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We investigate the conditions for the existence and uniqueness of solutions in a nonlinear system of sequential fractional
differential equations using the Liouville-Caputo type with varying orders. This system is enriched by nonlocal coupled integral
boundary conditions. The desired outcomes are attained by employing traditional fixed-point theorems. It is essential to em-
phasize that the fixed-point approach proves to be an effective method for establishing the existence of solutions in boundary value
problems. Furthermore, we provide constructed examples to illustrate the obtained results.

1. Introduction

Fractional calculus has become a prominent and extensively
studied area of mathematical analysis during the last few
decades. The significant expansion noted in this area can be
attributed to the broad application of fractional calculus
techniques in the development of creative mathematical
models to illustrate various phenomena in the fields of
science, engineering, mechanics, economics, and other
fields. On this subject, references [1-8] offer comprehensive
discussions and examples.

In the section that follows, we will present a survey of
scholarly articles relevant to the topic at hand. On page 209 of
their monograph, Miller and Ross [9] introduced the concept
of sequential fractional derivative (SFD) 2%, where x is
a positive integer. The papers [10, 11] explain the connection
between SFDs and non-Riemann-Liouville SFDs.

The author in [12] proved that, under periodic boundary
conditions, there are solutions to a nonlinear impulsive frac-
tional differential equation (FDE) with Riemann-Liouville

SED. The monotone iterative method was employed to obtain
the solutions. In reference [13], the nonexistence of solutions
for an initial value problem (IVP) incorporating linear se-
quential FDEs with a classical first-order derivative and
a Riemann-Liouville derivative is examined in the function
space F((1,00), R.).

For a particular class of nonlinear Hadamard sequential
FDEs, Klimek proved the existence and uniqueness of so-
lutions in reference [14]. The contraction principle was used
in conjunction with a set of initial conditions that included
fractional derivatives to accomplish this. Within our re-
search, “sequential” refers to the characteristic of the op-
erator 2¢+12%"), which can be expressed as
a combination of the operators 2 (2 + 1), where @
stands for the ordinary derivative.

The operator under discussion was first presented by
Ahmad and Nieto [15] in their investigation into the exis-
tence and uniqueness of solutions for the sequential FDE
with Caputo kind. Using techniques from fixed-point the-
ory, the authors in [16] proved that there are solutions to the
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sequential integrodifferential problem. The authors in [17]
looked into methods for solving the sequential FDE with
Caputo type that included fractional Riemann-Liouville
integral (RLI) boundary conditions. The study cited in [18]
showcased the existence of solutions for a sequential frac-
tional differential inclusion with Caputo-type, with
boundary conditions encompassing a fractional RLI.
Referendum [19] contains several conclusions regarding
the existence and uniqueness of the sequential FDE of the
Caputo kind. For sequential FDEs with nonlocal boundary

(‘2" + 12X (1) = f(r, X (1), ¥ (7)),

(ngﬁ +)f.92ﬁ‘1)?(r) = g(n.Z (D), Y (D)

20)=2"'(0)=0,
7(0)=%'(0)=0,

where 2<a, <3, 6,z,1,{ € (0,1), >0, and 9,y >0. Dif-
ferential and integral operators have an impact on the
nonlinearity of the function in System (4). In contrast, no
differential and integral operators are used in System (1). In
(5), the boundary conditions are coupled classical integral
boundary conditions; in (1), the boundary conditions are
coupled RLFI. There are coupled sequential fractional
integrodifferential equations in System (4), while there are
coupled sequential FDEs in System (1). The authors of [22]
used the Leray-Schauder alternative and the Banach con-
traction mapping concept. An analysis proving the existence
of solutions for a system of fractional order Caputo-type
sequential derivatives and nonlinear coupled differential

(1) =0,
?(1)=0>
where 1>0, a,f€(1,2], w,6€(0,1), ¥9>0, and

#,{ € (1,e). Differential and integral operators impact the
nonlinearity of the function in System (4), but differential
operators are included in System (2). Coupled classical
integral boundary conditions are used in (5), whereas
coupled Hadamard integral boundary conditions are
used in (2). The Liouville-Caputo sense of coupled se-
quential fractional integrodifferential equations is shown

("9’ 179" )y (0 = o(n T (0" D' T(@. ¥ (@), te (o),
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conditions, the authors in [20] proved the existence of so-
lutions; for the sequential fractional differential inclusion
with Hadamard-type, the authors in [21] derived existence
results. The study cited in [22] discussed the mixed type of
sequential FDEs. There are many practical applications for
coupled systems of FDEs. The discussion that follows will
cover a number of pertinent fractional systems indicated by
(4) and (5). To prove that there are solutions and that they
are unique for the nonlinear system of sequential FDEs with
Caputo-type,

7€ [0,1],

Te [0,1], N

L) =a’L(y),
Y (2) =bI"Y (6),

equations was presented in reference [23]. The methods
utilized to attain this outcome were derived from fixed-point
theory. The authors in [24] examined the stability and ex-
istence of a tripled system of sequential FDEs with multi-
point boundary conditions, whereas the authors in [25]
established the existence of solutions for three nonlinear
sequential FDEs with nonlocal boundary conditions. The
cited reference [26] contained the conclusions about the
existence of solutions for a coupled system of nonlinear
differential equations and inclusions incorporating SFD. The
authors in [27] developed existence and uniqueness results
for a system of sequential Hadamard-type FDEs, including
nonlocal coupled strip conditions:

(2" + 2" N (D) =f(r. T (), ¥ ), D°Y (1)), te (Le),

(2)
L(@="7"Y (),

Y (e)="72 (),

in System (4). Conversely, System (2) utilises Hadamard-
sense differential equations that are coupled sequential
FDEs. Subramanian et al. [28] analyzed the existence
results for a system of coupled higher-order fractional
integrodifferential equations. In [29], the authors con-
ducted an analysis on the coupled system of sequential
fractional integrodifferential equations with Caputo-

type:
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1 20) =20 =0,

7(0)=%'(0)=0,

where 3<a,$<4, A,A,>0, P,P25q;,9,>0, the Rie-
mann-Stieltjes integrals (RSIs) with bounded variation
functions ', %, #,, # ,. The nonlinearity of the function
in System (4) is impacted by differential and integral op-
erators, whereas System (3) includes two integrated oper-
ators. The boundary conditions in (3) use coupled RSI
boundary conditions, as opposed to the coupled classical
integral boundary requirements in (5). The study in [30]

{ (‘2" + 2,2 o (e) = F(e.@(e), ¥ (e),° D" ¥ (6), TV (¢)), € [0,1],

(‘" + 12 NT (D) =f(r. X (1), ¥ (1), T X (1), 7Y (1)),
(‘D 41PN Y () = a(n T (0, Y (1), L (1), 57Y (1)),

7€ (0,1),

7€ (0,1),

1

1
2" (0)=0,2(1) = Jl)fi’(s)d%l (s) + JO Y (s)dF 5 (s), (3)

1 1
2" (0)=0,%(1) = jo ()dH, (s) + jo Y ()dH, (s),

successfully derived existence results for a coupled system of
sequential fractional integrodifferential equations with
nonlocal Riemann-Liouville integral boundary conditions.
Motivated by the recent works, this study introduces and
examines a novel nonlinear nonlocal coupled boundary
value problem (BVP) involving Liouville-Caputo fractional
integrodifferential equations (LCFIEs) of varying orders.
The problem is defined as follows:

(4)

(‘D" + 1, DT () = B(e,@(2), ‘D" @ (), TD (), ¥ (8)), € [0,1],

supplemented with the coupled classical integral boundary
conditions

1 1
@(0)=0, @ (0)=0, @(1)=0, ®(1)=JO®(C)d(+JO‘I’(()dC,

(5)

1 1
w(0) =0, ¥(0)=0, ¥(1)=0, \P(1>=joo<od<+j0w)d¢,

where 9, € (3,4],%,4;>0,¢,,0,,q,,q,>0,°D* repre-
sents the Liouville-Caputo fractional derivative (LCFD) of
order 8 (for 6=9,7,1-1,9-1,¢,,¢,), & ©G:[0,1]x
R: — R, are continuous functions, and .7, denotes the
fractional RLI of order v (for v = q;, q,). It is noteworthy that
this study contributes to the literature by addressing
a unique configuration of sequential LCFIEs with distinct
orders and coupled integral boundary conditions. The
methodology employed involves the application of the fixed-
point approach to establish both existence and uniqueness
results for the problems (4) and (5). The conversion of the
given problem into an equivalent fixed-point problem is
followed by the utilization of Leray-Schauder alternative
and Banach’s fixed-point theorem to prove existence and
uniqueness results, respectively. The outcomes of this
research are novel and enrich the existing body of liter-
ature on BVPs involving coupled systems of sequential
LCFIEs.

