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TeHyers–Ulam stability of multi-coefcients Pexider additive functional inequalities in Banach spaces is investigated. In order to
do this, the fxed point method and the direct method are used.

1. Introduction and Preliminaries

For an object possessing some properties only approxi-
mately in mathematics and in many other scientifc in-
vestigations, can one fnd the special object satisfed them
truly? One of the efective methods to solve this problem is to
use the concept of generalized Hyers–Ulam stability.

Let us review the defnition of Hyers–Ulam stability. In
a class of mappings, if eachmapping of this class fulflling the
equation approximately is “near” to its real solution or stable
approximate solution, then the equation is said to be
Hyers–Ulam stability.

Te stability problem of functional equations is from
a question of Ulam [1] in 1940, that is, the stability of metric

group homomorphisms. In 1941, Hyers [2] gave the frst
afrmative answer to the question of Ulam for Banach spaces
about the Cauchy functional equation. Hyers’ method of
proof is called the “direct method.” Te functional equation

f(x + y) � f(x) + f(y) (1)

is called an additive functional equation. More generaliza-
tions and applications of the Hyers–Ulam stability to
a number of functional equations and mappings can be
found in [3–10].

In 2013, Li et al. [11] investigated the generalized
Hyers–Ulam stability of the following function inequalities:

af(x) + bf(y) + cf(z)
����

����≤ Kf
ax + by + cz

K
􏼠 􏼡

��������

��������
, (0<|K|<|a + b + c|),

af(x) + bf(y) + Kf(z)
����

����≤ Kf
ax + by

K
+ z􏼠 􏼡

��������

��������
, (0<K≠ 2),

(2)

in quasi-Banach spaces. In the paper, assume that X is
a linear space over the feld F , and Y is a linear space over the
feld K. Let a, b ∈ F and A, B ∈ K be given scalars.

Te functional equation

f(x + y) � g(x) + h(x) (3)
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is called a Pexider additive functional equation (for more
details, see [12–23]). In the paper, we introduce and in-
vestigate the following functional equation:

f(ax + by) � Ah(x) + Bg(y), ∀x, y ∈ X, (4)

where f, g, h: X⟶ Y. Te stability problems of several
functional inequalities have been extensively investigated by
a number of authors (see [24–47]).

In order to fnd the stability of (4), the following fxed
point theory would be applied.

Theorem 1 (see [48, 49]). Let (X, d) be a complete gener-
alized metric space and let J: X⟶ X be a strictly con-
tractive mapping with Lipschitz constant L< 1. Ten for each
given element x ∈ X, either

d J
n
x, J

n+1
x􏼐 􏼑 �∞, (5)

for all nonnegative integers n or there exists a positive integer
n0 such that

(1) d(Jnx, Jn+1x)<∞, for all n≥ n0

(2) Te sequence Jnx{ } converges to a fxed point y∗ of J

(3) y∗ is the unique fxed point of J in the set
Y � y ∈ X | d(Jn0x, y)<∞􏼈 􏼉

(4) d(y, y∗)≤ 1/1 − Ld(y, Jy) for all y ∈ Y

2. Hyers–Ulam Stability of Functional
Inequality (4): A Fixed Point Method

Theorem 2. Suppose that Y is a Banach space and
φ: X2⟶ [0,∞) is a function such that there exists an L< 1
with

φ
x

2
,
y

2
􏼒 􏼓≤

L

2
φ(x, y), x, y ∈ X. (6)

If f, h, g: X⟶ Y are mappings satisfying
g(0) � h(0) � 0 and

f(ax + by) − Ah(x) − Bg(y)
����

����≤φ(x, y), x, y ∈ X, (7)

then there exists a unique solution H: X⟶ Y of (4) such
that

f(x) − H(x)
����

����≤
L

2(1 − L)
φ

x

a
,
x

b
􏼒 􏼓 + φ

x

a
, 0􏼒 􏼓 + φ 0,

x

b
􏼒 􏼓􏼚 􏼛, x ∈ X; (8)

h(x) −
1
A

H(ax)

