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In this research, the modified subgradient extragradient method and K-mapping generated by a finite family of finite Lipschitzian
demicontractions are introduced. Then, a strong convergence theorem for finding a common element of the common fixed point
set of finite Lipschitzian demicontraction mappings and the common solution set of variational inequality problems is established.
Furthermore, numerical examples are given to support the main theorem.

1. Introduction

Let # be a real Hilbert space and € be a nonempty closed
convex subset of # with the inner product {-,-) and norm
[

The fixed point problem for the mapping &: # — #
is to find u € # such that

u = Su (1)
The term F (&) is denoted by the set of fixed points of &,
that is, F(S8) = {x € #: §x = x}. Fixed point problem has
been widely studied and developed in the various literature
studies, see [1].
Definition 1. Let Z be a real Hilbert space.

(i) A mapping §: # —> H is said to be nonexpansive
if

[Su-Svl<|u—-v|, VYuve. (2)
(ii) A mapping §: Z —> F is said to be quasino-
nexpansive if Fix (&) # & and

[Su-v|<|u-vl|, VueIandv e F(S). 3)

(iii) A mapping §: Z — F is called «-strictly pseu-
docontractive if there exists a constant x € [0, 1)
such that

2 2
[Su = Sv||” <l — v

4
+x)(I-SHu—1T -S> )

Yu,v e .

If F(8) + &, then a nonexpansive mapping is a quasi-
nonexpansive mapping. Also, if ¥ =0, then a strictly
pseudocontractive reduces to a nonexpansive mapping.

In a real Hilbert space, the inequality (4) is equivalent to

1_
(Su—-Sv,u—vy<lu—v|* - TK" (I-8)u—I-SW> Vuve. (5)
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Definition 2 (see [2]). A mapping & is called demi-
contractive if Fix(&§)# @ and there exists a constant
k € [0,1) such that

ISu—=vI* <l —vI* + (I - S)ul>, Vue Fandv e F(S).
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The class of demicontractive mappings covers a variety
of nonlinear mappings, including strictly pseudocontractive
mappings, quasinonexpansive mappings, and nonexpansive
mappings.

By using the same technique as in the proof of (5), we see

(6)  that (6) is equivalent to the inequality shown below if
8 H — F is a demicontractive mapping.
1-
(Su-vu-vy<u-v|* - TK" (I-Sul’, YueZandveF(S). (7)

Several mathematicians have taken an interest in
studying the common fixed point of the finite family of
nonlinear mappings and their characteristics during the past
few decades; see [3-6].

In 2009, K-mapping for nonlinear mappings is in-
troduced by Kangtunyakarn and Suantai [6] as follows:

7y =pSi+(1-p)l,
V5 =p8,7 1 +(1-p)7

V5 =p3S837 5+ (1-p3)7 5 (8)

VN1 = PNaSNAaT N2 + (1= Pne1) 7 neas
K=7y5=pnSNY N1+ (1= pN)7 Nors

where 0<p; <1 for every i = 1,2,...,N. This mapping is
called K-mapping generated by &,,8,,...,&y and
P1>P2 - - -» pn- Furthermore, F(K) = MY, F(S)).

Let 2: € — Z isanonlinear mapping. The variational
inequality problem (VIP) is to finding an element u € €
such that

{v-u,Du)>0, Vve®. 9)

The solution set of the problem (9) is denoted
by VI(€, D).

Stampacchia [7] introduced and investigated variational
inequalities in 1964. In addition to offering a comprehensive,
unifying framework for the study of optimization, equilib-
rium problems, and related problems, it also serves as
a helpful computational framework for the resolution of
various problems in a wide range of applications. For ad-
ditional information, see [8-13]. Various approaches are
investigated to solve variational inequality problems and the
related optimization problems through iterative methods.

Several researchers have presented a variety of iterative
algorithms designed for solving the variational inequality
problem (VIP). The projected gradient method (GM), which
can be defined as follows, is the most fundamental projection
technique for solving the VIP.

X, = Py (x, - pDx,), Vn>1, (10)
where P, denotes the metric projection mapping, 9 is the
a-strongly monotone, and L- is Lipschitz continuous with
p € (0,2a/L?).

In 1976, Korpelevich [14] and Antipin [15] proposed the
extragradient method (EGM) in a finite-dimensional Eu-
clidean space as follows:

X, € G,

Vn = Pg (x, - pDx,), (11)
Xp1 = Py (xn - ngn), Vn>1,

where p € (0,1/L) and @: R" — R? are monotones and L
is Lipschitz continuous. If VI(®, D) is nonempty, the se-
quence generated by (11) converges to a solution of VIP.

According to [16-18] and related references, the EGM
has undergone modifications and enhancements in the past
few years.

Later, in 2012, Censor et al. [19] defined the subgradient
extragradient method (SEGM) by modifying the EGM and
replacing the second projection with a projection onto
a half-space which is presented as follows:

ul € %)

Vn:P%’(xn_ngn),

c§)n ={Z e X <un—p@un—vn,z_vn>so}’
Upi1 :Pcfn(un_P@Vn), Vn>1.

