), when (2(a®+3a
—4)/(a? +3a+2) < yf“) <0, the conclusion of the theorem
is obtained.

Define U, = {ulu = {w;} is a grid function defined on
{xi =a+ ih}f‘f{l}. For u € U, the corresponding discrete

Ly-norm is defined as [uf|;, = (hy M Tu2)?,

Theorem 6. For a € (0,1) and B e (1,2), let yf“) e ((2
(o +3a—4))/ (o +3a +2),0) and yl(ﬁ) € (max{ QB+
38-4)/(B*+3B8+2), (B +3B)/ (B +3B+4)}, 3(f+3

/3—2))/(2([32+ 3B +2))), then numerical schemes (14) are
unconditionally stable.

Proof. The proof is similar to [2]. Denoting Q = (T(laB("‘) +
roB@))/ (2h%) — (1(1,B® + 1B/ (2hF) + (epAs ™ (15 -
rg)/4h)C, then the matrix form of numerical schemes (15) is
simplified as

(I+QU™! = (I -QU" + rF™'2, (30)

Let the eigenvalue of matrix Q be A(Q), then
(1-2(Q))/(1+A(Q)) is the eigenvalue of matrix (I+
Q' (I - Q). Since (Q+Q")/2 = (z(I, +r,) (B® + B@"))/
(4h%) — (2 (Ig +75) (B® + BOT))/ (4hF), it is easy to know
that 1 (Q) > 0 by Lemma 3-5,s0 [ (1 - A(Q))/ (1 + A(Q))| < 1.
Furthermore, we can obtain that the spectral radius of

matrix (I +Q)'(I-Q) is less than one, thus numerical
schemes are unconditionally stable.

Lemma 7. For the matrix Q in (30), there exists
[T+Q7'|,<L|U+Q (I-Q),<1 (31)

where ||-||, denotes 2-norm(spectral norm,).

Proof. Since the matrix Q in (30) is positive definite,
according to Lemma 7 in [2], the two inequalities presented
by the lemma are true.

Theorem 8. For a € (0,1), f € (1,2), let ¥ € ((2(a® +
30 —4))/(a® + 3a +2),0) and yfﬁ) € (max{ (2(B*+ 38 —4))/
(B +3B+2), (B +3B)/ (B +3p+ 4} (3(B*+3-2))/(2

(ﬁ2 + 3B+ 2))), then numerical schemes (14) are convergent,
that is

le"l,, <Ci(+* +#*), n=12...,N, (32)

no_ (0 N n T no_ ,n n :
where €' = (e],e},....eh_ ), el =ul!-U?!, and C, is
a existed constant independent of time and space steps.

Proof. The proof is similar to [2]. Subtracting (13) from (12),
we know that

(I +Q)e™! =(I-Q)" +R", (33)

where R" = (R%,RZ,..., R )", and the local truncation
error R = O(7° + th?).
Furthermore, (33) can obtain

en+1 — (I + Q)71 (I- Q)en + (I + Q)ian- (34)

By taking Euclidean norm |-||, on both sides of (34) at the
same time, we can see

el <+ Q! (- Qe |, + |+ 7R

-1 n—-1 -1 n-1 (35)
|+ Q7 A= Qe ], + T+ Q7[R
Noting that " Iy, = hm” - ||, by Lemma 7, we have
"], < [T+ Q7 (1 = Qe |, +| T+ Q7L IR,
<[, +IR,
<[, + IR, IR, (36)

n-1
<[e’ll,, + "Rk“L2 <C(7*+1).
k=0

Thus, the theorem is proved.
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5. Numerical Experiments

Some numerical experiments are given in this section to
verify the precision and validity of the proposed numerical

scheme.
e
Order = logm( Ielz,» >,

(37)
lelz, m

Journal of Mathematics

is the order of measurement.

Example 1. Consider the following tempered fractional
convection-diffusion equations

ou(x,t) [ Mulxt)  Mulx))  ulxt)  u(xr)
35 - ~(la EICEERR e +1p ™ +1g ™ + f(xt), (x,t)€ (0,1)x(0,1],
) (38)
u(0,t) = 0,u(l,t) =0, € [0,1],
[ 4(x,0) = e x" (1 - x)", x € (0,1),
where 0<a <1, 1<f<2, and n € N(n>2), and the linear
source term is
f(x t)_OCeat_/\lx Vl( x) +e —/\lxz( l) n r(”+1+k) n+k—o
T X k In+l+k-a)
+oo l n+i n+i
r(n+1+k) nt+k—a a —Ax n n
—(1- -1 Ate ™ 1-
+ree &l < k >1“(n+1+k—¢x)( *) (l+ ro)hie (1-x)
F(n +1+k+ l) ntk+i-f (39)

_ eatl: A x Z

i=0 . k=0

n
Z( b <k>r(n+1+k+i—ﬁ)x

I'n+1+k)

D (/\ /\)lnﬂ n+i
+rge Zlvz“’< . Jtarik-pt

( _ x)n+k—/3

_ (lﬁ + rﬁ)Af hEt (1 - x)" +(rﬁ - lﬁ)ﬁ/\ffle%‘%—llx” (1-x)"+ n(x - xz)n_l (1- 2x))]

the exact solution is u(x,t) = ¥ *x" (1 — x)".