�������

�������
≤

1
|A|

L

2(1 − L)
φ x,

a

b
􏼒 􏼓x􏼒 􏼓 + φ(x, 0) + φ 0,

a

b
􏼒 􏼓x􏼒 􏼓􏼚 􏼛 +

1
|A|

φ(x, 0), x ∈ X; (9)

g(x) −
1
B

H(bx)

�������

�������
≤

1
|B|

L

2(1 − L)
φ

b

a
􏼠 􏼡x, x􏼠 􏼡 + φ

b

a
􏼠 􏼡x, 0􏼠 􏼡 + φ(0, x)􏼨 􏼩 +

1
|B|

φ(0, x), x ∈ X. (10)

Proof. Letting x � y � 0 in (7), we get f(0) � 0. Letting x �

0 in (7), we obtain

f(by) − Bg(y)
����

����≤φ(0, y), (11)

for all y ∈ X. Tus,

f(y) − Bg
y

b
􏼒 􏼓

������

������≤φ 0,
y

b
􏼒 􏼓, y ∈ X. (12)

Letting y � 0 in (7), we have

f(ax) − Ah(x)
����

����≤φ(x, 0), x ∈ X. (13)

Tus,

f(x) − Ah
x

a
􏼒 􏼓

������

������≤φ
x

a
, 0􏼒 􏼓, x ∈ X. (14)

Next, replacing y by y/b and x by x/a in (7), we get

f(x + y) − Ah
x

a
􏼒 􏼓 − Bg

y

b
􏼒 􏼓

������

������≤φ
x

a
,
y

b
􏼒 􏼓. (15)

Tus,

f(x + y) − f(x) − f(y)
����

����≤ f(x + y) − Ah
x

a
􏼒 􏼓 − Bg

y

b
􏼒 􏼓

������

������

+ f(x) − Ah
x

a
􏼒 􏼓

������

������ + f(y) − Bg
y

b
􏼒 􏼓

������

������

≤φ
x

a
,
y

b
􏼒 􏼓 + φ

x

a
, 0􏼒 􏼓 + φ 0,

y

b
􏼒 􏼓, x, y ∈ X.

(16)
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Letting x � y in (16), we get

f(2x) − 2f(x)
����

����≤φ
x

a
,
x

b
􏼒 􏼓 + φ

x

a
, 0􏼒 􏼓 + φ 0,

x

b
􏼒 􏼓, (17)

for all x ∈ X.

Consider the set

S ≔ h: X⟶ Y, h(0) � 0{ }, (18)

and introduce the generalized metric d on S:

d(p, q) � inf μ ∈ [0,∞]: p(x) − q(x)
����

����≤ μ φ
x

a
, 0􏼒 􏼓 + φ 0,

x

b
􏼒 􏼓 + φ

x

a
,
x

b
􏼒 􏼓􏼒 􏼓, ∀x ∈ X􏼚 􏼛. (19)

Ten (S, d) will be proved to be complete. Let d(p, q) �

μ1 and d(p, h); by the defnition of d and property of
infmum, d satisfes the triangle inequality. Suppose that
fn􏼈 􏼉 is d-Cauchy sequence on S. Tat is, for any τ > 0, ∃ n0,

n>m> n0, such that d(fn, fm)< τ. By the defnition of d, it
is easy to see that fn(x)􏼈 􏼉 is a Cauchy sequence in Y. Since Y

is complete, there exist f0(x)􏼈 􏼉⊆Y and fn(x)􏼈 􏼉

⟶ f0(x)􏼈 􏼉. Taking the limit as m⟶∞, we get
d(fn(x), f0(x))< τ, for all n≥ n0, such that fn􏼈 􏼉 is
d-convergent, i.e., (S, d) is a complete generalized metric
(for more details, we refer to [48]).

