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Te article deals with the extensions of discrete-time games with infnite time horizon and their application in a fuzzy context to
fshery models.Te criteria for these games are the total discounted utility and the average utility in a fshing problem. However, in
the fuzzy case, game theory is not the best way to represent a real fshing problem because players do not always have enough
information to accurately estimate their utility in the context of fshing. For this reason, in this paper, trapezoidal-type fuzzy utility
values are considered for a fshing model, and the terms of the Nash equilibrium are given in the fuzzy context, i.e., this
equilibrium is represented using the partial order of the α-cuts of the fuzzy numbers; to the best of the authors’ knowledge, there is
no work with this type of treatment. To obtain each equilibrium, a suitable fully determined fuzzy game is used in combination
with the dynamic programming technique applied to this game in the context of fshing. Te main results are (i) the Nash
equilibria of the fuzzy games coincide with the Nash equilibria of the nonfuzzy games and are explicitly determined in a fshery
model and (ii) the values of the fuzzy games are of trapezoidal type and are also explicitly given in the fshery model.

1. Introduction

Tis paper deals with the fuzzy game applied to fsheries
under both the discounted and the average criteria. Te
manuscript presents a two-player dynamic game with re-
production dynamics. However, it is not always admissible for
players to have knowledge of the exact values of their utility
function, under this approach it is necessary to propose
a game in a fuzzy environment. In this case, the main dif-
ference with the crisp game lies in that the utility function
considered for each player is a trapezoidal fuzzy function.
Tese fuzzy utility functions represent that imprecision or
vagueness in the data. Te objective is to guarantee the ex-
istence of a Nash equilibrium in a fuzzy appropriate sense for
this noncompetitive game; to the best of the authors’
knowledge, there are no works with this kind of treatment.

Specifcally, this work concerns a class of games where, in
contrast with the classical framework, the utility function Ui

of player i (i � 1, 2) is a fuzzy function of a trapezoidal type,
which is determined from a classical utility function Ui by
applying an afne transformation with the fuzzy coefcients.
Under the conditions ensuring that the classical model with
the utility function Ui has an average optimal stationary
policy πi,o with the optimal average utility j∗i , it is shown that
such a policy is also optimal for the fuzzy model with
function Ui, and that the optimal fuzzy average value j

∗
i is

obtained from j∗i via the same afne transformation used to
go from Ui to Ui. And with (j

∗
1 , j
∗
2 ) and (π1,o, π2,o), the

corresponding Nash equilibrium for the game is obtained
(see Lemmas 16 and 17). Similar results are also obtained for
the fuzzy discounted case (see Teorem 13 and
Corollary 14).
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Finally, the authors propose specifc values for a game
model for fsheries in the difuse context to illustrate the
theory presented. In which, a comparison is made between
the average and discounted cases to show that in the average
case, the biomass level decreases more slowly. Tis type of
conclusion makes it possible to describe a strategy that
preserves the level of biomass in an ecosystem.

2. Literature Review

Now some comments on the literature are related to the
theme of this paper. In general situations, marine fsh re-
sources are typically overexploited. One reason for this
situation is associated with the overcapacity of the fshing
gear. In this sense, it is important to propose adequate
extraction strategies that consider each country’s beneft and
the preservation of the biomass. Extensive literature on the
subject in this direction can be found about the fsheries and
the game theory (see, for instance, [1, 2]). On the other hand,
for the fuzzy games, these references can be consulted: [3–6].
However, for the fuzzy dynamic games, the literature is
scarce: this is one of the reasons that motivate the current
work. Papers [7–9] deserve special mention as they deal with
a certain class of games with applications in the logistic
management during the COVID-19 pandemic outbreak.
However, they are not developed in a fuzzy context and in
[9] some parameters are considered as uncertainty; specif-
ically, they are assumed as fuzzy trapezoidal numbers, and
these fuzzy parameters are substituted by the mean values of
their components in the treated mathematical models.

Te problem studied in this work has its origins in the
great fsh war game by Levhari and Mirman [10] and its
subsequent references in [11–13]. All of them are under the
approach of nonfuzzy (or crisp) game theory.

3. Motivation

Now, in this paper, a fuzzy version of this fsheries game is
proposed. Specifcally, suppose that two countries extract
fsh from the same region, and each of them obtains profts
from the extracted biomass via a trapezoidal fuzzy utility. It
will be assumed that the system presents a dynamic induced
by a diference equation via a stock-recruitment function
(see (7)).

Hence, in contrast with these previous papers, this
manuscript presents an infnite-horizon sequential dynamic
game with the following characteristics:

(a) It models a version of a fshery between two countries
with the fuzzy utilities of a trapezoidal type.

(b) As the objective functions, the fuzzy versions of the
total discounted utility and the average utility are
taken into account. And with respect to these fuzzy
functions, the corresponding fuzzy versions of the
Nash equilibria are established with respect to the
partial order of the α-cuts of the fuzzy numbers.

(c) In order to obtain the Nash equilibria, the dynamic
programming approach on a suitable nonfuzzy
problem is used.

(d) Te Nash equilibria for both the discounted and the
average cases are explicitly obtained and they are
given in terms of the parameters of the model. Also,
the fuzzy values of the games are determined.

In addition to points (a–d), it is important to mention
that the results obtained in this paper extend to the fuzzy
context ones obtained in paper [10] (see Remark 15). Tis
extension allows ambiguity, vagueness, or approximate
features of the problem being modelled to be considered in
the objective function, unlike in the case of the nonfuzzy one.