The document is organized in the following sections: the
fundamental definitions of fractional calculus relevant to
this research are introduced in Section 2. An auxiliary
lemma addressing the linear versions of problems (4) and (5)

is provided in Section 3. The primary findings are presented
in Section 4, while Section 5 provides an illustrative example
that demonstrates the results of our research. Finally, Section
6 provides our paper’s conclusions.

2. Preliminaries

Initially, we delineate fundamental principles of fractional
calculus.

Definition 1 (see [3]). For a locally integrable, real-valued
function ® on co<a<b + 0o, the fractional RLI of order
9 e R (9>0) is represented by Ji (¢) and defined as
P (- 0!
o) = I 0L (Qdl. (6)
«@(3) T (Hd¢
In this context, I'(-) represents the well-known Gamma
function.

Definition 2 (see [1]). For a (r — 1)-times absolutely con-
tinuous function @: [a,00) — R, the Caputo derivative of
fractional order 9 is defined as follows:
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1 cend cox9-1 _
o= [2 69 a0 gat, r-1cocnr-mian (9" + 0D No@=n @, cc@n
m - -
7 (‘D" + D)W (e) = h,(e), €€ (0,1),
where [9] represents the integral part of the real number 9. ~ augmented by the boundary conditions (5), where
h1,h2 € €[0,1]. We denote by
3. Auxiliary Lemma
In this section, we examine a system of linear FDEs.
1 i 1 »
Ay =—1-e"),d,== (2% -2+ ™),
A xl
1 _ 1 -
= (1)t = (g~ 2+ ¢™),
t #
1 —-x ! -1,
As=—| (g -1+e 1)—J(x1{—l+e l)d(,
% 0
1 1
dg=— [(xf — 2% +2-2e7) - J (4 -2 +2- 2e”l‘)d(],
% 0
1 (! Y
5277:_2J (y1(—1+e l)d(
00
. 9)
dy = [ (0 - 2w+ 2- 26,
fyJ0
1! g
dg—%—% 0(}(1(—1+€ ) (,
o = 1 1( 2,2 ¢
=3 (% -2%0+2-2e )d(,
x Jo
1 N -l
dy=—Wu-1l+e )__21(#15—1‘*6 1)61(,
th pyJ0
1,5, —u 1 (' 20 —u:¢
A, = [?(!”1 -2, +2-2e )_EJO(‘MIC —2u(+2-2e" )d(,
1 1
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and
[ emeo(Ji 4 - i Ja - [ 450 e
mj;e*’““ ‘><j - “)")th( )c jo((ﬂmzh (O,
(R (=T E
+JZ(JZ e ( ; (;ma)ﬂ)zhz(")d")d“)d‘v
J;e 1O<J0 E(su)e)zf’l(“)d“>d(’ (10)
( o u)< TG U)S;E’I(")d”)d“)d(

+J (J 4y (- (IO (113( a)n)zhz(g)da)du)di

2
"J;e%(l_o(J (g( Y, )du)d(

A = (ol s — ol ) (b ) = A3l 1) = (Aol = b5 vo) (A o7 — A 3y),

A=d,d,A,

Lemma 3. If A, #0, then the solution (®,¥) € (€*[0,1])?
of the BVP (4) and (5),

£ ¢ _ 9-2
@) = ZS(E)J +j eW‘)(J (C-w hl(u)du>d(,

Z 0 T(9-1)
(11)
Vo ‘ (¢~ u)” ’
¥ = 7,07, [ e O [ G, wa
where
S (e) = iz () ae—1+e %)+ % (©,)(5e" —2x,6 +2-2¢7), i=1,2,3,4
% %
(12)

1
Ti(e)==5E)(me-1+e")+— (Y )(‘ufez —2ue+2 - 2e7"1£), i=1,234
t i

Proof. System (8) can be expressed equivalently as follows:
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(6@9 +x 599’1)(3(3) — 8, (e), ee[0,1] The general solutions of system (5) and (13)
1 — Y1 > > >
(13)
{ (69;1 +‘u15@rl*1)\{/(£) = [)2 (g)) = [0, 1]
@(g) = coe ° +:{—11 (1-e%)+ ;:2 (me—1+e ™)+ c—z(xfsz - 2x6+2 - 26_"18)
1 1

— CE-w)?
; Joe (Jor(s—f’l (u)du)d(

(14)
WY (e) = doe € + L} (1-e™)+ b% (pe-1+e™)+ b—g (‘ufsz —2ue+2 - 2e”‘1£)
Hy Uy 13
2
¢ —uy (e=0) (C u)’7
+J0e <J Ty b (weu Jat
By applying the boundary conditions @ (0) = @' (0) = 0 After differentiating system (15), we get
and ¥ (0) = ¥’ (0) = 0 from (5), we infer that ¢, = ¢; = 0 and
b, =9, =0. Consequently, we can deduce
o(e) = i (xls —1l+e ™)+ c—33 (xfsz - 2% e+2— 2e"”1€)
% %
c 9-2
" ,[0 e (55)<j (lg(Su) b (u )du) '8
bz —p € b3 2.2 —p €
W(e) =5 (me—1+e™) + 3 (ue - 2me+2-2e7)
H H
o (-
+Joe <J Ty (0 Jdl
(15)
[ 1 _ ) —% € 3 2 —% €
@' (&) == (%, — je )+—3(22{1€—2%1 +2e )
) <
- ‘(- u)‘“’ ’ -0
o [ e ([ S Jacs [ 8595 @
4 (16)

) e D ue
¥ () = ;; (i — ™) + Mi <2P‘?€ =24y +2pe )
1 1

femeof [(GowT (="
— 1 (e=0) ARt
A 0 (Jo TO- 1) hz(“)d“)dﬁj T 1y 1 (O

By setting the conditions @' (1) = ¥' (1) = 0 from (5), we
deduce
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' » ) D oeacof [F€-wT?
;—21(1—e )+ x—%(le—uze ) =% Joe 1 0(] F(S“ b, (u )du) ¢
1-¢9*?
[ Ao
4 (17)
% uy, D _ I Ly A A (TS
o (et G2 ame ) = | O [ St aod Jag
(e- C)’“
[ e
Now, utilizing the final boundary conditions from (5),
specifically, @(1) = [, ®(Od{ + [, ¥(Od{ and ¥ (1) = [,
®(O)d( + [, ¥ (O)d(, by (15), we deduce
1 —% ! —%
cz[—%[( -1l+e 1)—Jo(xlf—l+e 1()d[”
[i[ —2x +2—26_”1)—J-1(%2(2—2x(+2—2e“‘()d(:|]
i 1 0 1 1
iz yl (-1+e™ )d(]+b3[ J(#%(2—2M1(+2—26_M1()d61|
1 1
(18)