Now, we consider the linear mapping J: S⟶ S such
that

Jp(x) ≔ 2p
x

2
􏼒 􏼓, (20)

for all x ∈ X.
Let p, q ∈ S be given such that d(p, q) � ε. Ten,

p(x) − q(x)
����

����≤ ε φ
x

a
, 0􏼒 􏼓 + φ 0,

x

b
􏼒 􏼓 + φ

x

a
,
x

b
􏼒 􏼓􏼒 􏼓, (21)

for all x ∈ X. Hence,

‖Jp(x) − Jq(x) � 2p
x

2
􏼒 􏼓 − 2q

x

2
􏼒 􏼓

������

������≤ 2ε φ
x

2a
, 0􏼒 􏼓 + φ 0,

x

2b
􏼒 􏼓 + φ

x

2a
,

x

2b
􏼒 􏼓􏼚 􏼛

≤ 2ε
L

2
φ 0,

x

b
􏼒 􏼓 + φ

x

a
, 0􏼒 􏼓 + φ

x

a
,
x

b
􏼒 􏼓􏼚 􏼛 � Lε φ

x

a
, 0􏼒 􏼓 + φ 0,

x

b
􏼒 􏼓 + φ

x

a
,
x

b
􏼒 􏼓􏼚 􏼛,

(22)

for all x ∈ X. So, d(p, q) � ε implies that d(Jp, Jq)≤Lε. Tis
means that

d(Jp, Jq)≤ Ld(p, q), (23)

for all p, q ∈ S.
It follows from (17) that

f(x) − 2f
x

2
􏼒 􏼓

������

������≤
L

2
φ

x

a
, 0􏼒 􏼓 + φ 0,

x

b
􏼒 􏼓 + φ

x

a
,
x

b
􏼒 􏼓􏼚 􏼛,

(24)

for all x ∈ X. So, d(f, Jf)≤L/2.
By Teorem 1, there exists a mapping H: X⟶ Y

satisfying the following:

(1) H is a fxed point of J, i.e.,

H(x) � 2H
x

2
􏼒 􏼓, (25)

for all x ∈ X. Te mapping H is a unique fxed point
of J in the set

M � p ∈ S: d(f, p)<∞􏼈 􏼉. (26)

Tis implies that H is a unique mapping satisfying
(45) such that there exists a μ ∈ (0,∞) satisfying

f(x) − H(x)
����

����≤ μ φ
x

a
, 0􏼒 􏼓 + φ 0,

x

b
􏼒 􏼓 + φ

x

a
,
x

b
􏼒 􏼓􏼚 􏼛,

(27)

for all x ∈ X.
(2) d(Jnf, H)⟶ 0 as n⟶∞. Tis implies the

equality

lim
n⟶∞

2n
f

x

2n􏼒 􏼓 � H(x), (28)

for all x ∈ X.
(3) d(f, H)≤ 1/1 − Ld(f, Jf), which implies

f(x) − H(x)
����

����

≤
L

2(1 − L)
φ

x

a
, 0􏼒 􏼓 + φ 0,

x

b
􏼒 􏼓 + φ

x

a
,
x

b
􏼒 􏼓􏼚 􏼛,

(29)

for all x ∈ X.
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It follows from (16) and (28) that

H(x + y) − H(x) − H(y)
����

����

� lim
n⟶∞

2n
f

x + y

2n􏼒 􏼓 − f
x

2n􏼒 􏼓 − f
y

2n􏼒 􏼓

������

������

≤ lim
n⟶∞

2n φ
x

2n
a

, 0􏼒 􏼓 + φ 0,
x

2n
b

􏼒 􏼓 + φ
x

2n
a

,
x

2n
b

􏼒 􏼓􏼚 􏼛

� 0, ∀x, y ∈ X.