It is relevant to remark that the approach developed and
analyzed here considers that the uncertainty is measured
through a trapezoidal fuzzy utility function, and this permits
modelling the fact that the utility Ui is approximately in
a certain interval instead of receiving Ui directly (see Remark
3.1). Moreover, in the literature of fuzzy set theory, the class
of trapezoidal numbers is considered a sufciently robust
family, in the sense that any fuzzy number, under certain
conditions, can be approximated by fuzzy trapezoidal
numbers (see, for instance, [14, 15]). On the other hand, in
the literature referring to optimization theory, several ap-
plications can be found in which fuzzy payment/cost
functions are considered, for instance, [16–18]. Also, in
Markov decision processes, fuzzy payment/cost functions
have been applied as part of the objective function to be
optimized ([19–21]).

Te paper is organized as follows. In Section 4, some
defnitions and basic results of the fuzzy numbers are
presented. In Section 5, the fuzzy fsheries problem for-
mulation is introduced. Later, in Sections 6 and 7, the ex-
istence of Nash equilibrium is demonstrated for the
discounted and the average criterion, respectively. Section 8
provides some numerical results, and in Section 9, the
conclusions are given.

4. Preliminaries

In this section, defnitions and results of the fuzzy theory are
presented. For a detailed exposition of the topics, you can
consult, for instance, [22–24]. To this end, frstly some
notation about the fuzzy numbers is introduced, which is
used in rest of the paper. Te following standard mathe-
matical symbols will be distinguished in the fuzzy context
with the asterisk symbol “∗ .” Tat is, in the fuzzy context,
“< ,” “+,” and “” will be denoted by “<∗ ,” “+∗ ,” and
“∗ ,” respectively. Similarly, in the fuzzy context, the limit
“lim” and the supremum “sup” will be denoted by “lim∗ ”
and “sup∗ ,” respectively. And the product of a real number
λ and a fuzzy number Υ will be denoted by λΥ. Moreover, R
is the set of all real numbers. Te set of the fuzzy numbers
will be denoted by F(R).

In the manuscript, an important class of fuzzy numbers
is considered. Tis class is denominated trapezoidal fuzzy
numbers (see Defnition 1). Tis family includes another
relevant set of fuzzy numbers: the triangular fuzzy numbers
(see, for instance, [25–27]). Furthermore, trapezoidal fuzzy
numbers could be used to approximate an arbitrary fuzzy
number (see, for instance, [14, 15]).
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Defnition 1 (see [22]). A fuzzy number A is called a trap-
ezoidal fuzzy number if its membership function has the
following form:

μ(x) �

0, if x< a,

x − a

b − a
, if a≤ x< b,

1, if b≤x≤ c,

d − x

d − c
, if c<x≤d,

0, if x>d,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

where a, b, c, and d are real numbers such that a< b≤ c< d.
In the subsequent sections, a trapezoidal fuzzy number A

will be denoted by (a, b, c, d).

Figure 1 illustrates a graphical representation of the
trapezoidal fuzzy number A � (2, 6, 12, 16).

Defnition 2 (see [22]). A fuzzy number A is called a tri-
angular fuzzy number if its membership function has the
following form:

μ(x) �

0, if x< a,

x − a

b − a
, if a≤x< b,

c − x

c − b
, if b≤ x≤ c,

0, if x> c,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

where a, b, and c are real numbers such that a< b< c. A
triangular fuzzy number A will be denoted by (a, b, c).

Figure 2 illustrates a graphical representation of the
triangular fuzzy number A � (5, 10, 15).

Defnition 3 (see [22]). Given a fuzzy set A defned on R

with the membership function μ and any α ∈ [0, 1], the
α-cut, denoted by Aα, is defned to be the set
Aα ≔ x ∈ R: μ(x)≥ α , for α ∈ [0, 1], and A0 is the closure
of x ∈ R: μ(x)> 0 .

Remark 4. Defnition 19.1 and Defnition 3 imply that for
each α ∈ [0, 1], (a, b, c, d)α � [(b − a)α + a, d − (d − c)α],
for the trapezoidal fuzzy numbers.

In the next defnition, standard arithmetic operations on
real numbers are extended to fuzzy numbers. In Defnition 5,
μA⋆B denotes the membership function of fuzzy number
A⋆B, and equation (3) illustrates how to calculate such

a membership function from the membership functions of
the fuzzy numbers A and B, for details see [23].

Defnition 5. Let ⋆ denote any of the four basic arithmetic
operations and let A, B ∈ F(R). Ten, a fuzzy set on R,
A⋆B, is defned by the following expression:

μA⋆B(u) � sup
u�x⋆y

min μA(x), μB(y) , (3)

for all u ∈ R.

A direct consequence of the previous defnition is shown
in the following result [28].

Lemma 6. If A � (a1, a2, a3, a4) and B � (b1, b2, b3, b4) are
two trapezoidal fuzzy numbers, then the basic operators for
the trapezoidal fuzzy numbers are as follows:

(a) A + ∗B � (a1 + b1, a2 + b2, a3 + b3, a4 + b4)

(b) A − ∗B � (a1 − b1, a2 − b2, a3 − b3, a4 − b4)

1.0

0.8

0.6

0.4

0.2

0.0

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

Figure 1: Trapezoidal fuzzy number A � (2, 6, 12 , 16).
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Figure 2: Triangular fuzzy number A � (5, 10, 15).
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(c) λA � (λa1, λa2, λa3, λa4), for each λ≥ 0

Let D denote the set of all the closed bounded intervals on
the real line. Te following partial order is defned: for
A � [al, au], B � [bl, bu] ∈ D, and A≲B if and only if al ≤ bl

and au ≤ bu. Furthermore, for μ, ] ∈ F(R), we defne the
following equation:

μ≤∗ ] if and only if μα ≲ ]α, (4)

for all α ∈ [0, 1].