(12)

Weak convergence theorem is obtained for SEGM (4)
under some control conditions.

Recently, in 2021, Kheawborisut and Kangtunyakarn
[20] introduced the modified subgradient extragradient
method (MSEGM) as follows:

z,u, € %,

N
v, = Pg<1_pzai9i>un’

i=1

N
3 %n:{ye%’: <<I—pZai9i>un—vn,vn—y>20},
i=1

N
Uy = 0,2 +p, Py (un -p Z a,-@,-vn> +u,Gu,, Vnx1,

i=1

(13)

where 9;: # — H be o;-inverse strongly monotone
mappings, 0<a; < 1,Vi=1,2,...,N, Y~ a;, = 1, {0,}, {p.}>
{u,} < [0,1] with g, + p, + ,, = 1, and G is a nonexpansive
mapping. Afterwards, under certain control settings,
a strong convergence theorem is obtained.
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If 92=9,vi=12,...,N and «,=y,=0,VneN,
then the modified subgradient extragradient method
(MSEGM) reduces to the subgradient extragradient method
(SEGM).

(U, X, e X,

i=1

where S is a nonexpansive mapping. If ¢, = 1, then the S-
subgradient extragradient method (SSEGM) reduces to the
modified subgradient extragradient method (MSEGM).

In this paper, inspired by [6, 20], the S-subgradient
extragradient method and K-mapping generated by a fi-
nite family of finite Lipschitzian demicontraction mappings
are proposed. Under some control conditions, strong
convergence theorems are proved. Moreover, numerical
examples are given to support the main theorem.

2. Preliminaries

n n

The notations " —" and " — " are denoted weak con-
vergence and strong convergence, respectively. For each
u € X, there exists a unique nearest point Pyou € € such
that

Ju¢ = Paa] = min e - v (15)

The mapping Py is called the metric projection of #
onto €. Also, Py, is a firmly nonexpansive mapping from 7#
onto %, that is,

| P - ng"Z <{u—v,Pgu—Pyv),Vu,ve . (16)
Moreover, forany u € # and q € 6, q = Pu if and only
if

(u-gq,q—v)=0, Vve®. (17)

N
Z, = Pg<1—p2ai9i>$l”n,

Motivated by the recent research, the S-subgradient
extragradient method (SSEGM) is introduced as follows:

P @n:{ZE%I<<I_piai@i>%n_Zn’zn_z>20}’ (14)

i=1

N
?/n =o,u +ﬁnP‘%n<‘9’/‘n _pzai9i2n> + YnG‘%‘n’

'%'rwl = O'n?n + (1 - O'n)s‘%‘n’

Vn>1,

Definition 3. Let §: # — H be a mapping. Then,

(i) & is said to be p-Lipschitz continuous if there is
a positive real number y >0 such that

[Su—Svl<ullu—-vl, Vu,ve. (18)

(ii) & is called &-inverse strongly monotone if there is
a positive real number & such that

u—v,Su—-Svy=¢|Su—-Sv|*, Vu,veZ. (19

Lemma 4 (see [21]). Let {p,} be a sequence of nonnegative

real numbers satisfying
Pur1 = (1 _En)pn-"pn’ Vn=0, (20)

where {e,} is a sequence in (0,1) and {p,} is a sequence such
that

1) Zflilen = 00;
(2) limsup,,_, . p,/€,<0 or ¥ 2 |p,| < 0.

Then, lim =0.

n—»oopn

Lemma 5. Let 7 be a real Hilbert space. Then, the following
properties hold:

(i) For all u,v € & and « € [0,1],

ozt + (1 = a)vl® = allull® + (1 - ) IVl — a (1 - a)flu - v|*. (21)

(ii) ||u +v|*< ||u||2 +2{v,u+v), foreach u,veX.

Lemma 6 (see [22]). For j=1,2,...,N, let 2,: € — #
be_an aj-inverse strongly monotone with 0<p<2a; and
ﬂg":lVI(%, 2 ;) # 2. Therefore, these properties hold:

(i) VI(&, XL,b;2;) = Ui, VI(8,9))
(i) I - pZ;\ilbj@j is a nonexpansive mapping.

Here, b]- € (0,1), for j = 1,2,...,N, and Z;\;b]‘ =1
Definition 7 (see [6]). Let € be a nonempty closed convex
subset of a real Banach space. Let {&,}Y, be a finite
family of x;-demicontractive mapping of € into itself
and let p;,p,,...,py be real numbers with 0<p; <1 for
every i =1,2,...,N. Define a mapping K: € — & as
follows:



4
7y =piS1+(1-py)I,
7y =p$7 1 +(1-p)7 s
V'3 =p3837 5+ (1-p3)7 5
.3 p3S37 5+ (1= p3)7, (22)
7N = PNaaSNaT N2 + (L= pne) D N
K=7y=pnSN? N1+ (1= pn)7 N
This mapping K is said to be the K-mapping generated
by §1,8,, ..., 8y and pi,py, .. .5 PN-

The following lemmas are needed to prove the main result.

