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A topological index is a structural descriptor of any molecule/nanostructure that characterizes its topology. In the QSAR and
QSPR research, topological indices are employed to predict the physical characteristics associated with bioactivities and chemical
reactivity within specifc networks. 2D nanostructured materials have many exhibit numerous chemical, mechanical, and physical
features. Tese nanomaterials are exceptionally thin, displaying high chemical functionality and anisotropy. For applications
necessitating robust surface interactions on a small scale, 2D materials stand out as the optimal choice due to their expansive
surface area and status as the thinnest among all discovered materials. Tis paper characterized the neighborhood irregular
topological invariants of nanostructures TUC4C8[p, q] and GTUC[p, q] and derived closed form expressions for them. A
comparative analysis is then performed on the basis of these computed indices.

1. Introduction

Carbon nanotubes (CNTs), cylindrical molecules composed
of rolled-up sheets of single-layer carbon atoms (graphene),
come in two main types: single-walled and multiwalled.
Single-walled nanotubes have a diameter of less than one
nanometer (nm), while multiwalled nanotubes exceed one
hundred nm and consist of multiple concentrically inter-
connected nanotubes. Te discovery of multiwalled carbon
nanotubes took place in 1991 by Sumio Iijima, [1]. Chem-
ically, sp2 bonds–a very potent type of molecular inter-
action–bind CNTs together. Since the direction in which the
graphene layers roll up determines the electrical properties
of a material, these nanotubes also inherit those charac-
teristics. Furthermore, carbon nanotubes (CNTs) exhibit
distinctive mechanical and thermal properties, including but
not limited to lightweight composition, high tensile strength,
low density, superior thermal conductivity, high aspect ratio,
and exceptional chemical stability. Since CNTs are the ideal

choices for electron feld emitters, transistors, cathode ray
tubes (CRTs), electronic devices, and transistors, all of these
qualities make them intriguing for the development of new
materials. Modeling and characterizing these carbon
nanotubes (CNTs) is essential for gaining a deeper un-
derstanding of their structural topology and enhancing their
physical characteristics. Tis becomes particularly crucial
given their diverse range of applications and signifcance.

Mathematical chemistry involves the study of chemical
structures using mathematical methods and approaches.
Chemical graph theory is a discipline of chemistry that
transforms chemical occurrences into mathematical models
using graph theory ideas. Atoms and chemical bonds are
depicted as the vertices and edges, respectively, in the
straightforward linked graph often termed the chemical
graph. Using the graph G and edge set E, it is possible to
create a connected graph with an order of n � |V(G)| and
a size of m � |E(G)|. Research in the feld of nanotechnology
primarily centers on atoms and molecules. A 2D lattice is
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formed through the Cartesian product of a path graph with
dimensions m and n.

Te topological index is a class of molecular structure
descriptors whose fnal product is based on a chemical com-
pound’s structure. In biology, as well as in the pharmaceutical
andmedical industries, the QSAR is amethod linking biological
structure and activity to specifc molecular properties and is
extensively employed [2, 3]. Because of its unique application in
chemical sciences, carbon nanotubes play a fascinating role in
the scientifc community. Te chemical graphic theory has
a vital role in many topological indicators.

Te Zagreb indices, Zagreb polynomials of some nanostar
dendrimers, are obtained in [4], and an edge irregularity
strength of graphs is characterized in [5]. Te assembly of
certain bioconjugate networks and their structural modeling
through irregularity topological indices is presented in [6]. Te
article [7] delves into the quantitative structure-property re-
lationship (QSPR) analysis of novel drugs employed in blood
cancer treatment, utilizing degree-based topological indices and
regression models. Investigating rational curve ftting between
topological indices and entropy measures for graphite carbon
nitride is the focus of [8]. Te computation of degree-based
topological indices for porphyrazine and tetrakis porphyrazine
is conducted in [9].