Remark 7. Observe that “≤∗” corresponds to a partial order
of F(R). A partial order is a refexive, transitive, and an-
tisymmetric binary relation. In this case, (F(R), ≤∗) is
a partially ordered set or poset. Moreover, if x satisfes that
x≤∗x for each x ∈ F(R), then x is an upper bound for
F(R), see [23]. If the set of upper bounds of F(R) has the
least element, then this element is called the supremum
of F(R).

For A, B ∈ D, A � [al, au], and B � [bl, bu], we defne the
following equation:

d(A; B) � max al − bl


, au − bu


 . (5)

It is possible to check that d defnes a metric on D, and
(D, d) is a complete metric space.

Now, defne d: F(R) × F(R)⟶ R by the following
equation:

d(μ, ]) � sup
α∈[0,1]

d μα, ]α( , (6)

with μ, ] ∈ F(R). It is straightforward to prove that d is
a metric in F(R), see [29].

5. Fuzzy Fisheries Problem Formulation

Suppose that two countries or companies (players) extract
fsh from the same region; this way each country has its
utilities. Moreover, each country is interested in maximizing
the total sum of the discounted consumption utilities, taking
into account the actions of the other country, so that it
always gets its best catch. It is assumed that the model
satisfes the following properties:

(a) Te two countries extract the same type of fsh, that
is, there is no diferentiation of products.

(b) Te countries do not cooperate (there is no
collusion).

(c) Te countries have a market power, in other words,
the extraction decision of each country afects the
price of the good.

(d) Te countries compete for the amount of extraction
and choose them simultaneously. Tis implies that
the two countries compete for the quantity of fsh
that is extracted from the region, and simultaneously
choose how much to fsh.

(e) Te countries are economically rational and act
strategically, seeking to maximize their profts given
the decisions of their competitors.

Under the assumptions mentioned above, the model will
be described below. To this end, let X � [0,∞) and consider
a continuous function h: X⟶ X. Tis function is referred
to as the recruitment function. Suppose that at each time
t ∈ 0, 1, . . .{ }, the current stock of fsh or the state of the
system is xt � x ∈ X, then Player (Country) 1 extracts a1,t �

a1 ∈ A(x) ≔ [0, h(x)] and Player 2 extracts a2,t � a2 ∈
A(x) � [0, h(x)], with the condition that x> a1 + a2, i.e., the
two countries together cannot extract more fsh than is
produced.Te set A(x) represents the admissible actions for
each player, i.e., the amount of fsh that each player decides
to catch when the stock of the fsh is x, with x ∈ X. Ten, the
remaining fsh in the region is x − a1 − a2, which represents
the fsh biomass level. Now, this quantity is afected by the
reproduction function h, then the fsh biomass level in the
next period is h(xt − a1,t − a2,t). Tus, the dynamic of the
system is modelled according to the following diference
equation:

xt+1 � h xt − a1,t − a2,t θ, (7)

with x0 � x ∈ X known, t � 0, 1, . . . and θ ∈ [0, 1] repre-
sents the fsh mortality rate or the proportion of stock that
migrates from the region. Te transition law described in
equation (7) will be referred to in the subsequent sections
simply as h.

Now, the admissible harvesting policies will be defned
for each player. Firstly, the admissible histories are defned
up to time t as follows: H0 ≔ X and Ht ≔ K × Ht− 1,
t ∈ 1, 2 . . .{ }, where K ≔ (x, a1, a2): x ∈ X and a1,

a2 ∈ A(x)}. Consider that A is the set of all possible actions,
i.e., A � ∪x∈XA(x) and X � A. Ten, a plan or harvesting
policy is a sequence of functions π � πt , such that for each
t ∈ 0, 1, . . .{ }, πt: Ht⟶ A satisfes the feasibility re-
quirement that πt(ht) ∈ A(xt), t � 0, 1, . . .. Te family of all
strategies for player i will be denoted by Πi, for i � 1, 2. Let
Π ≔ Π1 ×Π2, so an element of Π will be denoted by π̂ and
will be called a multistrategy. Let F be the set of all functions
f: X⟶ A such that f(x) ∈ A(x) for all x ∈ X. Tus,
a strategy π � f0, f1, . . .  is called Markov if for each
t � 0, 1, . . ., ft ∈ F . A particular class of Markov policies is
the family of stationary policies. A stationary policy is
a Markov policy, π � f0, f1, . . . , such that ft � f ∈ F for
all t � 0, 1, . . .. Te set of all stationary strategies will be
denoted by F .

Te revenue of harvesting for each Country is measured
by a utility function, so consider that U1: A⟶ R repre-
sents the utility function for Country 1 and U2: A⟶ R for
Country 2. Now, suppose that each Player has an ambiguous
revenue, then the utility function for each player is char-
acterized by a fuzzy utility function, specifcally a trapezoidal
fuzzy function, see Defnition 1. Ten, consider for each
i � 1, 2, the following utility function:
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Ui(a) �
1
2
, 1, 1, 2 Ui(a) +

∗
(ε, 2ε, 3ε, 4ε)

�
1
2
Ui(a) + ε, Ui(a) + 2ε, Ui(a) + 3ε, 2Ui(a) + 4ε ,

(8)

with a ∈ A(x), ε> 0, and x ∈ X. Te utility function de-
scribed in equation (8) is used to model the ambiguity,
vagueness, or approximate characteristics of the fsheries
problem. Tis vagueness can be the result either of a lack of
exactness in the measure of the elements that are necessary
for the determination of the states of nature or the purely
subjective interpretation of these states [30]. Moreover,
recently fuzzy utility functions have been applied in algo-
rithm data mining, see for instance [31].