Lemma 8. Let € be a nonempty closed convex subset of a real
Hilbert space . Let {é’i}f\il be a finite family of

lle = vl

2
=||Ku - |
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Kk;-demicontractive mapping of € into itself with x; < y,, for all
i=12,...,N,and NN, F(S,)+ Q. Let p;,p,, . . ., px be real
numbers with 0<p;<vy,, for all i=12,...,N and
y1+7v,<1. Let K be the K-mapping generated by
S8y Sy and pi,p,, ..., pN- Then, there hold the fol-
lowing properties:

(i) F(K) = NY, F(S});

(ii) K is a nonexpansive mapping.

Proof. To prove (i), it is clear that NY, F(S$;) € F(K).
Next, we prove that F(K)cnX F(S);). To show this,
suppose u € F(K) and v € NY,F(&)).
By the definition of K-mapping, we obtain

=N SNT ngu + (1= pn)7 o1 = V”2

= ||PN (SN north = V) +(1- PN) (WN—lu - V)”2

= PN SN Ngu - ""2 +(1- PN)ZHWN-W - ""2

+2pn (1= pn (SN Nt = D gt = v)

= P12v<||%N71” - "”2 + KN||§N%N—IM - %Nq“"Z) +(1- pN)ZHWN—lu - Vl|2

+2py(1- PN)("WN—IM - V”2 -

2

KN“(SN%N—lu - 71\171”"2)

= (Pif +(1- PN)2 +2pyn (1~ pN))“%N—lu - V”2

+(P§\IKN ~PN (1 - PN) (1 - KN))“&N%MW - %Nq“”Z

=(py+1- PN)ZHWN—lu - V"2

+pn (pnren = (1= py) (1 - KN))"‘SN%N—IM - 71\171”"2

= ||<7N—1” - "”2

+pn (pnkn = (1= xy) +py (1= KN))”‘“S)N%N—ILL - 7N—1“||2

= ||%N71“ - VHZ +pn (ky +pn = 1)"(‘5)1\1%1\171“ - %N—lu"z

< “%N—lu - V"Z +pon (P +ys - 1)“51\171\14” - %J\H“”Z

<7 o

2
=[75u -]
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=[lo2 (82771 =v) + (1= p) (7= )
= p3)| 8,71 x - J’"2 +(1=p)| 7 u - V”2

+2p, (1= py (S, 7 1t = 0, 7 yu = v)
:@quu_qr+xﬂsﬁ4u_zqqf)+@_pgwaqu_mz

1=
2

+ 20, (1= po) (|70 = - =52 8,77 - 77l

=(p3+(1=p) +2p,(1-p,)) |7 - |
+(pyey = py (1= ) (1 = 1))|| 8,7 1~ 7 |
= (pr+1-p) |7~
+p2 Py = (1= p2) (1 = )| 6,7 1u =7 u”
=7 u =]+ p, (1, + p, = V|8, 7 1 - 7
<|7u- ""2 +p2 ((y1 +72) = 1)[| 827 1u - 71”"2
<|7u- (23)
=1 (S1u=v) + (1= p) =)’
= 2| = + (1= p )l — I
+2p, (1= p (S1u—v,u—v)

= (1= =" + (1 )Pl ol

1_
<201 (1= p) (b= =)

=(pt+(1=p1)" +2p, (1= 1))l = VI
(et = pu(1=p1) (1= %)) Sy -
=(p, +1-p) llu—v|?
+p1 (o = (1= py) (1= )| Syt = ]
=l = vI” + py (o + 1 = D[S0 -
<l =vIP +py (11 +72) = V]| S~ ]

- |10 -ul=0. (25)
By (23), it follows that

2 Hence, u = &,u, that is,
p1 (1= (yy +72)|S1u—u| <0. (24) |

Then, we have ueF(S8)). (26)
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By the definition of 7", and (26), we get that is,
Vwu=pSu+(1-pu 27) ueF(7)). (28)
=W From (23) and (28), we have

flee — V||2 < "%1” - V||2 +py ((y1 +72) - 1)"52%1” - %1”“2

i ) (29)
=llu=vI"+py ((yy +7v2) - 1)"52” - u“ »