Te Albertson index (AL) [10], created by Albertson, is
a degree-based index that is constructed as AL(G) �

􏽐uv∈E|du − dv|, and Vukicevic and Gasparov defned the
irregularity index [11] as IR(G) � 􏽐uv∈E|ln du − ln dv|.
Abdoo et al. defned the total irregularity index (IRRT) [12]
as IRRT(G) � (1/2)􏽐uv∈E|du − dv|. Gutman presented the
IRF(G) irregularity index [13] as IRF(G) � 􏽐uv∈E(du − dv)2.
Te Randić index (Li and Gutman) [14] is defned as
IRA(G) � 􏽐uv∈E(d(− 1/2)

u − d(− 1/2)
v )2. In 2018, Reti et al. [15]

introduced the following irregularity topological indices:
IRDIF(G) � 􏽐uv∈E|(du/dv) − (dv/du)|, IRLF(G) � 􏽐uv∈E
(|du − dv|/

����
dudv

􏽰
), LA(G) � 2􏽐uv∈E(|du − dv|/(du + dv)),

and IRDI(G) � 􏽐uv∈E ln 1 + |du − dv|􏼈 􏼉. Chu et al. Abid have
defned the IRGA(G) in [16] as IRGA(G) � 􏽐uv∈E ln
(du + dv/2

����
dudv

􏽰
). Te bond-additive index was described

in [17] as IRA(G) � 􏽐uv∈E(d(1/2)
u − d(1/2)

v )2. Very recently,
Ullah et al. [18] introduced the concept of neighborhood
version of irregularity topological indices. Motivated by [18],
we have computed the neighborhood-based irregularity
topological indices for the nanostructures TUC4C8[p, q] and
GTUC[p, q]. Te list of those indices is given in Table 1.

Tere have been numerous attempts to look into the TI
for diferent nanotubes and nanosheets in the literature.
Pentaheptagonal nanosheets and TURC4C8(S) are both

explored for their topological invariants [19, 20]. Te TI of
nanotubes and nanotori of the V-phenylenic type have been
studied in [21], and armchair polyhex type nanotubes in
[22]. However, despite all of these studies, the nanostructure
topology is still not fully understood. In this study, we have
formulated closed expressions for key neighborhood ir-
regular topological indices pertaining to the nanostructures
TUC4C8[p, q] and GTCU[p, q], and a comparative analysis
is also performed.

2. TUC4C8[p, q] Nanotorus and Nanotube

In this section, we frst presented the structure of
TUC4C8[p, q]. Te number of octagons in row and column
of nanostructure TUC4C8[p, q] is q and p, respectively. In
the TUC4C8[p, q] nanostructure, [p, q], the total number of
squares and octagons is the same in each column. In 2D
lattice of TUC4C8[p, q], the total number of octagon in
column and row is, respectively, p and q. In the 2D lattice of
TUC4C8[p, q], the total number of squares in a row and
column are (q + 1) and (p + 1).

Te number of vertices and edges of Figures 1(a) and 1(b)
are (4q2 + 4q)(p + 1) and 6pq + 5q + 5p + 4, respectively. In
Table 2, we have shown the edge partition of TUC4C8[ p, q ].

Correspondingly, for GTUC[p, q], vertex set and edge set
remain 4pq + 4q and 6pq + 5q.

Theorem 1. Let G ∈ TUC4C8[ p, q ] nanotorus. Ten, one
has NAL(G) � 12p + 12q.

Proof. By defnition

NAL(G) � 􏽘
uvϵE

δu − δv

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

� (6pq − 5p − 5q + 4)|9 − 9| + 4(p + q − 2)|9 − 8| + 2(p + q + 2)|8 − 8| + 4|8 − 6|(p + q − 2) + 8(8 − 5) + 4(5 − 5)

� 4(p + q − 2) + 4(2)(p + q − 2) + 3(8) + 4(0)

� 12p + 12q.

(1)

Table 1: Te notations and formulas of various topological indices
[18].

Notation Formula
NAL(G) 􏽐uvϵE|δu − δv|

NIRL(G) 􏽐uvϵE|ln δu − ln δv|

NIRRL(G) (1/2)􏽐uvϵE|δu − δv|

NIRF(G) 􏽐uvϵE(δu − δv)2

NIRA(G) 􏽐uvϵE(δ(− 1/2)
u − δ(− 1/2)

v )2

NIRDIF(G) 􏽐uvϵE|(δu/δv) − (δv/δu)|

NIRLF(G) 􏽐uvϵE(|δu − δv|/
����
δuδv

􏽰
)

NLA(G) 2􏽐uvϵE(|δu − δv|/(δu + δv))