1 ¢ B u (u 0)
% ((—u
Jo([o < o I'(®-1) I)l(a)da>du>d(
! —tt ({~u) *(u - 0')11 g
+JO( z 0 oy B (0o Jau Jat

L‘]e_,l(u(j (- u)s)th( )du)d(

and
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1 ! iy Therefore, by (9), (10), (17)-(19), we find the system in
-G [_ZJ ( -1+e™ )d(] the unknowns ¢, ¢, D, and dj:
%
A e, + 05 =5,
1
[3 -2, +2—2e" )d(] 30y + by = ), (20)
" Ase, + ey — by — Aygey = I,
1 1 (! - - =7,
+b, |:_2 (u-1+e*)- _ZJ (!41(_ 1+ e_’“()d(] Aoty —d g¢5 + A 10y + A pe5 =7,
“ P70 By the first two equations of (21), we find ¢; = (., -
¢ g e,/d,) and by = (F, — d3b,/d,), (H,,94,>0). By
(J e (—u)( (u - ‘7) f)l ( a)da) du) d¢ substituting these values of ¢; and 95 into the remaining two
o\Jo o T'(9- equations of (21), we derive the system in the unknowns ¢,
. " and b,:
1 (u - o0)"
+ (o ————%,(0)do |du |d
Jojo (ol"(;y )hz()> )(
. 1-0 C-w)" 2
- e J B2 g (wdu )de:
0 o T'(n-1)

(19)

{ Ay (A s — d\dg) =0y, (Ao ; — A3 lg) = Ayl I3 — A A I\ + Ay Ay T, 1)
—d (Ao — o\ o) + 0y0, (gl — sl yy) =y Iy + Ay oI | = Ay, T
The determinant of system (21) is A = o/, 9/,A,, where
A, is given by (10). By assumption of this lemma, A # 0, then
A = 0. Therefore, the solution of system (21) is
A
6= {jl[ Ay A (Aydyy — 3l y) + Aoy (Ao — d3))
+ I [~y ds (s, — d38dlyy) + oyl (A4 7 — A3)|
+ I3, (Al — Ayl y) + T Ay (g, — A3y}
=S I+ G I 6Ty
(22)

b, = 7

{jl[ Ao (Al s — o ) — Ay (9 — A\ )]
+ Iy [~y (Al s — b\ o) + by (b, — A\ )]
+ I3, (Al g — 18 yg) + Iy, (Al s — oA )}

=B, +E, 5, + B3I+ B4 I,

Therefore, for the constants ¢; and b5, we obtain
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1

SR

Ty dl y[(dydls — o) (Aol yy = s yy) = (Aol =l yg) (A y9l7 = 3 g)]
— I\ Ay (A (Ayd ) — A3 1) + Ao (A4 A7 — A 335)]

= I8\, [y (Ao — A3 y) + Ao (A7 — 3 9y)]

- Il ol (ol ,ohy — Ayl ) + Tyl ool (Aol _52735278)}

=0,5,+0,5,+0;5;+0,5,, )
23

1
ba = ﬂ{‘jlﬂsgﬁ[gﬁﬂw ('52{23[5 _'9[1'976) - Q[4'Q{6 ('9{232{9 - 'dldlo)]
4
—sz2ﬂ4[(d2d5 - ‘9[1*976) (9[4*9711 _*973*9712) - (9[2*979 _'971*9{10) (*9749[7 - *Qfads)]
_f2$2{3'974[_'d257[12 (ﬂzﬂs - 971@{6) + szﬂg (ﬂzﬂ9 _dlﬂlo)]
_j3~972did3 (d2d9 _97152710) +j4~97252742;~973 (dzds _52715276)}

=Y, 7, +Y, 7, + Y I+ Y, Ty,

and

1

A [~ (A — A3 ,) + o (Aol ; — A3 lg)],
1

G =
o

G = A_Z ('%8‘5%11 _4777&712)’
1

Ko/4
Gy = A_2 (d&?{u - 973»‘2712))
1

A
G4 = A_Z (e yl; = d3ly).
1

[1]

Ko'4
1 A_lz (5o — o),

1
2 A_ [_'QfIZ (‘QYZMS - 'Q{I‘QYG) + e52{8 (d2d9 - 'Q{I‘QYIO)]’
1

(1]

1]

Ko/4
?4 (dydy— ),
1

3

=
=
—4

A
A_4 (s — ).
1

1
0, = A (s (dydy, = sl y) + Ao (A 497 = d35l)),
1
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o
0, = A_l (~dgd ) + 75 1,),s
1
oA
0, = Fl (52739712 _97452711))
1
oA
0= A—l ('Q{3ﬂ8 _'9[4'977)-
1

o
Y, = A_3 (‘Qf6‘d9 _ﬂsdw)’
1
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1
Y, = A, (1 (Aodls — ) + ol (A yly = ol )],
1

o
Y; =A_3(=Q71=9i10 —5772@79)’
1

K4
Y, :A_3(f971°976 - d,d5).
1

where ¢;,5;,0,,Y;,i =1,...,4 are given by (24).

By replacing the constants ¢2, 92, ¢3, and 93 in system
(15), we can solve problems (4) and (5). It is possible to
compute the reverse of this result directly.

The Leray-Schauder alternative is now presented; it will
be used to demonstrate that there are solutions to problems
(4) and (5). O

Theorem 4 (see [1]). Let & be a Banach space and
T & — & be a completely continuous operator. Let F =
{9 € & ¢ =vT (¢) for some 0 <v < 1}. Then, either the set §
is unbounded or I has at least one fixed point.

IT, (@, ¥) (¢)

=&, (e) [%1 I; e (IO(I

1=
B Jo ro-1)
1
+ 52(8)[#1 JO e_“‘(l_o(]
~ Jl -9

o T(-1)
ol f{fe
(g

(g -uw)*?

JTO-T %(s,@(e)

(-
o I'(p-1)

v (- o)
o T(9-1)

u (11 _ 0')17_2

0 o T'(y-1)

(24)

4. Main Results

We consider the space % = {@ € €[0,1],°2”@ € €]0, 1]}
and 7 ={¥ € €I[0,1],°@"¥ € €[0,1]} equipped, re-
spectively, with the norms ||CD o = ||CO|| +)°2*2@| and
II‘I’ Il = ||‘{’|| +1°DP1¥|, where ||| is the supremum norm,
that is [[w| = sup.c(o1jjw(e for w € €[0,1]. The spaces
(%, |lo,) and (7, ||ll+) are Banach spaces, and the product
space UXT endowed with the norm
(@, )lgys0w = ||(DII% + ||‘I’||7 is also a Banach space. Uti-
lizing Lemma 3, we define the operator IT: % x 7" — % x
7 as follows: II(®,¥)= (I, (®,¥),I,(®,¥)) for
(@,¥) € % x V', where the operators IT;: % x ¥ — % and
IT,: ®x¥ — V¥ are given by

E(0), DY (), TN (¢)) (u)du)d(
F(e@(e), ¥ (2),° D" ¥ (), 7Y (¢)) (()dc]

6(e @ (). ¥ (o), ‘D" (e), 70 (¢)) (u)du)d(
6(5@ (o). ¥ (). ‘D" 0 (), T a(¢)) (()d(]

F(e0 (0. ¥ (e).° DY (), 7Y (&) (a)da)du)dc

@(s, @ (e), ¥ (), " 2% (¢), J‘“Co(s)) (a)do)du>d(
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¢ 9-2
—jle“l“ 0([ ((( W S (e @ (e), ¥ (e), ‘DM (e), Jq“{’(s))(u)du>d(]
0

1)
[ ( _Xl ((~u ( (11 0) cph q; ) )
+8,(e) &@(€),¥(e), D"Y¥ (), I ‘I’(s))(a)da du |d{

re- 1)

1 ¢ B . (11 0,)1’] 2
1 ((-u oy 0
+J0(J06H (Jo F(n-1) &(s,@(s),‘{/(g), 27 (e), S Q(S))(G)da)du)d(

¢ _ -2
—jleﬂl“‘)(J (C( “)’1) &(s,o(s),\y(s),f@%(s),J“zo(s))(u)du)d(]
0

€ =%, (e~ ¢ (( u)9 ’ ¢ 1 1
+ Joe (JO o (60 Y0, D (@), ‘I’(e))(u)du)d(,

¢ _ 9-2
IL (@, %) (e) = T, (e)[%l J:w“”’(h (g(sl-l)n F(e@(2), ¥ (o), “QZ¢1‘{’(8),Jq1‘I’(e))(u)du)d(
J 1-9*?