Let [, =1/5, r, =1, I3 =2, rp =3, and n=2. Choose
different «, ﬁ and AL> A,, the proposed numencal scheme
(y(“) = (2(a? +3a-4))/(a® + 3+ 2), and yl —ﬁ/2) is
adopted to solve Example 1, the errors and measurement

order results are displayed in Table 1. It can be seen from
Table 1 that the proposed numerical scheme has second-
order precision, and the numerical experimental results are
consistent with the convergence analysis.

Let I, =1, r,=3, I;=5, rg=7, and »n = 2. Choose
different «, 3, and A,, A,, the proposed numerical scheme is
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TaBLE 1: Errors and corresponding measurement order results at ¢ = 1.
A =1/10 A =1 A =2
(o, B) h=1 A=1 Order Ay=2 Order Ay=5 Order
lell,, lell,, lel,
1/20 1.6077e-03 2.3196e—-03 4.4553e-03
02,12) 1/40 4.1307e - 04 1.9605 6.1026e — 04 1.9263 1.3047e-03 1.7718
- 1/80 1.0465e — 04 1.9808 1.5496e - 04 1.9775 3.4072e - 04 1.9370
1/160 2.6431e—-05 1.9853 3.9055e - 05 1.9883 8.6292e - 05 1.9813
1/16 3.6870e - 04 1.0821e-03 3.5873e-03
(0.5, 1.5) 1/32 1.0548e - 04 1.8055 2.8301e—04 1.9349 1.0204e - 03 1.8138
- 1/64 2.9817e—-05 1.8228 7.3480e - 05 1.9454 2.6661e - 04 1.9363
1/128 8.3152e - 06 1.8423 1.9065e - 05 1.9464 6.8031e—05 1.9705
1/10 5.0678e - 04 5.1402e - 04 1.7371e - 04
(0.8, 1.8) 1/20 1.3156e - 04 1.9456 1.3326e - 04 1.9476 4.5103¢ - 05 1.9454
B 1/40 3.3388e - 05 1.9783 3.3800e - 05 1.9791 1.1761e-05 1.9392
1/80 8.4106e — 06 1.9890 8.5114e—- 06 1.9896 3.0136¢ - 06 1.9645

adopted to solve Example 1, the errors and measurement
order results are displayed in Table 2. As can be seen from
Table 2, the numerical scheme has second-order precision in
both spatial and temporal directions, and the calculated

results are in complete agreement with the theoretical
results.

Example 2. Consider the following tempered fractional
convection-diffusion equations

[ Ou(x,t) Mu(x,t)  0Mu(x,t)\ | Pulxt) Pu(xt)
P «(la 3" +7, Fye +1 8 o +1g o + f(x,1), (x1)€ (0,1)x(0,1],
4 (40)
u(0,t) =0,u(1,t) =0 € [0,1],
[ 4(x,0) = X (1 - %)™, x € (0,1),
where 0<a<1,1<f<2, and m € N(m=>2), and the linear
source term is
_ /1+/\) I'm+1+k+i) i
_ )sz m o\ A x 2 X m+k+i—a
f(x,t) =—PBsinft-e x) +cos/3t|:lae ; . Z( 1) ( > Tmslikti-a)
A x ( A + AZ)I m+1 mti F(m +1+ k) _ o ymtk—a a bx m _am
+rpe ; . Z( F ) —F(m+1+k—oc)(l x) (I + r)A e x™ (1 - x)
= Tm+1+k+i) kg (41)

— cos it llﬁelzx

HEen(7)

I'(m+1+k)
F(m+1+k-p)

i=0

+r e}tzxZ( 1) < >

(1-

I'm+1+k+i-p)