NIRDIG) 􏽐uvϵE ln 1 + |δu − δv|􏼈 􏼉

NIRGA(G) 􏽐uvϵE ln(δu + δv/2
����
δuδv

􏽰
)

NIRB(G) 􏽐uvϵE(δu
(1/2) − δv

(1/2))2

2 Journal of Mathematics



Theorem 2. Let G ∈ TUC4C8[p, q] nanotorus.Ten, one has

NIRL(G) � 1.62186p + 1.62186q + 0.5163088. (2)

Proof. By defnition

NIRL(G) � 􏽘
uvϵE

ln δu − ln δv

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

� (6pq − 5p − 5q + 4)(ln 9 − ln 9) + 4(p + q − 2)(ln 9 − ln 8) + 2(p + q + 2)(ln 8 − ln 8)

+ 4(p + q − 2)(ln 8 − ln 6) + 8(ln 8 − ln 5) + 4(ln 5 − ln 5)

� (4p + 4q − 8)(0.117783) +(4p + 4q − 8)(0.287682) + 8(0.4700036)

� 0.471132p + 0.4771132q − 0.942264 + 1.1507728p + 1.150728q − 2.301456 + 3.7600288

NIRL(G) � 1.62186p + 1.62186q + 0.5163088.

(3)

□
Theorem 3. Let G ∈ TUC4C8[p, q] nanotorus.Ten, one has
NIRRL(G) � 6p + 6q.

(a) (b)

Figure 1: Te TUC4C8[p, q] with (a) q� 5 and p� 3 and (b) q� 5 and p� 5.

Table 2: Te neighborhood edge partitions of TUC4C8[ p, q ].

(δu, δv ) F

(9, 9) 6pq − 5p − 5q + 4
(9, 8) 4 (p + q − 2)

(8, 8) 2 (p + q + 2)

(8, 6) 4 (p + q − 2)

(8, 5) 8
(5, 5) 4
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Proof. By defnition

NIRRL(G) �
1
2

􏽘
uvϵE

δu − δv

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

� (6pq − 5p − 5q + 4)
1
2

|9 − 9| + 4(p + q − 2)
1
2

|9 − 8| + 2(p + q + 2)
1
2

|8 − 8|

+ 4(p + q − 2)
1
2

|8 − 6| + 8
1
2

|8 − 5| + 4
1
2

|5 − 5|

� 2(p + q − 2)(1) + 2(p + q − 2)(2) + 4(3)

� 2p + 2q − 4 + 4p + 4q − 8 + 12

NIRRL(G) � 6p + 6q.

(4)

□
Theorem 4. Let G ∈ TUC4C8[p, q] nanotorus.Ten, one has
NIRF(G) � 20p + 20q + 32.

Proof. By defnition

NIRF(G) � 􏽘
uvϵE

δu − δv( 􏼁
2

� (6pq − 5p − 5q + 4)(9 − 9)
2

+ 4(p + q − 2)(9 − 8)
2

+ 2(p + q + 2)(8 − 8)
2

+ 4(p + q − 2)(8 − 6)
2

+ 8(8 − 5)
2

+ 4(5 − 5)
2

� 4p + 4q − 8 + 16p + 16q − 32 + 72

NIRF(G) � 20p + 20q + 32.

(5)

□
Theorem 5. Let G ∈ TUC4C8[p, q] nanotorus.Ten, one has

NIRA(G) � 0.013607344p + 0.013607344q + 0.0429636.

(6)

Proof. By defnition

NIRA(G) � 􏽘
uvϵE

δ(− 1/2)
u − δ(− 1/2)

v􏼐 􏼑
2

� 4(p + q − 2) 9(− 1/2)
− 8(− 1/2)

􏼐 􏼑
2

+ 4(p + q − 2) 8(− 1/2)
− 6(− 1/2)

􏼐 􏼑
2

+ 8 8(− 1/2)
− 5(− 1/2)

􏼐 􏼑
2

� 4(p + q − 2)(0.33333 − 0.353553)
2

+ 4(p + q − 2)(0.353553 − 0.408249)
2

+ 8(0.353553 − 0.4472135)
2

� 4(p + q − 2)(0.0004101840) + 4(p + q − 2)(0.002991652) + 8(0.0087722)

� 0.001640736p + 0.001640736q − 0.003281472 + 0.011966608p + 0.011966608q − 0.023933216 + 0.0701783

NIRA(G) � 0.013607344p + 0.013607344q + 0.0429636.