- )%(e,co(s),%),69¢1\P(e>,f“1\v(e>)<0dc]

¢ _ -2
+ T, () yljle”‘(lo(-[ (ﬁ( ‘i)z (Sj(s,co(e),\P(e),c@¢2®(5),Jq2®(s))(u)du)d(
0 o T'(n-1) (25)
J 1-9"r

T(n-1)

M1 ¢ 1 _ 9-2
+ T, (@) Jo(joe"l<‘“><J0 (;(96)1) g(e,@(s),?(s),f@¢IW(e),J‘h\p(e))(a)da)du)d(

YA - u (u_o,)r/—z - 2
+ JO(JOe (¢ )<JO NCE (Si(e,(b(s),‘l’(g)) 2@ (), I (D(s)) (@do)du)d{

(s, @(e), ¥ (), 2”@ (¢), 2@ (5)) (()d{]

o I'(9

)
o ! ¢ = ((—u (11 0)_ ¢ 1 1
+J4(s)[JO<JOe ¢ ’(Jomg( 0(e), ¥ (2),* D" ¥ (&), 5 ‘P(s))(a)do)du)d(

1 - (u-— 0,)71 2
1 (§-u) conds ,
+J (jo ' (JO Tl —1) 8(e @ (), ¥ (2)," 2" (2), 720 (e)) (0 )da)du)d(

Ie 92
—Jle‘"l“‘og Lo g(e,co(e),\y(s),cgz“?]\y(e),f‘h\y(s))(u)du)d(]
. -

b 1 ¢ (C_ )’1 ? c 3 2
JO (1 ‘(JO Y ®(e @ (e), ¥ (e)," 2”@ (¢), I @(s))(u)du)d{]

—H ‘ ((_ u)’7*2 ct: 2
b eme (L T CCICR TOR AL I @(s))(u)du)d(.

If and only if (@, ¥) acts as a fixed point of the operator (1) [#,] The continuous functions & and ® are defined
T, then the pair (@, ¥) is a solution to problems (4) and (5). on [0,1] x R* — R. Moreover, fori=1,..., 4, and
The presumptions used in this section are now described. M, >0,b, >0, there exist real constants such that

|%(5’§01)‘P2>‘/’3»§04)| <M + 2m1|‘P1| + Emz|‘/’2| + 27)23|q)3| + 9}23|q)4|,

(26)
|®(5>§01’ ®2> §93>§04)| <b, + 51|¢1| + 52|§02| + 53'%' + b3|¢4|>

Forall e e [0,1] and ¢, e R,i=1,..., 4.
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(2) [#,] The continuous functions & and ® are defined
on [0,1] xR* — R. Additionally, there are posi-
tive constants &, >0 and 28, >0 such that

|%(8’ P1> 92 P35 ‘P4) -8 (3’ YY» Y5 ?4)|
SE&OG(PI - ?1| + |(P2 - ?2| + |€03 - ?3| + |§"4 - ?4|):

(27)
|®(5» 9192 93.04) =6 (& Y1, Y0 Y ?4)|
Sﬁo(l?’l_?1|+|¢2_?2|+|‘P3_?3|+|‘P4_?4|)’
forall e € [0,1] and ¢, ¥; € R,i=1,2,3,4.
Si(e) = 1 (6) (1 — %) + iz (@;,)(2%, —2+2e), i=1,234.
%1 }(1
(28)
Ti(e) = ( D=y e"‘l)+ (Y,)(2u —2+2e™), i=1,2,3,4
1
We denote by 3’i:sup56[0)1]|09i(8)|,§i:supse[o’ll
|7 (e)| fori=1, 2, 3, 4.
o (2-e) o [(l—e_xl) (x1+e_”‘—l)] - ((x1+e_”1—1)) (1-e™)
=S T e %T(9) 9 2T ) Hr®
2-¢") = ((#ﬁe”‘—l)) < [(1—6”‘) (M1+e’“—1)]
Uy=S———2 18—+ 8 >
S R N Y R i 7R OO PO
~(2-e7) = [(l—e"‘) (%1+e"1—1)] = ((x1+e”1—1)>
/o N g, (= )
e T e T are T e
5 (2-¢") A((#He —1)> [(1—6’“) ( +e™ —1)] (1-¢™)
v =G G X
B E OIS W R ] I (TR T R AT )
P wi(2-e7) [(l—e“1 (%1+e"—1)] ((x1+e”1—1)) (2-e7)
U =38, >
! r(9) T (9) 2T (9) e )T T
o_pi2-e™) ((ﬂl tet -1 ) A,[(l—e’“) (M1+e’“—1)]
U,=3S S )
2T AR W )
. A, (2-e) A,[(l—e_xl) (x1+e_1—1):| ((x1+e”1—1))
=gt )5 |
VT T ar® T et ) e
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v, = ﬁéer §~/<(/41+2e’”—1)) . 971[ (1-e™) N (4 +26—m ~1) . (2- e,ﬂl)’
L W () w I () 2T (1) I (n)
U *
N =U +Y, + 1
1 1+ 7+ F(Z ¢2) F(2 )
U T
N =U +V, + 2
2 2tV F(2 ¢2) T(2 )
'/V3:m0!/1/1+bo./l/2,
bs (30)
/V4:W21/V1+ bl+52+m '/VZ’
m,
= (mzz + 9)23 ﬁ)/’/ + 54,/1/2,
4
R
SR (E)
SRS (ETS)
Theorem 5. Assume that (%) holds. If Proof. First, we prove the complete continuity of the op-
max { N ,, N5} < L. (31) erator II: % x 7" — U x 7'. The operators II, and II, are

implied to be continuous by the continuity of the functions
& and ©, which make IT a continuous operator. Then, we

Then, the BVP (4) and (5) has at least one solution ~ Prove that IT has a uniform boundary. Let Q ¢ % x 7" be any
(@(e), ¥ (¢)), € € [0, 1]. arbitrary bounded set. Consequently, Z1 and Z2 are
positive constants such that

(e @(), ¥ (0),° D" ¥ (e), T Y (9))| < £,
(32)
|6(e,@(2), ¥ (), 2"0 (e), 0 (e) )| < £,

V (@,¥) € Qand ¢ € [0,1]. For any (®,¥) € Q and ¢ € [0,1], we have

|H (®, \P)(s)l lS (e)|

%, ((C u) ¢ 1 1
[ J (1 o(J To-o |3 1, @ (1), ¥ (1), ‘D (1), S (1)) |du)

1
coph 1
[ A 86000, D0, D) |dc]

¢ _ -2
|§2(e)|[ J "’“5(JO%|®(u,co(u),\y(u),@z“’za)(u),f"za)u)|du>d(

+J1(1 O

T ORI (ATI() |dc]