Remark 8. Note that equation (8) models the fact that the
utility is approximately in the interval [Ui(ai) + 2ε; Ui(ai) +

3ε] instead of receiving Ui as it happens for a crisp utility
with ε> 0 arbitrary.

In this way, the fuzzy game is conformed for the
components: (X, A, A(x): x ∈ X{ }, h, Ui: i � 1, 2 ). In rest
of the manuscript, it is assumed that ε> 0 is fxed. Te
following defnitions are a generalization of those corre-
sponding to the crisp case, see, for instance, [2, 32].

Defnition 9. Let βi be a fxed number in (0, 1), defne the
fuzzy discounted payment function for country i � 1, 2, as
follows:

Vi(x, π̂) � 
∞

t�0

∗
βt

i
Ui at( 

�
1
2
Vi(x, π̂) +

ε
1 − βi

, Vi(x, π̂) +
2ε

1 − βi

, Vi(x, π̂) +
3ε

1 − βi

, 2Vi(x, π̂) +
4ε

1 − βi

 ,

(9)

for each multistrategy π̂ ∈ Π and an initial state x ∈ X.
Number βi is called the player’s discount factor for i � 1, 2.
And Vi(x, π̂) denotes the total discounted utility when
Player i has an initial stock of fsh x ∈ X and the multi-
strategy π̂ ∈ Π is applied, then Vi is defned as
Vi(x, π̂) � 

∞
t�0β

t
iUi(at).

Defnition 10. Amultistrategy π̂o � (π1,o, π2,o) ∈ Π is a fuzzy
Nash equilibrium of the game if

V1 x, π1, π2,o  ≤∗ V1 x, π̂o ,

V2 x, π1,o, π2  ≤∗ V2 x, π̂o ,
(10)

for all π1 ∈ Π1, π2 ∈ Π2, and x ∈ X.

Remark 11. A fuzzy Nash equilibrium in the context of
fsheries is conformed by the harvest strategies in such a way
that each player obtains the greatest beneft under the
condition of maintaining the biomass level of the
population.

Observe that Defnition 10 implies the following char-
acterization of the total payment function:

V1 x, π1,o, π2,o   � sup
∗

π1∈Π1

V1 x, π1, π2,o  ,

V2 x, π1,o, π2,o   � sup
∗

π2∈Π2

V2 x, π1,o, π2  ,
(11)

for all π1 ∈ Π1, π2 ∈ Π2, and x ∈ X. In this case, the optimal
value function for Players 1 and 2 is defned, respectively, as
follows

V1(x) � V1 x, π1,o, π2,o  ,

V2(x) � V2 x, π1,o, π2,o  ,
(12)

x ∈ X and (π1,o, π2,o) ∈ Π is called a fuzzy Nash equilibrium.
Now, the analogous concepts for the crisp game will be

defned, which is obtained by the following components:
(X, A, A(x): x ∈ X{ }, h, Ui: i � 1, 2 ). Ten, a Nash
equilibrium π̂ � (π1,o, π2,o) ∈ Π for the crisp game satisfes
that

V1 x, π1, π2,o  ≤V1 x, π̂o , (13)

and

V2 x, π1,o, π2  ≤V2 x, π̂o , (14)

for all π1 ∈ Π1, π2 ∈ Π2, and x ∈ X. Next, a result is pre-
sented which allows relating the equilibrium for both games,
crisp and fuzzy.

Lemma 12. If π̂o � (π1,o, π2,o) is a Nash equilibrium for the
crisp game, then π̂o is a Nash equilibrium for the fuzzy game.

Proof. Let π̂o � (π1,o, π2,o) be a Nash equilibrium for the
crisp game, fxed. Ten, the α-cut of V1 (see Defnitions 3
and 9) is given by the following equation:

Journal of Mathematics 5



V1,α ≔
V1(x, π̂)

2
+

ε
1 − β

+ α
V1(x, π̂)

2
+

ε
1 − β

 , 2V1(x, π̂) +
4ε

1 − β
− α V1(x, π̂) +

2ε
1 − β

  . (15)

Now, applying equation (13), it follows that

1
2
V1(x, π̂) +

ε
1 − β

+ α
1
2
V1(x, π̂) +

ε
1 − β

 

≥
1
2
V1 x, π1, π2,o   +

ε
1 − β

+ α
1
2
V1 x, π1, π2,o   +

ε
1 − β

 ,

2V1(x, π̂) + 4
ε

1 − β
− α V1(x, π̂) + 2

ε
1 − β

 

≥ 2V1 x, π1, π2,o   +
ε

1 − β
− α

1
2
V1 x, π1, π2,o   +

ε
1 − β

 .

(16)

In this way, it is obtained that the following inequality is
valid:

V̂1 x, π1, π2,o  ≤∗V̂1 x, π̂o . (17)

Similarly, it can be shown that

V̂2 x, π1,o, π2  ≤∗V̂2 x, π̂o . (18)

From equations (17) and (18), it is possible to conclude
that (π1,o, π2,o) is a Nash equilibrium for the fuzzy game (see
Defnition 9).

In the next section, an example will be presented to
illustrate the theory exposed. □

6. Cournot–Nash Dynamic Equilibrium

In this section, an example of the fuzzy fsheries model will
be presented. For this example, the Cournot–Nash equi-
librium is determined, which consists of giving extraction
strategies in such a way that each player obtains his greatest
beneft preserving the biomass reproduction. Ten, suppose

that the reproduction function is h(u) � uδ, δ ∈ [0, 1], and
u ∈ [0,∞] and the utility function is considered as
Ui(a) � ln(a), for a ∈ (0,∞), i � 1, 2, with Ui(0) � − ∞. It
is generally believed that the free and noncooperative ex-
ploitation of fsh in a common lake or sea by two or more
countries leads to the excessive consumption of fsh, so it is
important to propose an appropriate fsheries policy. In this
section, a proposal in this direction is provided.