(7)

□
Theorem 6. Let G ∈ TUC4C8[p, q] nanotorus.Ten, one has
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NIRDIF(G) � 3.27774p + 3.27774q + 1.24448. (8) Proof. By defnition

NIRDIF(G) � 􏽘
uvϵE

δu

δv

−
δv

δu

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

� (6pq − 5p − 5q + 4)
9
9

−
9
9

􏼒 􏼓 + 4(p + q − 2)
9
8

−
8
9

􏼒 􏼓 + 2(p + q − 2)
8
8

−
8
8

􏼒 􏼓

+ 4(p + q − 2)
8
6

−
6
8

􏼒 􏼓 + 8
8
5

−
5
8

􏼒 􏼓 + 4
5
5

−
5
5

􏼒 􏼓

� 4(p + q − 2)(1.125 − 0.88889) + 4(p + q − 2)(1.3333 − 0.75) + 8(1.6 − 0.625)

� 0.94444p + 0.94444q − 1.88888 + 2.333332p + 2.33332q − 4.66664 + 7.8

NIRDIF(G) � 3.27774p + 3.27774q + 1.24448.

(9)

□
Theorem 7. Let G ∈ TUC4C8[p, q] nanotorus. Ten, one has

NIRLF(G) � 1.62611045p + 1.62611045q + 0.5425231.

(10)

Proof. By defnition

NIRLF(G) � 􏽘
uvϵE

δu − δv

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

����
δuδv

􏽰

� (6pq − 5p − 5q + 4)
|9 − 9|

����
9 × 9

√ + 4(p + q − 2)
|9 − 8|

����
9 × 8

√ + 2(p + q + 2)
|8 − 8|

����
8 × 8

√

+ 4(p + q − 2)
|8 − 6|

����
8 × 6

√ + 8
|8 − 5|

����
8 × 5

√ + 4
|5 − 5|

����
5 × 5

√

� 4(p + q − 2)
1
��
72

√ + 4(p + q − 2)
2
��
48

√ + 8
3
��
40

√

� 0.471404p + 0.471404q − 0.9428090 + 1.1547005p + 1.154700538q − 2.3094010 + 3.7947331

NIRLF(G) � 1.62611045p + 1.62611045q + 0.5425231.

(11)

Based on the proof of Teorem 7, it is easy to calculate
the following result. □

Corollary 8. Let G ∈ TUC4C8[p, q] nanotorus. Ten, one
has

Journal of Mathematics 5



NLA(G) � 1.61344537p + 1.61344537q + 0.46541694.

(12)

Proof. By defnition

NLA(G) � 2 􏽘
uvϵE

δu − δv

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

δu + δv( 􏼁

� (6pq − 5p − 5q + 4)2
|9 − 9|

(9 + 9)
+ 4(p + q − 2)2

|9 − 8|

(9 + 8)
+ 2(p + q + 2)2

|8 − 8|

(8 + 8)

+ 4(p + q − 2)2
|8 − 6|

(8 + 6)
+ 8(2)

|8 − 5|

(8 + 5)
+ 4(2)

|5 − 5|

(5 + 5)

� 0.47058823p + 0.47058823q − 0.94117647 + 1.14285714p + 1.14285714q − 2.28571428 + 3.69230769

NLA(G) � 1.61344537p + 1.61344537q + 0.46541694.

(13)

□
Theorem 9. Let G ∈ TUC4C8[p, q] nanotorus.Ten, one has

NIRDIG) � 7.167036p + 7.167036q − 3.243771. (14)

Proof. By defnition

NIRDIG) � 􏽘
uvϵE

ln 1 + δu − δv

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑

� (6pq − 5p − 5q + 4)ln(1 +|9 − 9|) + 4(p + q − 2)ln(1 +|9 − 8|) + 2(p + q + 2)ln(1 +|8 − 8|)

+ 4(p + q − 2)ln(1 +|8 − 6|) + 8 ln(1 +|8 − 5|) + 4 ln(1 +|5 − 5|)

� 4(p + q − 2)ln(1 + 1) + 4(p + q − 2)ln(1 + 2) + 8 ln(1 + 3)

� (4p + 4q − 8)(0.693147) +(4p + 4q − 8)(1.098612) + 11.0903

� 2.772588p + 2.772588q − 5.545176 + 4.394448p + 4.394448q − 8.788896 + 11.0903

NIRDIG) � 7.167036p + 7.167036q − 3.243771.