! ( —X -u ( ) c
+|S3(£)|[JO<JOe I (L%]g (0,0 (0), ¥ (0),°D* ¥ (), 7Y () |da>du>d(

' ¢ —u *(u - )77_2 Conts )
+ JO(JOe (¢ )(JO Til)kﬁ(g’@(a),\y(a)’ 2% (0), I (D(G))|da>du)d{
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! -x%; (1-0) ((( 11) coxh 1
+Joe jo Ly B @00 % (1, D ¥ (), 7 () )¢
1/ ¢
+|54(s)|“O(Joe‘"l“—wgo (;‘(9“ 55000, (09" ¥ (), 7% (0) |da)du)d(
+J1 J(e_’“((_") | =0y 4, 0(0), ¥(0), D0 (0), 70(0)|do )du )t
o\Jo o I'(n-1) ’ ’ ’ ’

-2
+j;e‘**l“‘0<r (ﬁ(_rl'i):) |®(u,Co(u),‘I’(u),c.@%a)(u),qua)(u))|du)dé]‘

¢ ¢
+J e-m(—c)(J (E(Su) |B(¢ @ (w), ¥ (w),* D" ¥ (1), 7 ¥ () |du)d(

0 1)
2-e™) - [(l—eul) (x1+e”1—1)] A<(;<1+e"1—1))]>
<Z{S +8 + S P e ——

1{ bT() NG #T(9) O ©T)

-~ —et -~ “H_ =N _ ot —t _
+32{<§>2(2 € )+§3<(Aul +Ze 1)>+<§>4[(1 e )+(I’ll +2e 1)]}
) T () w I (n) T (n)
(1-e™) _
<, AT LU+ L U,. (33)
Then, ||H1 (o, ‘P)” <LU, + L, U,, for all (@,Y) € Q. Considering the definition of II, (@, ¥), we get

I} (@, %) ()| = |$7 ()]

b aa- C-w”? contr 1
[%1 Joe a O(J T B e, ¥, PPy ), 7w () |du>

()9 2
+JO r@-1) |B(¢2 (0, ¥(0),° 2" ¥ (), 7" ¥ () |d(]

¢ 2
|<§’2(s)|[ je’“‘)(J (g(ﬂ")q 6 (u a(u),W(u),f@%(u),J“zmu)jdu)d(

n-2
o ! (0 6(¢.0(0, ¥ (0, ‘D*0 (), 70 () |d(]

1 e u _ 92
+ |o5’3'(8)||:J0<JOe_"‘ “‘“’(JO (;‘(9 i')l) |g§(a,a>(a),\P(a),fgz"“\y(a),Jql\y(a))|da>du)dc

1 ¢ R (g — )11—2 . 2
* Jo(]oe " )(JO I'(n i 1) |®(0’®(0)"{j(0)’ 7% a(o), 7" @(0))|da)du)dC

! —x; (1- (({ 11) ¢ 1 1
+J0e “ O(J NEEY S (1w, @ (), ¥ (1), D" ¥ (u), 7Y (1)) |du>d(]
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1 e u 92
+ ISi(e)|[jo<Joe‘“1 ““”(JO (;‘(9 7)1) |&(0,0(0), ¥ (0), 69%\1/(0),Jql\y(a))|da>du>d(

1/ - u (g _0,)}1—2 . 2
’ Jo(Joe n )<J0 I'(n-1) |®(U’®(a)’\y(0)’ 9"0(0),.7" Q(U))|d0)du)d(

! = - ¢ (C_ u)’ﬁz c 2 2
+ Joe t( "(JO OBy |6 (1, @ (1), ¥ (1), ‘@@ (u), 5 (D(u))'du)d(]

9-2
+ j%‘”l“‘“(f €-u) |%(C,(D(u),‘I’(u),CQZ¢1‘P(u),Jq“P(u))|du>d(, |

0 o T'(¥-1)
~,2-e) S, [(1-e™) (x1+e_%1—1)] A,<(z1+e_”1—1)>}
SZL{S +8 + + Sy ———
1{ L) EEC) ©T(9) O 2T)
. _ o h =N —H _ R 1- —H —H _ 1
+32{(§32’(2 € )+§3,<(‘M1 +26 1))_'_05)4[( € )+(Au1 +26 ):|}
I'(n) T (1) wl () T ()
1- e_Xl * *
l(xll"(S)) =L\U +Z,%,. (34)
by (LU + L)
By utilizing the definition of the Caputo fractional de- 2 I, (@, %) (5)" SW Ve € [0,1].
rivative of order ¢, € (0, 1), we conclude 2 (36)
con® ¢ (e~ C)_(PZ '
211 (@, ) (€)| < J I} (@, ¥)|d¢ Therefore, we conclude
oI'(1-¢,)

I, @ W), = @, 9] + |21, @)

. Fe=O"
< (LU + LU | ————=dC « X (37)
11Uy 24y Jol"(l—%) S31%1+g2%2+(3}%(12ii3%2).
LU+ LU
§W> Ve € [0,1], In a similar manner, we have
(35)
from where we obtain
|%, (@) (e)|
5 @) S [0-") Gare™ -] o (Gare™-1)
S%{‘/‘ r® U ar® et | e
SR WA (R A (O WOEEES)) |
*72{‘/2 R AR O R
(1-¢e"™)
p L (1)
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‘PN, (@,¥) ()| <

I, @ W), =, @) + | '9* 1, @)

<LV + LYy + (

Journal of Mathematics

|73(@,9) (¢)|
~,2-e") 4 ,[(1 —e) (g +e - 1)] ~ ,((xl +e - 1))]>
<V,1T + + + T, ——
1{ LT() G T (9) N\ AT)
—~ _et e “H_ . _ o —H _ 1
+%2{572,(2 € )+9~3’<(1u1 +2e 1))_{_3,“1[(1 € )+(nu1 +ze )]}
I'(n) uiT (1) mI (1) T (1)
(1-¢e™)
+ Yy
2 ()
=LV + L7,
(A7, +32%), Ve € [0, 1]. (38)
r(2-¢,)
Therefore, we conclude Based on the inequalities (37) and (39), we ascertain that

both II, and II, are uniformly bounded. This, in turn,
implies that the operator IT is uniformly bounded. Next, we
. . will demonstrate that II is equicontinuous. Take
47+ )7 ) €,& € [0,1], with & <¢,. We then have

r2-¢))

(39)

iH1 (@,¥) (&) - 11, (@,¥) (51)|

Sl°91 (e2) - C?1(51)|

X

A (S ‘ 1
[xl [ e 0(]() Ty (w0, ¥ (0, D ¥ ), ‘P(u))'du)d(

Jl a1-0"°

), TooD \%(c,m(o,W((),”@*”'\P(o,f“lwo)\dc]‘

+ |°92 (52) -5, (Sl)l

X

1 — — (((_u)’FZ c 3 2
[,41 [ eno 0([() e A GRIOR IO IO, (Du)ldu)d(

. Jl (1-0"

OBy |<s(c,co(c),wo,C@¢za((),fqzo(C))|d(]‘

+ |C§>3 (82) = S5 (Sl)l

! ¢ =% ((—u " (u B 6)9_2 c 1 1
x[ Jo(Joe « )<.[o NCE) |8~'(a,®(a),‘1’(a), 9"Y (0), 79 ‘I’(o))‘da)du)d(‘
+