N
which follows that u = &,u, that is, F(K)c ﬂF(cS’,) (37)

i=1

ueF(S,). (30)
Therefore,

By the definition of 77,, (23) and (28), this implies that N
Vyu=py$, 7 u+(1-p)7 u (31) F(K) = ﬂF(&l) (38)

i=1

= u’
Finally, applying the same proof as in (23), K is a qua-
which yields that sinonexpansive mapping. O
F(7,). 32

ueF(7,) (32 Lemma9. Let € be a nonempty closed convex subset of a real
Using the same method, we get Hilbert space #. For i =1,2,...,N, let $;: H — H be
a finite family of k;-demicontractive mappings of € into itself
u € F(S)), (33) and  L;-Lipschitzian — mappings  with x;<y, and
ueF(7,), Vvi=12,...,N-1 NN F(S,)#D. For each i=1,2,...,N and neN, let
P1>P2s PN and pi.ph, ..., pk be real numbers with
NeXt, we Claim that uc F(&N)' Sil‘lce 0 <pi’p;’ < '};2 and 'yl + yz <1 Such thatp:l — pi asmn — 00.
0=Ku-u For eachn € N, let K and K,, be the K-mappings generated by

SHLS8 LSy and p,pys .. py and 8§, 85, ..., Sy and
= pNSNY Nt + (1= pn) 7 g —u (34) PPy .. PR respectively. Therefore, for each bounded se-

= pn (Syu —u), quence {u,} in €, we have
and py € (0,1], we have nﬁnml|Kn”n ~ Ku,| =o. (39)
ueF(Sy) (35)
pel, et ) b et e 1 e 7
e (N]F(é’l) (36) :f’le, gj)‘,;,;ilfv]\é and p,p5,...,pR, respectively. For each

Hence,

||7/n,1”n - %1”71“ = ”P?Sﬂf‘n + (1= p))u, = (p1 Sy, + (1 - Pl)”n)”
= ”PTCSjlun = Pithy = 1S Uy + Plun”
=] (Y = p1)S 11, = (PY = pr )
16 = 1 st

(40)
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For k € {2,3,..., N}, we get
'|7n,k”n - %kun"

=[Pk ST mkatta + (1= PR Y ity = (P SiZ cathy + (1= ) 7 iatt)|

=[Pk ST krttn = Pk ST kathn + (1= PR Y gecrthy = (1= p) 7 iyt

= ||Pz5k7n,k-1“n = PiSKT k1t + PkS k7 k1t = PrSKY k1t
+ (1= )7 gerttn = (1= PO 7 katty + (1= p) 7 i1k
~(1=p) 7 k|

= ”PZ(CS)k%n,k—lun - Ska—lun) +(Pk = PR)SKT k1t (41)

+(1 - PZ)(Wn,k—lun - %k—lun) +(1=pg = (1= )7 kcrthy
SPZ”SkWn,k—lun - Ska—lun” +|PZ - Pk|||5k7k-1”n||

+ (1= PONZ wicrttn = 7 icathal] +lpi = PRI7 kcr
szLk“%n,k—lun - quun" +|PZ - pk|||(§)k%k—lun||

+ (1= PONZ wirttn = Zicattal] +low = PRI 7 kcr
< (L + D st = 7 st + 9% = il (|7 kst +| 7 1c1a])).

From (40) and (41), we obtain

||Knun - Kun“
= |l%n,Nun - %Nun"
< (Ly + I)HWn,N—Wn - %N—lun" +|PnN - PN|(”SN%N—1un" +||%N—1un")
< (Ly + 1)( (Ly-1 + 1)"7@\#2% - WN—Zun" +]pN1 = Pr-i
: (II§N—1%N—2un|| +”7N—2un")) +|P7\I - PN|(”CS)N%N—1un" +”%N—1un")
=(Ly +1)(Lyy + 1)”7%1\772% - %N—Zun"
+(Ly + 1)|pxs - PN—1|(||°S)N—1%N—2un" +||7N—2un“)

+|PnN - PNI("é)N%N—lun" +||%N—1un“)
N

= (LJ + 1)"%”,1\]*2”” - %Nflun”
i=N-1

-

N

> ()

j=N-1

“+

p?_Pj|<||§j%j—1un

(42)
+||‘7j_1un )

-

Il
[\S]

<

(Lj + 1)"‘7”’114" -7,
j

N .
# 2 (L + 1)
j=2

P;'l - pj'(”‘sj%j—lun

+H%J*1M"

)

N
=10+ 1)lel =il Sty ]
j=2

N .
£ Y (L) —pj|(|j5j%j,1un |7,

)
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By (42) and the condition p}! — p; as n — oo for all
i=1,2,...,N, hence we obtain lim nK
Ku,| = 0. e

Lemma 10 (see [23]). Let {I',} be a sequence of real numbers

that do not decrease at infinity in the sense that there exists
a subsequence {F,,j} of {T,,} such that I, <, forall j20.
Also, we consider the sequence of integers {t,},., defined by
(43)

nzn,

= max{k<n: T) <Tj,,}.

el

7(n)

N
I—priQZi

i=1

I- pr@

N

u" e ﬂVI(%,SZl-), foralli=1,2,...

i=1

Then, the following inequality holds:

Pgen< vn>—u
S"un—u* 2—(1—%) P-%(
_(1_°

<1 ﬁ)””

where  0<b,<1,¥N.b,=0 and
B =min;_;, y{o} foreveryi=1,2,...,

,,,,,,

2

N
Uy _szigi

i=1

2

N
U, - szigivn

i=1

>_

(46)

pe (0,8  with

N.