)Wl+k—[3

— (Ig + 75 )Mo X" (1= )" +(rg — 15) A5 *z"( zxm(l—x)m+m(x—x2)m1(1—2x)>],
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TaBLE 2: Numerical results for different conditions at t=1.
A, = 1/10 A =1 A =25
(o, B) h=1 A, =1/5 Order Ay =2 Order Ay=5 Order
llell,, llell., llell,
1/20 9.6201e — 04 2.8343e—-03 4.3376e—-03
02,12) 1/40 2.458le—04 1.9685 7.6226e — 04 1.8946 1.3554e - 03 1.6782
- 1/80 6.2406¢e — 05 1.9777 1.9469¢ — 04 1.9691 3.6113e—-04 1.9081
1/160 1.5817e—-05 1.9802 4.9125e—-05 1.9866 9.1987¢ - 05 1.9730
1/20 2.9138e - 04 8.2818¢ - 04 2.1142¢—-03
(0.5, 1.5) 1/40 7.4756e — 05 1.9626 2.1545e—-04 1.9425 5.8274e - 04 1.8592
R 1/80 1.8969¢ - 05 1.9785 5.5742e - 05 1.9505 1.5104e - 04 1.9479
1/160 4.8432e—-06 1.9696 1.4400e - 05 1.9527 3.8495e - 05 1.9722
1/20 7.8062e — 04 1.9177e—-04 1.0822e - 03
(0.8, 1.8) 1/40 1.9158e - 04 2.0266 4.9995¢ - 05 1.9395 2.8578e - 04 1.9210
R 1/80 4.6421e—-05 2.0450 1.2584e - 05 1.9901 7.3308e — 05 1.9629
1/160 1.1186e - 05 2.0531 3.1796¢e - 06 1.9847 1.8689¢ — 05 1.9718
TaBLE 3: Numerical experimental results at the end time under different parameters.
A =1/10 A= A =2
(o, B) h=1 A, =1/5 Order Ay =2 Order A =3 Order
lell,, lell, lell;,
1/10 1.4810e—-03 1.6693e — 02 4.5001e—-02
02, 1.2) 1/20 4.0031e—-04 1.8873 5.9209¢ - 03 1.4953 1.9241e—-02 1.2257
- 1/40 1.0299¢ - 04 1.9586 1.6551e—03 1.8388 5.8019¢—-03 1.7295
1/80 2.6261e—05 1.9715 4.2900e — 04 1.9478 1.5364e—-03 1.9169
1/10 8.9199¢ - 05 9.7279e - 04 3.8466e — 03
(0.5,1.5) 1/20 2.1687¢—05 2.0401 2.8074e - 04 1.7928 1.2082e-03 1.6707
R 1/40 5.1075e — 06 2.0861 7.6602e — 05 1.8737 3.3638e - 04 1.8446
1/80 1.2247e - 06 2.0601 2.0466e - 05 1.9041 8.9203e - 05 1.9149
1/10 4.0676¢— 04 1.2477¢ - 03 4.0271e-03
05.18) 1/20 9.8779¢ - 05 2.0419 1.5072¢ — 04 3.0493 4.8425¢ - 04 3.0559
o 1/40 2.3833¢—05 2.0512 3.4398¢— 05 21314 9.2126¢ - 05 2.3940
1/80 5.7239% - 06 2.0578 7.6320e — 06 21721 2.416le - 05 1.9309
TABLE 4: Results of error and observation order under different conditions at ¢ = 1.
A, =1/10 A =1 A =2
(o, B) h=r1 A, =1/5 Order A, =2 Order A, =3 Order
el el el
1/10 1.5096¢ — 02 6.3176e —02 9.2840e - 02
02, 12) 1/20 5.7957e—-03 1.3811 2.5168e —02 1.3278 3.8253e—-02 1.2792
- 1/40 1.9178e - 03 1.5955 8.0822¢-03 1.6388 1.2195e - 02 1.6493
1/80 5.9597e - 04 1.6861 2.3900e - 03 1.7577 3.5337e—-03 1.7870
1/10 9.6364¢ — 04 2.2824¢—03 4.7234e- 03
05, 15) 1/20 7.814le—05 3.6243 7.6761e — 04 1.5721 1.9661e - 03 1.2645
> 1/40 1.5580e — 05 23264 2.4260¢ — 04 1.6618 6.3040e — 04 1.6410
1/80 4.7875¢ - 06 1.7024 7.1658¢ — 05 1.7594 1.8159¢ — 04 1.7956
1/10 1.5970e - 02 2.1523e—-02 1.2134e—-02
(0.8,1.8) 1/20 6.8271e—-03 1.2260 8.5664¢ - 03 1.1698 5.6779¢ - 03 1.0956
o 1/40 2.3147e—-03 1.5604 3.0524e-03 1.4887 2.2788e—-03 1.3171
1/80 6.8285e — 04 1.7612 9.5351e—-04 1.6786 7.3702e — 04 1.6285

the exact solution is u(x,t) = cos Bt - e!2*x™ (1 — x)™.

Let I, =1, r,=3, Ig=5, rg=7, and m =2. Choose
different «, 3, and A, A,, the proposed numerical scheme

(@ = (2o + 30— 4))/ (o + 3a + 2), yP = (B/2)) is used
to solve Example 2, and the errors and measurement order
results are shown in Table 3. As can be seen from Table 3, the
numerical solutions both in space and time direction has
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second-order accuracy, and the calculation results fit well ~ Example 3. Consider the initial-boundary value problem of
with the theoretical results.where 0 <a <1 and 1< f<2. tempered fractional convection-diffusion equation

) ) Ay Ay
au(x,t):(a u(xt) o u(x,t))+aﬁ u(x,t)+a§ N 01 x (0.1,

ot ox* ox* oxt oxP
1 u(0,8) =0,u(l,t) =0, telo,1], (42)
u(x,0) = Lef(xz/z) x € (0,1)
| b m bl bl bl
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and analysis for a class of fractional advection-dispersion
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