! ¢ —uy (-1t u(u_O.)U*2 c 2 P
L(Le we ’(JO TR U CLICRTORALION o(o))\da>du>dc‘

+

1 =%, (1= (((_u)‘%Z c 1 1
Joe « 0(](} T-D) | (@ (w), ¥ (), ‘D" ¥ (w), 79 ‘I’(u))ldu)d(”
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+ |54 (&) =S4 (51)|

|

Ll e u (g - g)"?
"1(( u) N 1
Jo(joe (Io NG |8 0,®(0),¥(0), " D"V (o), F"Y¥ (o) |d0 du d(l

I'(n -

—u, ((~u (11 0’)’1 - c
J (J n (J |(§ (0,0(0), ¥ (0),°2*0(0), 70 (0)) |da du d(‘
0

+

( 2
Jle‘“l (1- ()(J -w"r '(Sj ,@ (), ¥ (1), 2" @ (u), 7@ (1)) ’du d(‘
o F(n—l

+

(¢ -u)”? - 1
Jl)e (J r(9-1) |§§ ((D(u) ¥ (u), 9¢‘I’(u) Jq‘I’(u) 'du d(”

S (L)  PE V(R TE)

] C=¢") 3 oy 3 (e[ 0me), Gare™ - 1)
< {S (52) 5 (81)W+53(52)_§3(51)|: %, (9) + x?F(S) ]

- 2 (x1+e”1—1))}
+8,08),-8, (5)1(7%%1"(9)

_ (*'“) - < ( +e™ 1)

M1
+84(e) - 54(81)[ r(ﬂ))+(“l;2‘;(n) )” (40)
1

Because

Si(&) - Si(e)

1 . 1
=5 (6;) (e, = 1+ €7%) + = (©,) (%] — 2218, +2 - 26 %)
1 xl

1 1
- = () (e -1+ + = (@i)(;@e% —2%,8 +2 - 2e_x‘£‘) i=1,2,3,4 (41)
o o
1 %€, %16,
S;]qu%l (e—&)—€"1 +e |
1

+i3|®i||xf(s§(s§ - sf) —2(e — e_”lsl)) - % (& — sl)' — 0,as¢, — ¢, i=1,2,3,4
%

Clearly, |1'I1 (@, V) (&) - 11, (@, V) (51)| — 0, as
& — &
Also, we obtain
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(&1 =)™ - (e, - )"

Journal of Mathematics

‘D™ (@,9) (5,) - ‘D™, (@, ) (¢))|

1 & .
= I(1-¢,) Jo (& - ()¢2 (& - ()4’2 |H1 (@) (Old(
Hisey ). @0 @O (42
2 &
‘g - — —
=gy Qe e ea ) —o
ase, — ¢.
In a similar manner, we have
I, (@, %) (&;) - T, (@, ¥) (&;)] — O,
(43)

Thus, the operators I1; and II, are equicontinuous, and
then IT is also equicontinuous.

Thus, we deduce that IT is compact based on the
Ascoli-Arzela theorem. As a result, we determine that IT is
completely continuous. R

Now, let us establish that the set § = {(®,¥)e ¥x
VU, 7)) =1(@,¥),0<v< 1} is bounded. Let

1
@ ()| < lc?l (s)| |:K1 JO e 1-0

‘"1, (@,%) (&,) - ‘2", (@, ¥) (81)| — 0,as8, — ¢&.

{((D,‘I’) eg, that is, { (@, ¥) = vII(®, ¥), for some v € [0, 1].
Then, for any e€[0,1], we have @(¢)=
VI (®,Y) (¢), ¥ (¢) = vIL, (@, ¥)(e). From these last re-
lations, we deduce |@(¢)|< |1'I1 (@,¥) (s)| and |¥(¢)| <
1, (@, %) (¢)| Y & € [0,1].

Then, by %, we obtain

¢ 92
x (J ((7“))|2m0| |90, @ ()] + |90, ()] + [, DAY ()| +|9]Z4Jq“l’(u)|du)d(

o T'(9-1

101 _ o2
+J (1-0) [|m0|+|mz1o(o|+|m2‘1’(0|+|93?s“9“’"1’<0|+|9324fq“y(f)|]df]

oT'M-1)

1
+ |52(s)|[;41 joewmlﬁ

-2
X (J(u [16] + By@ ()] + [6,% (&) ()] + [b,°D" @ ()| + b4f“2@(u)|]du>d(

o I'(yp—-1)

1(1 -2
«| o [lbol+blo(o|+|bﬁ(s>(c>|+|53°9¢2®<OI+"4qu"°“’””’(]

o I'(n-1)

s ol [ (n =)’
% ((-u)
+|s3<s)|“0<j0e (jo—r(s_l)

x [|9)20| +[I,0(0)] + [I,¥ (0)] + | D (o) + |9)24J““I’(o)|]do)du)d(
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[lemen( [

x [[6o] + 6,@ ()| +16,% (&) (0)|+65°D"@ (0)|+b,.7 @ (0)||do)du )d{

b eaof [FC-wT?
+Joe Jo TO-1)

1900 +[99,@ )]+ |90, (00| + 3,72 ()| |97 )| ) |

1 e o 1 (11—0')9_2
% ((-u)
+|§4(£)|[J0<Joe (jo L

x [ [900] + (20,0 (0)] 49, ()] +[ 57D ()] + 2,7 (0)] | do ) )¢

e 5
[

|65 + 6,@ (0)]+[B,¥ (€) (0)|+]65°D* @ (0)|+b,. 7@ (0)| |do ) du )d{

Lo (5

x [[Bo| + By @ (w)|+[6,% (&) ()| +]65° D@ (w)|+5,.7 @ (u)| | du )d(]

efyene (J ( (ﬁ(sg)i;

o [ 1900] + 20, ()] 90, )] |9 o) + R, () e ), (44)

X

which, on taking the norm for ¢ € [0, 1], yields

m
A< | My + M D, +{ M, + M +—4>||‘I’|| ]%
” ” 0 1” "% ( 2 3 F(q1+1) Va 1
(45)
m,
+| 6, +[ b, +b, + [@]lg, + 5@
|: 0 ( 1 2 ( ¢1)) 4 v
Similarly, we obtain
@] < [ 2 + M, [@llg, +( M, + M +& ¥l | %
= 0 1 U 2 3 F(q1+1)
(46)

m,
+ [bo +()E)1 +b, + W)"QIl% + bs||@ly | %,

This implies that
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|‘2%a| <r(2 ) {[fmo + M, @]y, +<§m2 + M, +m2))||\1’||%]

I'(a,
)

+[bo +(bl +b, + (Em ¢1)>||63||sz + bs|lofly | %

(47)

Thus, we have

loly, =lol +] ‘2% a)|

m,
< [9)20 + M, (|l +<9322 +IM,; + ﬁ)n\l’ncy]%l
a1

m,
+[[’o+(b1+bz T(1+ )>||@||%+53||®||%

m,
T R e G R

m, *
— ||® b, ||®@ U+
+[b°+(bl+bz+r(1+¢l))” llo; + bsll@|lo 2]»

(48)

Likewise, we can have

Ml =1¥] +] ‘2|

m
< My + M@y +[ M, + M +4>||‘I’|| ]%
[ 0 1” "?{ ( 2 3 T(q1+1) Va

m,
—2 _||® b.||@| |7
+[bo+<51+52+r(1+¢1)>" llos + bsll@lly |77,

1 m, .
+—1 | WM, + M, || +(932 + N +7)|I\PII ]%
r(2_¢1){|: 0 1 U 2 3 r(q1+1) Va 1

m,
+|:bo+(51 +bz+r(1 ))”@"%"'b ol |7 }

(49)

From (48) and (49), we find
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(@, Vllozxz =@l +1'¥1lo

< ||®||%{2m1 [%1 +7+

%*

+[°Z[2+%2+

TG-) TG-

+ "\P"‘W{b4|:%2 +7,+

%*

7

21
U ' b
r(z—%)*r(z—m] *("1 ot 1))
Zall
6))
U 7 m
r(z—«sz)*r(z—m] *(mﬁm“r(qlil))
(50)

+[‘le +7, +

%*

-6 Ta-

all

7,

+2UZO[?{1 +7, +

%*

T4 0

|

-¢1)

7,

+ BO[%Z + 7, +
<Ny +max{W 4 + N HD, ¥y

By leveraging the assumption max./4+ /5<1, we
deduce
N5
1 — max {/#, N5}

1@, ¥l < (51)

Therefore, we infer that the set & is bounded. Employing
Theorem 5, we establish that the operator IT has at least one

T-9) TC-9)

|

fixed point, serving as a solution to our problems (4) and (5).
This concludes the proof.