'z _pg<1 pZa@)

oofon o

@m—l = (n?n + (1 - (n)P%<

Journal of Mathematics

Then, {z is a nondecreasing sequence verifying

n}nzno

lim 7(n) =

n—:oo

(44)
max{T,,,T, }< r

T(n)+

Lemma 11 (see [20]). Let # be a real Hilbert space, for every
i=1,2,...,N, let D; H — H be a;-inverse strongly
monotone mappings with = min {e;}. Let {u,} and {v,} be
sequences generated by

>un’

(45)

Ju-sanc) }

1

,N.

3. Strong Convergence Theorem

Theorem 12. Let € be a closed convex subset of a real Hilbert
space #. Fori=1,2,...,N, let D;: H — H be ¢,-inverse
strongly monotone mappings. For i=1,2,... N, et
& H — X be v;-inverse strongly monotone mappings
with  0<p< min_,, 2v. For i=12,...,N, let
S H — I be a finite family of «;-demicontractive
mappings and L;-Lipschitzian mappings wzth Li<1, k<9,
and Q: =N, F(SH)nUN, VI(E, Q)HUI VI(6,8)+ @.
Foreveryn e Nandi=1,2,...,N, let K, be the K-mapping
generated by S, ..., cS’N and p’f,pg, ....pR where
pl € [u,€] € (0,y,), for some y,e >0 and y, +y, <1. Let the
sequence {y,} and {Q,} be generated by u, @, € # and

a;D; >@n—2"n,§2"n—z>20},

(47)

N
?n =gut fnPlC/Bn(@n _Pzai9i>zn> + WnKn@n’
i=1

N .
I-pYb,

i=1

%i>@n, Vn>1,
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where YN a; =1, {e,L,{& 1w, {¢,) c (0,1)  with
g, +&,+v,=1,Vn=1, pe (0,n) with n=min_,, x{e}

where d,

= £,y + ¥,K,@,/1 - &,. Suppose that g* € Q =

F(é’)ﬂUl VI(E, 2, )nU, 1VI(% &,). By Lemma 5, we

and b’ € (0,1),Vi=1,2,...,N with Zf\:jlb; =1 satisfying have
the following conditions: lld _ g*”2
n
(i) lim,__, e, =0 and Y, €, = 00; ,
(ii) 0<t<&,,v,,(,<v<]1, for some T,0>0. _ w—g*
1-¢,
Then, {@,} and {Z,} converge strongly to v = Pqu. ,
B + vuK &)9"
Proof. Let ¢, =Py (@, le \4DNZ,). First, we will - 1 - gn I (49)
show that {@ } is bounded. Consider
En * *
?nzsnu+gncn+WnKn@n zl_sllcﬂ_g 2+1_£”Kn@n_g ’
ETIC" + nKn@n
=gu+ (1 - Sn)<% (48) _ fnv/n "C “K.0 “2
: (-
— &,)ds By the definition of @, (49), Lemmas 6 and 8, we obtain
”@nﬂ - g*”2

2

<Gl +(1-3)

N
Pg<I—PZb;%,->@n -g
-1

? +(1 _(n)l n
= (n“snu + (1 - Sn) n -

Scn"?n _g*

Cn)”@n_
:Cnllsn(u_g*)-i—(l_sn)(dn_g*) ? _Cn)l n

=Gfedu-g [+ (1 -e)ldu- g -1 - e f (@) - |

+(1-¢,

:(n<8n H)[lfné’ Cn—

_ (lfiw” 2||c —K Q “ :| (1 _gn)||f(@n)_dn"2>

n

g+

y .
Hef0,- o

+(1_ n

e Y A R

- en(l - en)"f(@n) - dn”Z) + (1 - (n)l n -

S(n<£n

- En(l - sn)”f(@n) - dn”Z) + (1 “5n

* |2

+V, -9 - f”_—ll/;"‘:n - Kn@nnz
n

1ol =K@ I

(50)
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From Lemma 11 and p € (0, %), we have From (50) and (51), we get
“cn—g* 2S||@n— 2 (51)
[k

“@n _g*

S(n<sn

- sn(l - Sn)”f(@n) - dn”2) + (1 - (n)"@n - 9*”2

2 Sy kg |
1-¢,

%12 w2 f v, 2
= (n<£nl - +(1 _“"n)”@n_g 1 ”C - @ﬂll (52)

—e, (1= (@) -d, [ ) +(1-,

<¢,(e -’ )+-ale. -
< max{| - g* 2},
By induction, we obtain This implies that {@,,} is a bounded sequence. Next, from
(50), observe that
| {la-gF-le-gF} 3
||@n+l - g* ?
SC,,(SY, : 2+Wn -9 Z_fn_iw:||cn_Kn@n”2>