(30)

So, the mapping H: X⟶ Y is additive. Next, by (8),
(29) can be proved. Similarly, we can obtain inequalities (9)
and (10). □

Corollary  . Let r> 1 and θ be nonnegative real numbers
and f, h, g: X⟶ Y be mappings satisfying

f(ax + by) − Ah(x) − Bg(y)
����

����≤ θ x‖ ‖
r
+ y

����
����

r
􏼐 􏼑, (31)

for all x, y ∈ X and h(0) � g(0) � 0. Ten there exists
a unique additive mapping H: X⟶ Y such that

f(x) − H(x)
����

����≤
θL

1 − L

|a|
r

+|b|
r

|ab|
r x‖ ‖

r
;

h(x) −
1
A

H(ax)

�������

�������
≤

θ
|A|

L

1 − L

|a|
r

+|b|
r

|b|
r x‖ ‖

r
+

θ
|A|

x‖ ‖
r
;

g(x) −
1
B

H(bx)

�������

�������
≤

θ
|B|

L

1 − L

|a|
r

+|b|
r

|a|
r x‖ ‖

r
+

θ
|B|

x‖ ‖
r
, ∀x ∈ X.

(32)

Theorem 4. Let φ: X2⟶ [0,∞) be a function such that
there exists an L< 1 with

φ(2x, 2y)≤ Lφ(x, y), (33)

for all x, y ∈ X. Let f, h, g: X⟶ Y be mappings satisfying
(7) for all x, y ∈ X and h(0) � g(0) � 0. Ten there exists
a unique additive mapping such that

f(x) − H(x)
����

����≤
1

2(1 − L)
φ

x

a
,
x

b
􏼒 􏼓 + φ

x

a
, 0􏼒 􏼓 + φ 0,

x

b
􏼒 􏼓􏼚 􏼛, x ∈ X; (34)

h(x) −
1
A

H(ax)

�������

�������
≤

1
|A|

1
2(1 − L)

φ x,
a

b
􏼒 􏼓x􏼒 􏼓 + φ(x, 0) + φ 0,

a

b
􏼒 􏼓x􏼒 􏼓􏼚 􏼛 +

1
|A|

φ(x, 0), x ∈ X; (35)

g(x) −
1
B

H(bx)

�������

�������
≤

1
|B|

1
2(1 − L)

φ
b

a
􏼠 􏼡x, x􏼠 􏼡 + φ

b

a
􏼠 􏼡x, 0􏼠 􏼡 + φ(0, x)􏼨 􏼩 +

1
|B|

φ(0, x), x ∈ X. (36)

Corollary 5. Let r> 1 and θ be nonnegative real numbers
and f, h, g: X⟶ Y be mappings satisfying (31) for all

x, y ∈ X and h(0) � g(0) � 0. Ten there exists a unique
additive mapping H: X⟶ Y such that

f(x) − H(x)
����

����≤
θ

1 − L

1
|a|

r +
1

|b|
r􏼠 􏼡 x‖ ‖

r
;

h(x) −
1
A

H(ax)

�������

�������
≤

θ
|A|(1 − L)

|b|
r

+|a|
r

|b|
r x‖ ‖

r
+

θ
|A|

x‖ ‖
r
;

g(x) −
1
B

H(bx)

�������

�������
≤

θ
|B|(1 − L)

|a|
r

+|b|
r

|a|
r x‖ ‖

r
+

θ
|B|

x‖ ‖
r
, ∀x ∈ X.

(37)
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3. Hyers–Ulam Stability of Functional
Inequality (4): A Direct Method

Using the direct method, we prove the Hyers–Ulam stability
of functional inequality (4).

Theorem 6. Assume that Y is a Banach space and
f, g, h: X⟶ Y with g(0) � h(0) � 0 satisfy the inequality

f(ax + by) − Ah(x) − Bg(y)
����

����≤φ(x, y), (38)

where ϕ: X2⟶ [0,∞) satisfes

􏽥ϕ(x, y) ≔ 􏽘
∞

j�0

1
2

􏼒 􏼓
j

ϕ 2j
x, 2j

y􏼐 􏼑<∞, (39)

for all x, y ∈ X. Ten there exists a unique additive mapping
F: X⟶ Y such that

f(x) − F(x)
����

����≤ 􏽥φ
x

a
,
x

B
􏼒 􏼓 + 􏽥φ 0,

x

B
􏼒 􏼓 + 􏽥φ

x

a
, 0􏼒 􏼓, ∀x ∈ X,

h(x) −
1
A

F(ax)