Subsequently, we will establish existence and uniqueness
results for problems (4) and (5), employing the Banach
contraction mapping principle. We introduce the notations:

r = sup |F (¢0,0,0,0)|,7, = sup |® (e, 0,0,0,0)]|,
£€[0,1] £€[0,1]

A=Bop Uy + Kopy 71, W = BWop, Uy + Kopa1, 77,

(52)
A" =Bop Uy + Kpy 7 0 W™ = Bop\ U, + Kopar2 75
O, =1 U +1, 7, @ =1\ U +1, 7,6, =1\ U, + rz%z,é\f =% +1,75.
O
Theorem 6. Assume that , holds. Further then problems (4) and (5) has a unique solution.
A+A"+ v + v ] <1, (53)  Proof. We examine the positive value r provided by
F(2 - ¢2) F(Z - ¢1)

|0+ 0+ GIT2-9)+ G T/(2- 4)) (50

> .

"TEO-[A+ A+ WL (2-¢) + DT (2-)])

We  show that ¢B,c®B, where B, =

((@,¥) € U XV, |®, ¥y < 7}. For @, ¥ € B, we obtain
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|3 (e, @(2), ¥ (2), ‘D" ¥ (2), 7" ¥ (o) )|
<|B(e @), ¥ (), “D* ¥ (), T ¥ (&) - § (£,0,0,0,0)| +I§ (,0,0,0,0)]

sm(@(sn @+ D (o) +|Jq“{’(s)|> ir
(55)

<, | @llg +I¥lly +

1
EE—L ,
< (l@llo, + p11¥ll5) + 715

<Wp,r + 1.

In a similar manner, we have which gives us
coxh q; € _ %
(e @@, (0. D" ¥ (6, 7" (@) < Kopor + 1 ‘PP, (@,9) (6)| < J €20 @, w) @),
(56) oT(1-¢,)
Then, <t ! J @), veelo
|H1 (@,) (5)| < (Bopyr +11) Uy + (Kopar +12)7, £ (59)
= (BWop, %, + Kop, V1) + 1,71 + Uy,
—Ar+G, Veel01], Therefore, we deduce
(57) I, (@ ¥, = |1, (@, 9)] +] ‘2™ 1, (@, )]
and *
, . . S(A+L>r+®+7l.
[TI{ (@, ¥) ()| < (Bopyr + 1) U5 + (Kopar +1,) 77 I'(2-¢,) r'(2-4¢,)
= (Wop Uy + Kpy 7)) + 1,7 + U 1 (60)
=A'r+ @1‘, Vee[0,1], In a similar manner, we obtain
(58)
L, (@, %) (e)| <A1 + @,
I (@, %) ()| <7 r + @, ,
e (e ) (61)
c ¢1H VY J (8 {) H/ v
P11, (@, %) (¢)| < ST gy @@l
1 —x
<———('r+@, ), Vee]0,1],
g7 e
then we conclude
I, (@, )], =1L, (@, )] +] ‘2" 11, (@, )]
(62)

* W* = é\;ﬂ
S(A *r@—¢o)r+@l+r@—¢a'
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By relations (60) and (62), we deduce

ITH(@, W) g = |11, (@, 9)],, + 1L (@, )|,

S([A+A*+ v + v ])r
F(2-¢,) T(2-¢) (63)
G, @F
+|0, + Q] + + ! =r.
[ ' ' F(Z_‘/’z) F(2—¢1):|
This implies H%r C %r. We then show that ITis a contraction operator. For every
¢ € [0, 1], taking into account (®@;,¥;) € B, fori=1,2, we
obtain

|H1 ((Dl’\yl) (e) - 11, ((DZ’\IIZ) (5)|

1 Ie _ 9-2
=S (o) [xl JO e"‘l“"’(JO (1{(9?)1) |&(1n, @, (), ¥, (), ° DY, (0), 7Y, (1)) - F(11, @, (w), ¥, (u),69¢“P2(u),Jql‘I’z(u))|du>d(

ra-9"? e .
-| IB(0.@, (0. %, (0,2, (0, 7, (1)

0o T(9-1)

- B0 (0. %2 (0,97, (0, 5", (0) |

1 C(f = )12
+ |c5’2(s)|[;41 Joﬂl(m(Jo (E(qli)l) |®(u,m1(u),‘I’1(u),CSZ%tDl(u),JqZ@l(u))

6 (1n,@, (), ¥, (), °D*a, (u), 70, (u))|du>d(

-9 - q
- Jo I'(n-1) |&(C,(Dl (O),¥,(0),° 2%, (0), 7 2@1(0)

- 64,0, (0. ¥, (0.°9%0, (0,70, )¢

1 Ie u _ 9-2
sl [[( [, [; oy 5o 0.5 01959 @074, 0)

~3(0,@,(0), ¥, (0),°D"¥, (0), 7Y, (a))|da)du)dc

! ¢ - —u " (u - 0)”_2 c ) B
+ L(Joe e >< JO -1 6(0,@,(0), %, (0),° 2" @, (0), 7", (0))

- 6(0,0,(0), %, (0), ‘D", (0), 70, (a))|d0)du)d{

U oasof [fE-w™? cgph 1
- Joe a 0(](} L B0, 0, % (0, 9" ¥, (), 79, ()
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~ (1,0, (), ¥, (1), ‘DY, (w), S, (u))|du)d(]

1 I¢ 1 _ 9-2
+ |54(s)|“0<JOe‘“l“‘“>< JO (;‘(9 i')l) 13(0.@, (0, ¥, (0).°2"¥, (0), 7", (0)

- $(0,@,(0), ¥, (0), ‘D", (0), VY, (a))'da)du)d(

1 ¢ iy (- u(u_o_)n—z ) Z 2
+ Jo(Joe (¢ )( JO R |®(0,®1(0),‘I’1(0), g? @, (0), 70, (G))

- 6(0,@,(0), ¥, (0), ‘D0, (0), 7@, (0))|da>du>d(

P oaeof [FC-wT? corts )
- Joe ma °<JO S |6(1,@, (1), ¥, (1), ‘D", (1), 70, (1))

~ (1, @, (), ¥, (1), ‘D" a, (1), 7+, (u))|du>d(]

e (e ‘
" Joe 1 (JO oy B0, (0. %, (0,97, (), 7, ()
- (10, @, (), ¥, (1), PP, (1), T, (1)) ).
<UBy(|0) - 0, +¥, ~ 0] +] D", - ‘D +]|TE, - T
+ 718([or - 0] +]° 2" 0, 2%, | +] T @, - T, | +]¥, - 1)
<UBo([0r - @ + o[ ¥, - o + | ‘D"¥, - D7, )
+ V1 8(pa]|@) - @] +] ‘D@, - D%, +]¥, - )

<A(@) - @y, + ¥, - ¥, "%)