+(1-¢)e. - g7

c( n[n@n— 2—(1—8)||cn—zn||2

f "
(1-2)ia- 2k |+ wlta- g - 1222 e, - K,

+ (1 - {n)"@n -
n(l—g)ncn—znnz (54

- Cn<£n

-6 (122l e, -, )+ 1=l -

scn(en n(l —B)ncn—:znnz
n

-&(1-2)la - 2 e, -6 ) s 0 -8l - o F

P 2
1-E)e, -z
&(1-0)le,- 7]

_ (ngn<1 _ §>||@n _z - bbb e,

= {nsn
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This follows that

(nfn(l - %)"Cn - Znnz + (nfn(l - %)“@n - z”’nz + (nfnzjﬂ"(jn — Knanz

<Gelu-g'I +la- g

Take S,: = 0,8, (1= pic, = Z.['+ 6.E,(1-pim]@,

- 2“7,"2 + (6w, /1 - sn”cn - KnQnH . Thus, we get
Sp< (nsn"u - 9*”2 +||Qn - g*"Z _”@wl - 9*”2- (56)
Next, the following two possible cases are
considered. O

Case 13. PutT,: = ||@,, -g 2, for all n € N. Assume that
there is no n, > 0 such that, for any n>n, I,,; <T,,. In this
case, we have

n—~oo

’ _"@nﬂ - g* .

11
- (55)
2

lim T, exists,

n.—>oo (57)
ngnm(rn - rl’l+1) =0.

Since lim, e, =0, it yields from (56) that

lim, S, = 0. Hence, we obtain

lim (n£n<1-’—’>||cn—zn||2 ~ lim (n£n<1—;—))n@n—2"n||2
n n—eo n

= lim Lf”%"cn - Kn@n”2 (58)
n—oo | — gn

From condition (ii), we get

nh_f,noo"% - zn” = nh_r,nOO"@n - i’?f”” = nk&'kﬂ - Kn@n” =0. (59)
Since
|@0 =Kl <)@ = Zull +[Z 0 = call +len = Knte]. (60)
then, from (59), we obtain Next, we choose a subsequence {@”k} of {@,} such that
nli_r)nOOH@n -K,@,| =o. (61)

limsup(u —-v, @, —v) = klim <u -v,0

n—=oo

. v>,wherev =P,u. (62)

n
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Since @, is bounded, this follows that @, —w as
k — co, where w € #. Assume that w ¢ Uf\ilV{(%, D).
This follows by Lemma 6 that w ¢ F(Py (I - pYr,a:D;))s

Journal of Mathematics

that is, w# Py (I—pizlaiQi)w. By nonexpansiveness of
Py (I-pYN a,P,]), (59), we get

liminf||@, - w”
N
< liminf)|@, - Pg| I —pZaiQi w
n—o0 -1
N
< liminf( Q. = V|| || m — P%)<I -p Za,-@,-)w ) (63)
n—o0 i1
N N
< liminf( Q= Y| *+|Pe I—pZaiQi Q,, - Pg I—pZai@i w )
e i=1 i=1
< liminf}\@,, - w”
pi* — p; € (0,1)ask — oo, foreveryi=1,2,...,N.
This is a contradiction. Then, we obtain (66)
N
we ﬂVI (6,9)). (64) Let K be the K-mapping generated by &, &,,.. ., Sy
i=1 and pp,py .- -s pn- From Lemma 8, we obtain that K is
Applying the same proof as in (63), we also have nonexpansive and F (K) = [JY,F(S,). By Lemma 9, we get
N .
w € ﬂVI(%, &) (65) kh_r)noo K, @y — K@, | = 0. (67)

i=1
Foranyi=1,2,..., NandneN,0<u<pl<e<y, <1,
without loss of generality, we have

liminf||@, - wu
n—~oo
< liminf) @, - Kw”
n—:a~o
< liminf( 0, -K,0,| +|x.e, - Ko,
n—a~o

< liminf|K @, - Ko

n—~o~oo

Suppose that w ¢ F(K). Therefore, we obtain w # Kw.
From (61) and (67), we have

+'|K@nk - Kw”)

= 1inj&f\|pN(&N%N,1@nk = SNT §1©) + (1= o) (7 1@ = V0|

< lyilriiglof(pN“é’NWN,l@nk SNV w0+ (L= )| 7w - %N,lw”)

< 1’1111120f(pNLN |7 51 @0, ~ 7 w0 + (1= o) 7 w1 @ - WN_lw”)

< linjgof‘|WN,1@nk -y

< l}lnjgof(pN_l|‘§N,lWN,2@nk Sy w0+ (1= o) |7 w2, - %N,zw“)

< lrilrg&f(PN—lLN—IHWN—Z@nk - 71\1—2“’" +(1- pN—l)"WN—ZC@nk - %N—Zw”>

< liminf| 7,0, - 7'y
n—o00 k

< migi6, -7

< I,ifgi&f(f’l”cs’lénk - CS’IwH +(1=-p)|C,, - w“)

@”k - wu +(1 _pl) @nk - w”)