(15)

□
Theorem 10. Let G ∈ TUC4C8[p, q] nanotorus. Ten, one
has

NIRGA(G) � 0.048817p + 0.04817q + 0.1255859. (16)

Proof. By defnition

NIRGA(G) � 􏽘
uvϵE

ln
δu + δv

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

2
����
δuδv

􏽰

� (6pq − 5p − 5q + 4)ln
|9 + 9|

2
����
9 × 9

√ + 4(p + q − 2)ln
|9 + 8|

2
����
9 × 8

√ + 2(p + q + 2)ln
|8 + 8|

2
����
8 × 8

√

+ 4(p + q − 2)ln
|8 + 6|

2
����
8 × 6

√ + 8 ln
|8 + 5|

2
����
8 × 5

√ + 4 ln
|5 + 5|

2
����
5 × 5

√

� 4(p + q − 2)ln
17

2
��
72

√ + 4(p + q − 2)ln
14

2
��
48

√ + 8 ln
13

2
��
40

√

� 0.00693241p + 0.006993241q − 0.013864 + 0.04123857p + 0.041123857q − 0.082477 + 0.21889959

NIRGA(G) � 0.048817p + 0.04817q + 0.1255859.

(17)

□
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Theorem 11. Let G ∈ TUC4C8[p, q] nanotorus. Ten, one
has

NIRB(G) � 0.6916877p + 0.691687q + 1.42373975. (18)

Proof. By defnition

NIRB(G) � 􏽘
uvϵE

δ(1/2)
u − δ(1/2)

v􏼐 􏼑
2

� (6pq − 5p − 5q + 4) 9(1/2)
− 9(1/2)

􏼐 􏼑
2

+ 4(p + q − 2) 9(1/2)
− 8(1/2)

􏼐 􏼑
2

+ 2(p + q + 2) 8(1/2)
− 8(1/2)

􏼐 􏼑
2

+ 4(p + q − 2) 8(1/2)
− 6(1/2)

􏼐 􏼑
2

+ 8 8(1/2)
− 5(1/2)

􏼐 􏼑
2

+ 4 5(1/2)
− 5(1/2)

􏼐 􏼑
2

� 0.118336p + 0.118336q − 0.236672 + 0.573351p + 0.57351q − 1.146703 + 2.8071475

NIRB(G) � 0.6916877p + 0.691687q + 1.42373975.

(19)

□
3. The GTUC [p, q] Nanotube, (p, q > 1)

GTUC[p, q] nanotubes are carbon allotropes with a nano-
structure whose length-to-diameter ratio can exceed
1,000,000. Tese cylindrical carbon molecules have unique
features that could make them valuable in a variety of
nanotechnology applications. Tey have remarkable me-
chanical characteristics, such as high toughness and high
elastic modulus, and are formal derivatives of the graphene
sheet. Tey display both semiconducting and metallic be-
havior, which encompasses the entire range of qualities
necessary for technology. Te properties of GTUC[p, q] are
still being studied extensively, and scientists have only just
started to explore their potential. Without a doubt, carbon
nanotubes are a substance with enormous potential that may
lead to advancements in a new generation of gadgets, electric
machinery, and biosectors. In GTUC[p, q] as shown in
Figure 2, the number of vertex sets and edge sets in
a nanotorus is 4pq + 4q and 6pq + 5q. In Table 3, we have
shown the neighborhood edge partitions of GTUC[p, q].

Theorem 12. Let G ∈ GTUC[p, q] nanotorus. Ten, one has
NAL(G) � 12q.

Proof. Based on the defnition given below, one has

NAL(G) � 􏽘
uvϵE

δu − δv

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

� (6pq − 5q)|9 − 9| + 4q|9 − 8|

+ 2q|8 − 8| + 4q|8 − 6|

� 4q + 4q(2)

� 4q + 8q

NAL(G) � 12q.

(20)

□

Theorem 13. Let G ∈ GTUC[p, q] nanotorus. Ten, one has
NIRL(G) � 1.62186029p.