(64)
Then, we obtain
[0 (@3, 1) () = T13(@, ¥2) ()| < 7 (@ - @aly, +[¥1 = ¥a]l). (65)
This gives us
Ccoxds oy ¢ (8_()_452 ! !
"1, (@,,¥,) () - ‘D™, (@,, ¥,) ()| < L;r(l =5 |1} (@,,'¥) (O) 101 (@,, ¥,) (O]d¢
(66)

1
Sm%/("@l ~ @, +[ ¥~ F, “7)

From the above inequalities, we conclude
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"Hl (@,¥,) (e) - I, (@,, Y5) (e)"%

= “H1 ((‘)1’ \Pl) () -1, (‘Dz)\yz) (5)" + " 69¢2H1 (631»‘1'1) (5)_69%1_[1 (®2>‘P2) (5)”

S[A+ 7 |(Joy - @3l + [ - ¥, )

v
[(2-4¢,)

In the similar manner, we deduce

"Hz (@,¥,) - 10, ((702"112)"7S [ A F(2 : %, ) ("‘Dl - ‘32"% +"\Ij1 - WZ”%)'

Therefore, by (67) and (68), we obtain

(@, %) - 11(y )],

= ||H1 (@,,¥,) - 10, (‘32’\{/2)”@4 +”H2 (@,¥)) — T, (@, \Pz)”cy

(|1 = @2 +[¥: - ¥a)-)

s[mﬁ

(lo: = @2, +11¥: - W25

%N+M2¢>

Lo L.
- <A+A "Te-g) tte-9) > <o ey 1 =¥l

By using the condition, we deduce that IT is a contrac- 5. Example
tion. Hence, by Banach’s fixed point theorem, the operator IT

25

(68)

(69)

has a unique fixed point which corresponds to the unique  Let A} =2;x, =3;v=1z=1;e= 1,9, = (9/2), n= (7/2),
solution of systems (4) and (5). This completes  ¢; = (1/3)¢, = (1/2),q; = (3/2),q, = (8/3), the system of

the proof. O  FDEs that follows is examined.

(‘2° +4,°2" o (e) = F(e @ (), ¥ (), ‘DM (), T (e)), £€ (0,1),
(‘D" + w, DT (e) = B(e, (), ¥ (e), D" (), S D (e)), € (0,1),

augmented with the coupled classical integral boundary
conditions

1 1
®0)=0, @(0)=0, @(1)=0, mn=meﬂ+meﬂ,

1 1
W(0)=0, ¥ (0)=0, ¥(1)=0, wn=Lomﬂ+mea,

(70)

(71)
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we have o/, = 0.432332, 9/, = 0.533834, o/, = 0.316738,
o, = 0449976, o5 =0.175751, 9/ = 0.848132, 9/, =
0.0907486, o/ = 0.050612, oy = 0.108083, of |, =
0.0585836, o, = 0.432332, 4/, = 0.533834, o/, = 0.316738,
o, =0.449976, o5 =0.175751, o, = 0.848132, 9, =
0.0907486, o/ = 0.050612, o/, = 0.108083, o/, = 0.0585836,
o, = 0.137005, o/,, = 0.130885, A =—0.00151637, A, =
~0.00631263, A, ~ 2.48283, A, ~ 0.418054, A, ~ — 2.67921,
Ay~ —274112, B, ~5.80039, &,=~ —5.91683,
~2.30745, 8, ~ 19.4495, ©, = 0.137507, ©, ~ — 0.338567,

-
Bs =

&

|1 (& 91> 920 93 94)| =

2
e +

91

1.
. (3 cose+§sm(go1 + g02)> -

Journal of Mathematics

©, ~ 1.38295, ©®,~ —0.783336, Y, ~ —4.08288,Y, ~
6.38719, Y, ~ 1.62421, Y, =~ —13.6905, &, =~ 0.734434,
8, = 0.0454712, 85 ~ — 0.461503, 8, ~ —0.947352, T, ~

3 e € .
|Wﬂa¢p¢p¢y¢dF’a:EF(% +——+2%>—E$HW3+@J

for all e€[0,1],9;, ¢, ¢5 ¢, € R. We obtain the

inequalities.

3 1 1 1
@, (& @15 92 93, 94| 55 +E|‘P1l +— || +§|‘P3l +E|‘P4l’

0.58003,5, =~ —0.188326,5 ; = 0.230742, T, = 1.94492,
U, ~0.103373, %, ~0.160156, ¥, ~0.126236, ¥, =
0.0648497, % ~0.282148, %} ~0299316, ¥ =
0.00163853, %;‘ = 0.287505.
We consider the functions
! + L t
—_— —arctan @,
Sev 1) > d00 P
(72)
1
16
(73)

5 1 1 1 1
I\PI (5:¢1’§02>9"3’§94)| Sg +E|§01| +Z|‘P2| +g|‘P3| +g|‘/’4|’

for all €€ [0,1], 9,9, ¢3¢, € R. So, we have M, =
(3/2), M, = (1/16), M, = (1/16), M5 = (1/10), M, =

(1/10),by = (5/8),b, = (1/16),b, = (1/4),b; = (1/6),b, =
(1/6). Given that N4 = 0.4561664746 and
W5 = 0.3510076689, it follows that the condition

1

max 4’4, #/5<1 is met. Consequently, by Theorem 5, we
deduce that problems (4) and (5) has at least one solution for
€ [0,1].

We consider the functions

&
@y (& 91> 92 93, 94) ==

2
&

3 — —sin
£+1 16

¥y (& 01,02 93 94) =

for all € € [0,1], ¢, 9y, 93, ¢, € R.

+ 5 12 -, +isinzgo3—£arctango4,
2 8(e+1)°\1+|g,| 32 9

@, (& 91502, 93, 94) = @, (& Y15 Y0 Y5 Y 4)|

(74)
) +i(p + ! cos ¢ —ﬂ
P10 Ve P61l
We obtain the following inequalities:
1
Sg(l?’l ~ Y| +os = Y| +los = Us| +oa - ?4|)’
(75)

|\P1 (&0 95959) ~ V1 (6 Y1, Y2 Y5 ?4)'

<L low -~ %l +loa - 7.l +los ~ 7l +los - 7)),
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for all e € [0,1] and ¢, 9,5, 95, ¢, € R.

w
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Here, &, = (1/6) and o, = (1/8). Besides, we deduce
p1 = 0.752252 p, = 0.249238, A = 0.189533, A* = 0.014562,
W =~ 0.038958, 7" ~ 0.012091 and

W*

A+A"+

Hence, all the conditions of the theorem are fulfilled.
Therefore, according to Theorem 6, we establish that
problems (4 (5) possess a unique solution, ¢ € [0, 1].

6. Discussion

We have provided criteria for the existence of solutions to
a coupled system of nonlinear sequential LCFIEs with
distinct orders, accompanied by nonlocal classical integral
boundary conditions. We have given conditions for the

r2-¢,) T(2-¢))

~ 0.2614483331 < 1. (76)

existence of such solutions. Using a methodology that makes
use of contemporary analytical tools, the results are ob-
tained. It should be emphasized that the results that are
provided in this particular context are novel and add to the
corpus of literature already available on the topic. Fur-
thermore, our results encompass cases where the system
reduces to one with boundary conditions of the form: when
classical integral modifies to RSI, then we get

1 1
®(0) =@ (0) = 0,@' (1) = 0,@(1) = j @(0d, () + jowomz(o,

(77)

1 1
W(0) = W' (0) = 0, %' (1) = 0,%(1) = joco«)d%l O+ jowc)d%z(o.

This work will be extended in the future to a tripled
system of integromultipoint boundary conditions and
nonlinear sequential LCFIEs of different orders. The mul-
tivalued analogue of the problem considered in this paper is
another goal of ours.
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