�������

�������
<

1
|A|

􏽥ϕ x,
a

bx
􏼒 􏼓 + 􏽥ϕ 0,

a

bx
􏼒 􏼓 + 3􏽥ϕ(x, 0) + 􏽥ϕ(2x, 0)􏼚 􏼛, ∀x ∈ X,

g(x) −
1
B

F(bx)

�������

�������
<

1
|B|

􏽥ϕ x,
b

ax
􏼠 􏼡 + 􏽥ϕ 0,

b

ax
􏼠 􏼡 + 3􏽥ϕ(x, 0) + 􏽥ϕ(2x, 0)􏼨 􏼩, ∀x ∈ X.

(40)

Proof. Letting x � y � 0 in (38), we get f(0)
����

����≤φ(0, 0). So,
f(0) � 0.

Letting y � 0 in (38), we get

f(ax) − Ah(x)
����

����≤φ(x, 0), (41)

for all x ∈ X. Tus,

f(x) − Ah
x

a
􏼒 􏼓

������

������≤φ
x

a
, 0􏼒 􏼓, (42)

for all x ∈ X.
Letting x � 0 in (38), we get

f(by) − Bg(y)
����

����≤φ(0, y), (43)

for all y ∈ X. In (43), replacing y by y/b, we get

f(y) − Bg
y

b
􏼒 􏼓

������

������<φ 0,
y

b
􏼒 􏼓􏼕, ∀y ∈ X. (44)

By the same way, from (38), we have the following
inequality:

f(x + y) − Ah
x

a
􏼒 􏼓 − Bg

y

b
􏼒 􏼓

������

������≤φ
x

a
,
y

b
􏼒 􏼓, ∀x, y ∈ X.

(45)

From (42), (44), and (45), it follows that

f(x + y) − f(x) − f(y)
����

����≤ f(x + y) − Ah
x

a
􏼒 􏼓 − Bg

y

b
􏼒 􏼓

������

������ + f(x) − Ah
x

a
􏼒 􏼓

������

������ + f(y) − Bg
y

b
􏼒 􏼓

������

������

≤φ
x

a
, 0􏼒 􏼓 + φ 0,

y

b
􏼒 􏼓 + φ

x

a
,
y

b
􏼒 􏼓≤ φ̂(x, y), ∀x ∈ X,

(46)

where φ̂(x, y) � φ(x/a, y/b) + φ(x/a, 0) + φ(0, y/b). It follows from (46) that

1
2

􏼒 􏼓
l

f 2l
x􏼐 􏼑 −

1
2

􏼒 􏼓
m

f 2m
x( 􏼁

��������

��������
≤ 􏽘

m−1

j�l

1
2

􏼒 􏼓
j

f 2j
x􏼐 􏼑 −

1
2

􏼒 􏼓
j+1

f 2j+1
x􏼐 􏼑

��������

��������

≤ 􏽘

m−1

j�l

1
2

􏼒 􏼓
j

φ̂ 2j
x, 2j

x􏼐 􏼑􏽨 􏽩,

(47)
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for all nonnegative integers m and l with m> l and all x ∈ X.
It means that the sequence (1/2)nf(2nx)􏼈 􏼉 is a Cauchy
sequence for all x ∈ X. Since Y is complete, the sequence
(1/2)nf(2nx)􏼈 􏼉 converges. We defne the mapping

F: X⟶ Y by

F(x) � lim
n⟶∞

1
2

􏼒 􏼓
n

f 2n
x( 􏼁􏼨 􏼩, (48)

for all x ∈ X. Moreover, letting l � 0 and passing to the limit
m⟶∞, we get

f(x) − F(x)
����

����≤ 􏽘
∞

n�0

1
2

􏼒 􏼓
n

φ 2nx

a
, 2nx

b
􏼒 􏼓 + φ 2nx

a
, 0􏼒 􏼓 + φ 0, 2nx

b
􏼒 􏼓􏼚 􏼛

� 􏽥φ
x

a
,
x

b
􏼒 􏼓 + 􏽥φ 0,

x

b
􏼒 􏼓 + 􏽥φ

x

a
, 0􏼒 􏼓, ∀x ∈ X.