Theorem 13. A Cournot–Nash equilibrium for the fuzzy
fsheries model is given by the pair of stationary policies
(f1, f2), with

fi(x) �
βjδ 1 − βiδ( 

1 − 1 − βiδ(  1 − βjδ 
x, (19)

for each x ∈ X and i, j � 1, 2 with i≠ j. And the optimal
fuzzy payments for each player are given by the following
equation:

Vi(x) �
1
2
Vi(x) +

ε
1 − βi

, Vi(x) +
2ε

1 − βi

, Vi(x) +
3ε

1 − βi

, 2Vi(x) +
4ε

1 − βi

 , (20)

where Vi(x) � (1 − βiδ)− 1 ln(x) + Ci for i, j � 1, 2with i≠ j,
x ∈ X, and

Ci �
1

1 − βi

βiδ
1 − βiδ

ln
βiβjδ

2

1 − 1 − βiδ(  1 − βjδ 
⎛⎝ ⎞⎠ + ln

βiδ 1 − βiδ( 

1 − 1 − βiδ(  1 − βjδ 
⎛⎝ ⎞⎠ +

βiθ
1 − βiδ

⎡⎢⎢⎣ ⎤⎥⎥⎦. (21)
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Proof. Firstly the crisp optimal payments for each player
Vi: i � 1, 2  are calculated. To this end, the value iteration
approach [33] is applied. Let x ∈ X be fxed and consider
that V1,0(x) � V2,0(x) � 0. Ten,

Vi,1(x) � max
a∈ 0,xδ[ ]

Ui(a) (22)

for i � 1, 2. Tis implies that Vi,1(x) � δ ln(x) and the
maximizer is fi,1(x) � xδ for i � 1, 2. Following the scheme
of value iteration functions, suppose that Player 2 applies the
harvest strategy f2,2 ∈ F , then the best response of Player I is
determined by the following equation:

V1,2(x) � max
a1∈ 0,xδ[ ]

ln a1(  + β1V
1
1 x − a1 − f2,2(x) 

δ
θ  

� max
a1∈ 0,xδ[ ]

ln a1(  + β1δ
2 ln x − a1 − f2,2(x)  + β1δ ln(θ) .

(23)

On the other hand, if Player 1 applies f1,2 ∈ F as the
harvest strategy, the corresponding optimality equation to

characterize the best response of Player 2 is given by the
following equation:

V2,2(x) � max
a2∈ 0,xδ[ ]

ln a2(  + β2V
2
1 x − f1,2(x) − a2 

δ
θ  

� max
a2∈ 0,xδ[ ]

ln a2(  + β2δ
2 ln x − f1,2(x) − a2(x)  + β2δ ln(θ) .

(24)

Ten, the frst-order conditions of equations (23) and
(24) are as follows:

1
a1

−
β1δ

2

x − a1 − f2,2(x)
� 0,

1
a2

−
β2δ

2

x − f1,2(x) − a2
� 0.

(25)

Solving both equations simultaneously, it yields that

fi,2(x) �
βjδ

2
x

βiδ
2

+ 1  βjδ
2

+ 1  − 1
, (26)

for i � 1, 2, with i≠ j.
Substituting equation (26) into equations (23) and (24),

it is obtained that

Vi,2(x) � 1 + βiδ
2

 ln(x) + ln
βj

βiδ
2

+ 1  βjδ
2

+ 1  − 1
⎛⎝ ⎞⎠

+ βiδ
2 ln

βiβjδ
2

βiδ
2

+ 1  βjδ
2

+ 1  − 1
⎛⎝ ⎞⎠ + βiδ ln(θ),

(27)

for i � 1, 2, with i≠ j.
Now, suppose that for n≥ 3 the following expressions

hold:

Vi,n− 1(x) � Ki,n− 1 ln(x) + Ci,n− 1, (28)

where Ki,n− 1 � 
n− 3
m�0(βiδ)m + βn− 2

i δn− 1 for i � 1, 2, and the
constant Ci,n− 1, is defned by the following equation:

Ci,n− 1 � ln
βjδKj,n− 2

βiδKi,n− 2 + 1  βjδKj,n− 2 + 1  − 1
⎛⎝ ⎞⎠ + βiCi,n− 2

+ βiδKi,n− 2 ln
βiβjδ

2
Ki,n− 2Kj,n− 2

βiδKi,n− 2 + 1  βjδKj,n− 2 + 1  − 1
⎛⎝ ⎞⎠ + βiKj,n− 2 ln(θ),

(29)

for i � 1, 2, with i≠ j.
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Ten, for n≥ 3, if Player 2 chooses the stationary strategy
f2,n ∈ F , the best response of Player 1 is implicitly defned by
the following equation:

V1,n(x) � max
a1∈ 0,xδ[ ]

ln a1(  + β1 K1,n− 1 ln x − a1 − f2,n(x) 
δ
θ  + C1,n− 1  

� max
a1∈ 0,xδ[ ]

ln a1(  + β1δK1,n− 1 ln x − a1 − f2,n(x)  + β1C1,n− 1 + K1,n− 1β1 ln(θ) .
(30)

Analogously, if Player 1 applies the harvest strategy
f1,n ∈ F , the best response for Player 2 is characterized by the
following equation:

V2,n(x) � max
a2∈ 0,xδ[ ]

ln a2(  + β2 K2,n− 1 ln x − f1,n(x) − a2 
δ
θ  + C2,n− 1  

� max
a2∈ 0,xδ[ ]

ln a2(  + β2δK2,n− 1 ln x − f1,n(x) − a2  + β2C2,n− 1 + K2,n− 1β2 ln(θ) .
(31)

Ten, the frst-order equations are given by the following
equation:

1
a1

−
β1δKn− 1

x − a1 − f2,n(x)
� 0,

1
a2

−
β2δ Kn− 1

x − f1,n(x) − a2
� 0,

(32)

solving simultaneously, it is concluded that

fi,n(x) �
βjδKj,n− 1x

βiδKi,n− 1 + 1  βjδKj,n− 1 + 1  − 1
, (33)

for i � 1, 2, with i≠ j.
Tis implies that

Vi,n(x) � 1 + βiδKi,n− 1 ln(x) + ln
β2δKj,n− 1

β1δKi,n− 1 + 1  β2δKj,n− 1 + 1  − 1
⎛⎝ ⎞⎠ + β1Ci,n− 1

+ βiδKi,n− 1 ln
βiβjδ

2
Ki,n− 1Kj,n− 1

βiδKi,n− 1 + 1  βjδKj,n− 1 + 1  − 1
⎛⎝ ⎞⎠ + βiKi,n− 1 ln(θ),

(34)

for i � 1, 2, with i≠ j.
Terefore, it is concluded that

Vi,n(x) � Ki,n ln(x) + Ci,n, (35)

where

Ki,n � 
n− 2

m�0
βiδ( 

m
+ βn− 1

i δn
,

Ci,n � ln
βjδKj,n− 1

βiδKi,n− 1 + 1  βjδKj,n− 1 + 1  − 1
⎛⎝ ⎞⎠ + βiCi,n− 1

+ βiδKi,n− 1 ln
βiβjδ

2
Ki,n− 1Kj,n− 1

βiδKi,n− 1 + 1  βjδKj,n− 1 + 1  − 1
⎛⎝ ⎞⎠ + βiKj,n− 1 ln(θ),

(36)
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for i � 1, 2, with i≠ j.
From equation (35), it yields that

Vi(x) � lim
n⟶∞

Vi,n(x) �
1

1 − βiδ
ln(x) + Ci, (37)

where Ci, i � 1, 2 correspond to the limits of the sequences
Ci,n  for i � 1, 2. Now, the Nash equilibrium will be de-
termined. To this end, consider that Player 2 selects a sta-
tionary strategy f2 ∈ F , then the best response of Player 1 is
determined by the following dynamic programming equa-
tion [33]:

V1(x) � max
a1∈ 0,xδ[ ]

ln a1(  + β1E V1 x − a1 − f2(x)( 
δθ   . (38)

Te frst-order condition of equation (38) is given by the
following equation:

1
a1

−
β1δ 1 − β1δ( 

− 1

x − a1 − g(x)
� 0, (39)

from which it is obtained that

f1(x) �
x − f2(x)

1 + β1δ 1 − β1δ( 
− 1. (40)

An analogous analysis for Player 2 leads to the following
relation:

f2(x) �
x − f1(x)

1 + β2δ 1 − β2δ( 
− 1. (41)

Solving equations (40) and (41) simultaneously, it yields
that

fi(x) �
βjδ 1 − βiδ( 

1 − 1 − βiδ(  1 − βjδ 
x, (42)

for i � 1, 2, with i≠ j.
Tus, for x ∈ X,

Ki ln(x) + Ci � 1 + βiδKi( ln(x) + ln
βjKj

βiβjδKiKj + βiKi + βjKj

 

+ βiδKi ln
βiβjδKiKj

βiβjδKiKj + βiKi + βjKj

  + βi Kiθ + Ci( ,

(43)

for i � 1, 2, with i≠ j. Consequently, Ki � 1 + βiδKi, then

Ki �
1

1 − βiδ
,

Ci �
1

1 − βi

βiδ
1 − βiδ

ln
βiβjδ

2

1 − 1 − βiδ(  1 − βjδ 
⎛⎝ ⎞⎠ + ln

βjδ 1 − βiδ( 

1 − 1 − βiδ(  1 − βjδ 
⎛⎝ ⎞⎠ +

βiθ
1 − βiδ

⎡⎢⎢⎣ ⎤⎥⎥⎦,

(44)

for i � 1, 2, with i≠ j.
Furthermore, (f1, f2) satisfes Defnition 10, i.e., it is

a Nash equilibrium. Ten, via Lemma 12, the result
follows.

In the particular case when β1 � β2 � β, the following
corollary is obtained: □

Corollary 1 . Te optimal fuzzy discounted payments for
each player coincide, i.e., for each x ∈ X,

V1(x) �
1
2

W(x) +
ε

1 − β
, W(x) +

2ε
1 − β

, W(x) +
3ε

1 − β
, 2W(x) +

4ε
1 − β

 

� V2(x),

(45)
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with W(x) ≔ K ln(x) + C, where

K �
1

1 − βδ
,

C �
1

1 − β
βδ

1 − βδ
ln

βδ
2 − βδ

  + ln
1 − βδ
2 − βδ

  +
βθ

1 − βδ
 .

(46)

Furthermore, (f1, f2) is a Cournot–Nash equilibrium,
with f1(x) � f2(x) � fD(x) ≔ 1 − βδ/2 − βδx, for x ∈ X.

Proof. Tis result is an immediate consequence of Teorem
13, it is enough to make the following substitution:
β � β1 � β2. □

Remark 15. Note that the results in [10] represent a special
case of Corollary 14 when ε⟶ 0.