Proof. By defnition

NIRL(G) � 􏽘
uv∈E

ln δu − ln δv

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

� (6pq − 5p)|ln 9 − ln 9| + 4p|ln 9 − ln 8| + 2p|ln 8 − ln 8| + +4p|ln 8 − ln 6|

� 4p(0.117783) + 4p(0.287682)

� 0.471132p + 1.15072829p

NIRL(G) � 1.62186029p.

(21)

Theorem 15. Let G ∈ GTUC[p, q] nanotorus. Ten, one has
NIRRT(G) � 6p.
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Proof. By defnition

NIRRT(G) �
1
2

􏽘
uvϵE

δu − δv

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

� (6pq − 5p)
1
2

|9 − 9| + 4p
1
2

|9 − 8|

+ 2p
1
2

|8 − 8| + 4p
1
2

|8 − 6|

� 2p + 4p

NIRRT(G) � 6p.

(22)

□

Theorem 16. Let G ∈ GTUC[p, q] nanotorus. Ten, one has
NIRF(G) � 20p.

Proof. By defnition

NIRF(G) � 􏽘
uvϵE

δu − δv( 􏼁
2

� (6pq − 5p)(9 − 9)
2

+ 4p(9 − 8)
2

+ 2p(8 − 8)
2

+ 4p(8 − 6)
2

� 4p(1)
2

+ 4p(2)
2

� 4p + 16p

NIRF(G) � 20p.

(23)

□

Theorem 17. Let G ∈ GTUC[p, q] nanotorus. Ten, one has
NIRA(G) � 0.0185096876p.

Proof. By defnition

NIRA(G) � 􏽘
uvϵE

δ(− 1/2)
u􏼐 − δ(− 1/2)

v􏼐 􏼑
2

� (6pq − 5p) 9(− 1/2)
− 9(− 1/2)

􏼐 􏼑
2

+ 4p 9(− 1/2)
− 8(− 1/2)

􏼐 􏼑
2

+ 2p 8(− 1/2)
− 8(− 1/2)

􏼐 􏼑
2

+ 4p 8(− 1/2)
− 6(− 1/2)

􏼐 􏼑
2

� 4p(0.33333 − 0.353553)
2

+ 4p(0.353553 − 0.408218)
2

� 0.0065435156p + 0.011966172p

NIRA(G) � 0.0185096876p.

(24)

□
Theorem 18. Let G ∈ GTUC[p, q] nanotorus. Ten, one has
NIRDIF G( � 3.2776p.

Figure 2: Te GTUC [p, q] nanotube with q� 5 and p� 4.

Table 3: Te neighborhood edge partitions of GTUC[p, q].

(δu, δv) F

(9, 9) 6pq − 5q

(9, 8) 4q

(8, 8) 2q

(8, 6) 4q
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Proof. By defnition

NIRDIF(G � 􏽘
uvϵE

δu

δv

−
δv

δu

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

�(6pq − 5p)|
9
9

−
9
9

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+ 4p

9
8

−
8
9

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+ 2p

8
8

−
8
8

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+ 4p

8
6

−
6
8

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

� 4p(1.125 − 0.8889) + 4p(1.3333 − 0.75)

� 0.9444p + 2.33332p

NIRDIF(G � 3.2776p.

(25)

□
Theorem 19. Let G ∈ GTUC[p, q] nanotorus. Ten, one has
NIRLF(G) � 1.626105p.

Proof. By defnition

NIRLF(G) � 􏽘
uvϵE

δu − δv

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

����
δuδv

􏽰

� (6pq − 5p)
|9 − 9|

����
9 × 9

√ + 4p
|9 − 8|

����
9 × 8

√

+ 2p
|8 − 8|

����
8 × 8

√ + 4p
|8 − 6|

����
8 × 6

√

� 4p
1
��
72

√ + 4p
2
��
48

√

� 0.4714045p + 1.1547005p

NIRLF(G) � 1.626105p.

(26)

Based on the proof of Teorem 19, it is easy to calculate
the following result. □

Corollary 20. Let G ∈ GTUC[p, q] nanotorus. Ten, one has
NLA(G) � 1.61344596639p.

Theorem 21. Let G ∈ GTUC[p, q] nanotorus. Ten, one has
NIRDIG) � 7.167037155p.