(49)

Similarly, there exists a mapping H: X⟶ Y such that
H(x) � limn⟶∞ 1/2nh(2nx) and

h(x) − H(x)‖ ‖<
1

|A|
􏽥ϕ x,

a

bx
􏼒 􏼓 + 􏽥ϕ 0,

a

bx
􏼒 􏼓 + 3􏽥ϕ(x, 0) + 􏽥ϕ(2x, 0)􏼚 􏼛, (50)

for all x ∈ X. We also obtain a mapping G: X⟶ Y such that
G(x) ≔ limn⟶∞ 1/2ng(2nx), and

g(x) − G(x)
����

����<
1

|B|
􏽥ϕ x,

b

ax
􏼠 􏼡 + 􏽥ϕ 0,

b

ax
􏼠 􏼡 + 3􏽥ϕ(x, 0) + 􏽥ϕ(2x, 0)􏼨 􏼩, ∀x ∈ X. (51)

Next, we show that F is an additive mapping.

F(x) + F(y) − F(x + y)
����

���� � lim
n⟶∞

1
2

􏼒 􏼓
n

f 2n
x( 􏼁 + f 2n

y( 􏼁 − f 2n
(x + y)( 􏼁

����
����

< lim
n⟶∞

1
2

􏼒 􏼓
n

φ 2nx

a
, 2ny

b
􏼒 􏼓 + φ 2nx

a
, 0􏼒 􏼓 + φ 0, 2ny

b
􏼒 􏼓􏼚 􏼛 � 0,

(52)

for all x, y ∈ X. Tus, the mapping F: X⟶ Y is additive. Now, we prove the uniqueness of F. Assume that
T: X⟶ Y is another additive mapping satisfying (40). We
obtain

F(x) − T(x)‖ ‖ �
1
2n F 2n

x( 􏼁 − T 2n
x( 􏼁

����
����≤

1
2

􏼒 􏼓
n

F 2n
x( 􏼁 − f 2n

x( 􏼁
����

���� + T 2n
x( 􏼁 − f 2n

x( 􏼁
����

����􏽨 􏽩≤ 2
1
2n φ̂ 2n

x, 2n
x( 􏼁􏽨 􏽩, (53)

which tends to zero as n⟶∞ for all x ∈ X. Ten we can
conclude that F(x) � T(x) for all x ∈ X. In fact, by (42), we
get F(X) � AH(x/a). Similarly, we obtain F(x) �

BG(x/b). □

Corollary 7. Let r and θ be positive real numbers with r> 1.
Let f, g, h: X⟶ Y be mappings with g(0) � h(0) � 0
satisfying

f(ax + by) − Ah(x) − Bg(y)
����

����≤ θ x‖ ‖
r
+ x‖ ‖

r
( 􏼁, (54)

6 Journal of Mathematics



for all x, y ∈ X. Ten there exists a unique additive mapping
F: X⟶ Y such that

f(x) − F(x)
����

����≤
2θ

|a|
r

+|b|
r

1
2r

− 1
x‖ ‖

r
;

h(x) −
1
A

F(ax)

�������

�������
≤ θ +

2|a|
rθ

|a|
r

+|b|
r

1
2r

− 1
􏼠 􏼡 x‖ ‖

r
;

g(x) −
1
B

F(bx)

�������

�������
≤ θ +

2|b|
rθ

|a|
r

+|b|
r

1
2r

− 1
􏼠 􏼡 x‖ ‖

r
, ∀x ∈ X.

(55)

4. Conclusion

In this paper, we have investigated the Hyers–Ulam stability
of general Pexider function inequalities in Banach spaces by
using the fxed point method and the direct method.
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