7. Cournot–Nash Equilibrium for the
Average Utility

Now, suppose that the players (countries) follow an average
reward performance criterion to choose a harvesting policy.
Tus, consider that

ji(π̂, x) ≔ lim
T⟶∞

1
T



T− 1

t�0
Ui at( , (47)

for x ∈ X, π̂ ∈ Π, and i � 1, 2. ji is called the long-run
average utility for player i, i � 1, 2. Ten, the average util-
ity value function for each i ∈ 1, 2{ } is defned as follows:

Ji(x) ≔ sup
π̂∈Π

ji(π̂, x), x ∈ X. (48)

And, in a similar way to the discounted case, a Nash
equilibrium is defned (see Defnition 10). Suppose that
player 2 chooses f2 ∈ F as a harvesting policy; it is well
known in the literature onMDPs that the following dynamic
programming equation for player 1 is valid:

j
∗
1 + w1(x) � sup

a∈[0,h(x)]

Ui(a) + w1 h x − a − f2(x)( (  , x ∈ X, (49)

where j∗1 corresponds to the optimal utility of player 1 and
w1: X⟶ R [34]. Moreover, if there exists a policy f ∈ F
that maximizes the right-hand side of equation (49), the next
relation holds: j∗1 � j1(f, x), for all x ∈ X. Similar argu-
ments hold for the case of player 2.

Te fuzzy control problem with respect to the long-run
average objective function is defned analogously, in par-
ticular, observe that

ji(π, x) �
ji(π, x)

2
+ ε, ji(π, x) + 2ε, ji(π, x) + 3ε, 2ji(π, x) + 4ε , (50)

for π ∈ Π, x ∈ X, and i � 1, 2. Te following result is valid
for the long-run average criterion.

Lemma 16. Te Nash equilibrium for the fuzzy control
problem coincides with the corresponding Nash equilibrium
for the crisp problem.

Proof. Suppose that π̂o � (π1,o, π2,o) ∈ Π is a Nash equilib-
rium for the crisp model. Let x ∈ X be fxed. Ten, by
equation (25) the following inequalities are valid:

1
2
j1 x, π1, π2,o   + ε + α

1
2
j1 x, π1, π2,o   + ε ≤

1
2
j1 π̂o, x  + ε + α

1
2
j1 π̂o, x  + ε ,

2j1 x, π1, π2,o   + 4ε − α j1 x, π1, π2,o   + ε ≤ 2j1 x, π̂o  + 4ε − α j1 x, π̂o  + ε ,

(51)

for all α ∈ [0, 1] and π1 ∈ Π1. Consequently, the next in-
equality holds:

j1 x, π1, π2,o  ≤∗ j1 x, π̂o , π1 ∈ Π1. (52)

Similar arguments applied to player 2 lead to the fol-
lowing equation:

j2 x, π1,o, π2  ≤∗ j1 x, π̂o , π2 ∈ Π2. (53)

Inequalities (52) and (53) imply that π̂o ∈ Π is a Nash
equilibrium for the fuzzy control problem. Since x ∈ X is
arbitrary, the result follows.

Now, the previous result will be applied to the case when
the utility function and reproduction function have the
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following form: h(u) � uδ, u ∈ [0,∞], and for i � 1, 2 defne
Ui(a) � U(a) � ln(a), for a ∈ [0, 1] and Ui(0) � U(0) �

− ∞, respectively. Firstly, the solution for the crisp control
problem will be determined. To this end, the vanishing
discount approach will be applied [34]. Tus, consider the
following auxiliary functions:

wβ(x) ≔W(x) − mβ, ρβ ≔ (1 − β)mβ, (54)

where mβ ≔ supx∈X W(x) � C (see Corollary 14). Ten,
when β↑1 in equation (54), it is obtained that
w∗(x) ≔ limβ⟶ 1wβ(x) � 1/1 − δ ln(x), x ∈ X, and

ρ∗ ≔ lim
β⟶1

ρβ �
δ

1 − δ
ln

δ
2 − δ

  + ln
1 − δ
2 − δ

  +
θ

1 − δ
.

(55)

Ten, if player 2 chooses the harvesting policy f2 ∈ F ,
the following equation holds (see (49)):

ρ∗ + w
∗
(x) � sup

a∈[0,h(x)]

U(a) + w
∗

h x − a − f2(x)( (  , x ∈ X. (56)

In a similar way, if player 1 selects the strategyf1 ∈ F , the
next equation is valid:

ρ∗ + w
∗
(x) � sup

a∈[0,h(x)]

U(a) + w
∗

h x − a − f1(x)( (  , x ∈ X. (57)

Ten, solving simultaneously the optimization problems
described in equations (56) and (57), it is obtained that

f1(x) � f2(x) � fA(x) ≔
1 − δ
2 − δ

x, (58)

x ∈ X. Terefore, by Lemma 16 and equation (50), the next
result holds. □

Lemma 17. Te Nash equilibrium for the fuzzy control
problem under the long-run average criterion is (f1, f2) and
the value of the game is

ji � ρ∗/2 + ε, ρ∗ + 2ε, ρ∗ + 3ε, 2ρ∗ + 4ε( , (59)

for i � 1, 2.