Proof. By defnition

NIRDIG) � 􏽘
uvϵE

ln 1 + δu − δv

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑

� (6pq − 5p)ln(1 +|9 − 9|) + 4pln(1 +|9 − 8|) + 2pln(1 +|8 − 6|)

� 4pln(1 + 1) + 4pln(1 + 2)

� 4pln2 + 4pln3

NIRDIG) � 2.772588p + 4.394449p

NIRDIG) � 7.167037155p.

(27)

□
Theorem 22. Let G ∈ GTUC[p, q] nanotorus. Ten, one has
NIRGA(G) � 8.048390284p.
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Proof. By defnition

NIRGA(G) � 􏽘
uvϵE

ln |δu + δv

􏼌􏼌􏼌􏼌

2
����
δuδv

􏽰

� 4pln
17

2
��
72

√ + 4pln
14

2
��
48

√

� 4.0069384p + 4.0414518p

NIRGA(G) � 8.048390284p.

(28)

□

Theorem 23. Let G ∈ GTUC[p, q] nanotorus. Ten, one has
NIRB(G) � 0.6921229p.

Proof. Based on the defnition given below, one has

NIRB(G) � 􏽘
uvϵE

δ(1/2)
u − δ(1/2)

v􏼐 􏼑
2

� (6pq − 5p) 9(1/2)
− 9(1/2)

􏼐 􏼑
2

+ 4p 9(1/2)
− 8(1/2)

􏼐 􏼑
2

+ 2p 8(1/2)
− 8(1/2)

􏼐 􏼑
2

+ 4p 8(1/2)
− 6(1/2)

􏼐 􏼑
2

� 4p(0.0294372) + 4p(0.14359353)

� 0.1177488p + 0.5743741p

NIRB(G) � 0.6921229p.

(29)

□

Table 4: Comparison of the neighborhood topological indices of TUC4C8[p, q].

[p, q] NAL NIRL NIRRL NIRF NIRA NIRDIF NIRLF NLA NIRDI NIRGA NIRB

[1, 1] 24 5.38 12 72 0.070 7.79 3.791 3.69 11.09 0.22 2.80
[2, 2] 48 8.62 24 112 0.097 14.35 7.04 6.91 25.42 0.318 4.15
[3, 3] 72 11.86 36 152 0.12 20.91 10.29 10.14 39.75 0.41 5.57
[4, 4] 96 15.11 48 192 0.15 27.46 13.55 13.37 54.09 0.51 6.95
[5, 5] 120 18.35 60 232 0.179 34.02 16.80 16.59 68.42 0.60 8.34
[6, 6] 144 21.600 72 272 0.20 40.57 20.05 19.82 82.76 0.70 9.72
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Figure 3: Comparison of the neighborhood topological indices of TUC4C8[p, q].

10 Journal of Mathematics



4. Discussion and Conclusion

We wrap up our work in this section with a few key points.
In Section 2, we created the TUC4C8[p, q] nanotube
structures for p, q> 1. We produced the neighborhood edge
partitions indicated in Table 2 based on Figures 1(a) and
1(b). We calculated the neighborhood irregularity topo-
logical indices using these neighborhood edge partitions.
Additionally, Table 4 and Figure 3 provide numerical and
visual comparisons of all taken into account neighborhood
topological indices which establishes a positive link between
p, q, and these topological indices. In other words, topo-
logical indices rise in value as the values of p and q increase.
It is clear from this comparison that the NIRF index value is
higher than the values of the other topological indices.

In Section 3, we built the GTUC [p, q] nanotube structures
for p, q>1. Using Figure 2, we came up with the neighborhood
edge partitions that are displayed in Table 3. Tese neighbor-
hood edge partitions allowed us to calculate the irregularity of
topological indices. Additionally, Table 5 and Figure 4 provide
numerical and visual comparisons of all taken-in topological
indices which shows that there is a positive correlation between
p, q, and these topological indices; as p and q rise, the topological
indices’ values rise as well. It is clear from this comparison that

the NIRF index value is higher than the values of the other
topological indices.

Te application of distance-based topological indices
presents increased challenges and complexity; however, they can
be utilized in conjunction with existing methods. Te explo-
ration of such studies will be the focal point of future research.
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