G, -w

< liminf(plL1

< liminf

n—:o00

(68)
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This is a contradiction. Therefore, it follows that Since @,, —w and (70), we can conclude that
w € F(K). Applying Lemma 8, it implies that limsup (u 0,0, —v) = 11m <u "o - v>
we (F(S;) (69) v, - v (71)
i=1
<0.
From (64), (65), and (69), it follows that
weQ. (70) Let v = Pqu, from Lemma 8, (49) and (51), we have
I, — [
fn 2 V’n 2 Ean 2
oo R o -, K,
n n —&,
< S e, o + Y|k, o (72)
1-¢, &,
§n 2, Y 2
< g, —off + Y2, ]
n n
=@, .
Applying Lemma 5, the definition of @,, (72), and
v = Pyu, thus we get
|@0i —
-~ 2
N .
= (n(?n _V) +(1 - (n)(P%<I_pr;%z)@n _V>
i=1
= ||(n (sn (u - V) + (1 - en) (dn - V))
-~ 2
+(1 _(n)(P%<I_prlngt)@n_v>
in1
=[ e (=) + 3, (1 - &,) (d,, — )
]T] . 2
+(1 _(n)(P%’<I_prlngz)@n_v>
- (73)

+ 20,6, (u -

—V>

v @n+1

<

((n(l _sn)lldn - V“ +(1 - (n)

)
1-¢)|@,-v|+(1-¢, )"@
-l le, —v" +2(,¢,

< (1 _Cnsn)"@n

+20,6,(u-v,@,,,

(

<

—v” +2(nen(u v, @

< Cn(l _sn)(dn_v) +(1 _(n)(p%<1_pib;%i>@n_v)
i=1
N
ng(I—pr'n%i)@n—v
i=1

- v”)2 +20,e,(u-7v,8,,, -

- @n+l

n+l

2

2

)

v)
—V>
v).
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From (71), the conditions (i), (ii), and Lemma 4, we can Case 14. Assume that there exists a subsequence
conclude that {@,} converges strongly to v = Pyu. From { } {T,,} such that I'n; < I, 1 foralli € N. In this case, we
(59), we also obtain that {Z,} converges strongly to  can define 7: N— N by 7(n) = max{k<n: I} <T}, }.
v = Pqu. Then, we obtain 7(n) — 00 as n — 0o and I';(, < ;.

This implies by (72) that

p
Q(nﬁr(n)(l - ,1)||Cr<n> Vi ||2 + e fr(n)( )"xr(n) yr(n)“

Cem
+i“?fi"”””">||cm—Km)xﬂn)uz 7
T(n)
) R I R i P
Using the same method as in Case 13, it yields that
Jim flezy = yeonl = M e = yel = lim flecm = Kepp*om] = 0. (75)
Since {xr(n)} is a bounded sequence, then there exists
a subsequence xT(nk)} such that
linrﬁlolop<u — VX~ v> = 11_r>nOO U=V Xy ()~ v>,wherev = Pqu. (76)
Applying the same proof of Case 13 for { ” )} we get
llmsup<u — VX () — v> <0 (77)
n—o0
[eemer =< (1= oo e = VI + 2cmerin (= v xrgnin = v). (78)
By Lemma 4, we have Hence, by Lemma 10, we obtain
dim [x ) = v] = o)
im [ =] =0
0<]@, = v < max{lxy = v @ = v} < i = v (80)

Therefore, we can conclude that {@,} converges strongly =~ Remark 15. Since the S-subgradient extragradient method
to v =Pqu. From (59), we also have {Z,} converging  covers various type of iterations such as the modified
strongly to v = Pnu. The proof is complete. subgradient extragradient method (MSEGM), the
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subgradient extragradient method (SEGM), and the extra-
gradient method (EGM), Theorem 12 can be seen as
a modification and extension of several research papers, see,
for example, [14, 15, 19, 20].

4. Numerical Examples

Numerical examples are provided in this section to back up
the main result.

Example 1. Let € =[0,100] and R be the set of real

15
Fori=1,2,...,N, let §;: R — R be defined by
&iu:,m , VueR,
i+10
(82)
2n
"= , e N.
P 50on+i

Put ¢, = 1/6n, , = 3n—2/6n, y, = 3n+2/6n, and (, =
n+1/3n+2,b = n+1/3n+50b2 =n+4/3n+5b =nl3n
+5,Vn € N. Choose u=5,p=1/4,p=1/5 and a;=1/3,
i=1,2,3. Then, {@,} and {Z,} converge strongly to 0.