8. Numerical Experiments

In this section, a numerical experiment is exposed. For this
purpose, consider the state space normalized, i.e.,X � [0, 1],
and take the boundary point x � 1 as the initial state. Te
state x � 1 represents the stable equilibrium state of the
resource population when there is no extraction [13]. For
numerical purposes, we consider in particular ε � 1; it is
important to point out that the results obtained in this
section can be replicated for any value of ε> 0. Next, two
scenarios are presented to illustrate the discrepancies be-
tween the two criteria presented in the manuscript, see
Table 1. Te procedure for determining the values reported
in the frst row of Table 1 is described below. Applying the

results from Corollary 14, it is obtained that A1 ≔ V(1) �

(1.06, 2.12, 3.79, 4.24) and, in consequence, the corre-
sponding membership function (see Defnition 1) is given by
the following equation:

μV(y) �

0, if y< 1.06,

0.94y − 1, if 1.06≤y< 2.12,

1, if 2.12≤y≤ 3.79,

− 2.18y + 9.27, if 3.79<y≤ 4.24,

0, if x> 4.24.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(60)

Now, applying Lemma 17, it yields that
B1 ≔ j � (0.827, 1.655, 2.655, 3.31) and the membership
function is as follows:

μV(y) �

0, if y< 0.827,

1.2y − 1, if 0.827≤y< 1.655,

1, if 1.655≤y≤ 2.655,

− 1.526y + 5.051, if 2.655<y≤ 3.31,

0, if x> 3.31.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(61)

A graphical representation of fuzzy number V(1) and j

is illustrated in Figure 3. In a similar way, the results reported
in the second row of Table 1 are determined.

For the frst case shown in Table 1, the average optimal
utility is less than the discounted optimal utility, under the
order defned in (4), due to the following equation:

B1,α � [0.827 + 0.828α, 3.31 − 0.655α]≲A1,α � [1.06(1 + α), 4.24 − 0.45α]. (62)

Journal of Mathematics 11



Table 1: Discounted/average optimal utilities.

x ε β δ θ Discounted Average
1 1 0.4 0.3 0.9 A1 � (1.06, 2.12, 3.79, 4.24) B1 � (0.827, 1.655, 2.655, 3.31)
1 1 0.2 0.1 1 A2 � (0.87, 1.75, 3, 3.51) B2 � (1.01, 2.03, 3.03, 4.07)
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Figure 3: Blue is A1 and orange is B1.
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Figure 4: Blue is A2 and orange is B2.
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Figure 5: Biomass level for the discounted case.
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Tis is also graphically seen in Figure 3. Te second case
reported in Table 1 illustrates the reverse, i.e., A2,α ≲B2,α, see
Figure 4. It can be concluded that both criteria can lead to
diferent optimal utility values. Now, consider the numerical
values associated with case 1 reported in Table 1. Figures 5
and 6 show the level of biomass over time, and it can be
observed that the level of biomass stabilizes in both cases.
For the discounted case (see 5), the fsh level converges to
0.3, and for the average case (see 6), it converges to 0.48.

Ten, the biomass level for the discounted case is lower
than for the average case. Similar results occur for the case of
fuzzy numbers A2 and B2. Tus, we can conjecture that in
the long run, the biomass level of the average criterion is
higher than the biomass level generated by the discounted
case. It is important to note that this statement is valid for the
fsheries model presented in Section 5 and this fact is for-
mally stated in Lemma 18. To establish this result, consider
the following notation: let xD

n  be the sequence generated by
the discounted optimal policy fD (see Corollary 14), i.e.,
xD

n  is generated by the law motion (see (7)).

x
D
t+1 � x

D
t − 2fD x

D
t  

δ
θ, (63)

where t � 0, 1, . . . and xD
0 � x ∈ X. In a similar way, let xA

n 

be the sequence generated by the optimal policy fA (see
(58)), and in this case, xA

n  satisfes that

x
A
t+1 � x

A
t − 2fA x

A
t  

δ
θ, (64)

with t � 0, 1, . . . and xA
0 � x ∈ X.

Lemma 18. Under the previous notation, the following in-
equality holds:

x
D ≔ lim

n⟶∞
x

D
n ≥x

A ≔ lim
n⟶∞

x
P
n . (65)

Proof. Iterating the diference in equations (63) and (64)
with the initial condition xD

0 � xA
0 � x ∈ X, it is obtained

that

x
D
n � θ

δβ
2 − δβ

 

δ− δn+1/1− δ

x
δn

, x
P
n � θ

δ
2 − δ

 

δ− δn+1/1− δ

x
δn

.

(66)

Ten, as n goes to infnity, the sequence xD
n converges to

xD � θ(δβ/2 − δβ)δ/1− δ and xP
n converges to xP � θ(δ/2 −

δ)δ/1− δ. Now observe that xD < xP, due to 0< θ< 1, 0< β< 1,
and 0< δ < 1. Tis confrms the statement of the lemma. □

 . Conclusions

For the fuzzy games analyzed in this paper for fsheries
problems, it is important to note that the consequences
presented in this paper are substantially diferent from the
many others obtained in the studies of fsheries problems
because here the Nash equilibria are presented in a fuzzy
context that allows to interpret the values of the games in this
context (see Teorem 13 and equation (50)). As far as the
authors are aware, there is no work with this type of
treatment. It has been learned about the dynamic games in
the fshery models that (i) under the imposed assumptions
that include a fuzzy context, the optimal strategies for both
the crisp game and the fuzzy game coincide (see Teorem
13) and (ii) the numerical results indicate that the average
performance is better than the discounted case, since the
biomass level is larger in the average case than in the dis-
counted one (see Section 8). Tese facts were not known for
the fuzzy case before this work. Te methodology developed
here, which includes dynamics, fuzzy utilities, performance
indices, fuzzy Nash equilibria, and the dynamic pro-
gramming technique, is general enough and could be applied
to other models not necessarily related to fsheries, such as
resource management, the plastic ban problem (see [35]),
the telecommunicationmarket share problem (see [36]) and,
in particular, inventory problems.

Data Availability
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Figure 6: Biomass level for the average case.
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