numbers. Define the mappings 2,,9,,9;,8), &), Solution. Clearly, all sequences {¢,},{£,}, {y,.}, {¢,} sat-
&3: € — R by isfy all conditions of Theorem 12. Moreover, &; is 0-
4 1 demicontractive mappings and i/i + 10-Lipschitzian map-
Du = 3u, Dyu = g”v@s” = E”’ pings, for alli =1,2,...,N. Choose y, = 1/3 and y, = 1/2,
81 thus we get y, +y, =5/6<1. Since K, is a K-mappin
, A h get y1+y, =5/ S n pping
1 1 71 n
1 = 5u, &yt = = Fu = S Vi € R generated by &, 8,,..., 8y and pl, p5, p5, .. ., pi» then
2 2
7,6,=—"_s0, +<1 —7”)@",
500m + 1 500m + 1
2n 2n
V20, = co 8710, 4 (1= 5= )71,
20 = 500m 122719 1 50004 2) 71O
2n 2n
V0= s 85720, + (1= 505 )7
39 = So0m 13537 20 17 500, 53) 720 (83)
2n
VN, =———SN 17 N < )
R L S L S
2n
K@, =70, = o S\ T ( )%
nOn = 7O = 500+ NONT MO 1" 500, 1 ) T N1 O
3141 3u,
Hence, we obtain 1 (00 ( )
N 3 3 D, (uy 15) = (5w, 5u,), (85)
{0} = QF(&)HQVI(%,QZ,»)HQVI (€6.%,). (84) &, (1,11y) = (414, ),
Suy 5u
&, (upuy) =(—L=2), Y(u,u,) € R
By Theorem 12, the sequences {@,} and {Z,} converge 2 (11 12) ( 8 8 ) (v 1)
strongly to 0. Fori=1,2,...,N, let &;: R? — R? be defined by

Table 1 and Figure 1 show the values of sequences {@,,}
and {Z,} where u =@, =5 and n = N = 30.

Example 2. Let R* be the two-dimensional space of real
numbers with an inner product {-,-): R* x R> — R de-
fined by (u,v) =u-v=u;v, +u,v, and a usual norm
|-I: R* — R given by |u]=u?+ul, for every
u = (u;,u,) € R* Suppose € = {(u},u,) € Z: 0<u;,u, <

100}. Define the mappings 9,,9,, &, &,: € — R? by

i, iu,
i+100i+ 100

Si(upuy) = (

> V(up,u,) e R% (86)

Take brll =n+4/3n+5, bi =2n+1/3n+5,Vne N. All
sequences and other parameters are defined as in Example 1.
Let p=1/4,p=1/8 and a; = 1/2,i = 1,2. Therefore, {@,}
and {Z,} converge strongly to (0,0).

Solution. Clearly, all sequences, parameters, and map-
pings satisfy all conditions of Theorem 12. Hence,
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TasLE 1: The values of {Z,} and {@,} with n = N = 30.

n Z, Q,

1 2.986111 5.000000
2 2.293376 3.840071
3 1.646740 2.757332
4 1146351 1.919472
5 0.783242 1.311475
15 0.013890 0.023258
2 0.000123 0.000206
27 0.000082 0.000137
28 0.000055 0.000091
29 0.000035 0.000058
30 0.000022 0.000037

Figure 1: The convergence comparison of {Z,} and {@,} with

u=@Q, =5.

TaBLE 2: The values of {Z,} and {@,} with u = @, = (2,2) and

@,

n=N =50.

n Z,

1 (0.375000, 0.375000)
2 (0.263465, 0.263465)
3 (0.181010, 0.181010)
4 (0.125451, 0.125451)
5 (0.100423, 0.100423)
25 (0.004070, 0.004070)
46 (0.001966, 0.001966)
47 (0.001811, 0.001811)
48 (0.001893, 0.001893)
49 (0.001742, 0.001742)
50 (0.001819, 0.001819)

(2.000000, 2.000000)
(1.405144, 1.405144)
(0.965388, 0.965388)
(0.669071, 0.669071)
(0.535589, 0.535589)

(0.021705, 0.021705)

(0.010486, 0.010486)
(0.009660, 0.009660)
(0.010095, 0.010095)
(0.009290, 0.009290)
(0.009704, 0.009704)

Journal of Mathematics

50 4
40 -
30 +
n
20 +
10 +
ok 0
e N, e
0.5 1 T e <) N 2
1.5 2 1R
72, and Q’
—— 7
Q,

Ficure 2: The convergence of {Z,} and {@,} in a three-
dimensional space with u = @, = (2,2) and n = N = 50.

N 2
(0.0} = F(S)NNVI(E2)n ,rzwl VI(%, ). (87)
i=1 i=1 =

Applying Theorem 12, the sequences {@,} and {Z}
converge strongly to (0,0).

Table 2 and Figure 2 show the values of sequences {@,,}
and {Z,} where u = @, = (2,2) and n= N = 50.

5. Conclusion

This study proposes a new subgradient extragradient
method for approximating a common fixed point of a finite
family of demicontractive mappings and Lipschitzian
mappings and a common solution of variational inequality
problems. It can also be considered as an extension and
modification of several currently used techniques for solving
variational inequality problems as well as a fixed point
problem with some associated mappings. As special cases of
Theorem 12, previous publications such as [14, 15, 19, 20]
can be considered. Also, numerical illustrations of the main
theorem are given [24, 25].
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