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We consider a risk model perturbed by a Brownian motion, where the individual claim sizes are dependent on the inter-claim
times. We study the Gerber–Shiu functions when ruin is due to a claim or the jump-difusion process. Integro-diferential
equations and Laplace transforms satisfed by the Gerber–Shiu functions are obtained. Ten, it is shown that the expected
discounted penalty functions satisfy defective renewal equations. Explicit expressions can be obtained for exponential claim sizes.
Finally, a numerical example is provided to measure the impact of the various dependence parameters in the risk model on the
ruin probabilities.

1. Introduction

Consider insurer’s surplus process at time t defned as
U(t), t≥ 0{ } with

U(t) � u + ct − 

N(t)

i�1
Xi + σB(t), (1)

where u≥ 0 is the initial surplus and c> 0 is the premium rate.
Te number of claims process N(t), t≥ 0{ } is assumed to be
a Poisson process with independent and identically distrib-
uted (i.i.d.) exponential inter-claim time random variables
Wi, i≥ 1  distributed like a generic variable W. Te prob-
ability density function (pdf) of W is defned by k(t) � λe− λt

for λ> 0. Te individual claim amounts Xi, i≥ 1  are as-
sumed to be a sequence of strictly positive i.i.d. random
variables with generic X. Te standard Brownian motion
B(t), t≥ 0{ } is independent of Wi, i≥ 1  and Xi, i≥ 1 , and
σ > 0 is the difusion volatility that accounts for the pertur-
bation of the difusion process.

Under the condition that the inter-arrival times between
two successive claims and the claim amounts are in-
dependent, model (1) was frst proposed by Dufresne and
Gerber [1]. Since then, many researchers have made

contributions to this kind of risk model. However, it is ex-
tremely restrictive and sometimes unrealistic to assume the
independence between inter-claim times and individual claim
sizes. For example, more considerable damages are expected
with a longer period between claims for a line of business
covering damages due to earthquakes. To avoid this re-
striction, some papers considered the dependent risk models.
As for the risk model (1) without difusion, dependence
structure based on the Farlie–Gumbel–Morgenstern (FGM)
copula has been extensively studied, see, e.g., [2, 3]. Bou-
dreault et al. [4] proposed an extension to the classical
compound Poisson risk model assuming a dependence
structure for (X, W), in which the distribution of the next
claim amount is defned in terms of the time elapsed since the
last claim. For an arbitrary dependence structure, the as-
ymptotic ruin probability was studied by Albrecher and
Teugels [5]. For the perturbed risk model (1), Zhang and Yang
[6] used the FGM copula to defne the dependence structure
and derived the integro-diferential equations and the Laplace
transforms for the Gerber–Shiu functions. Adékambi and
Takouda [7] generalized the results of Zhang and Yang [6] by
studying the unifed ruin-related measure, in which the claim
inter-occurrences follow an Erlang (n) distribution. Recently,
the authors of [8, 9] investigated (1) with a time delay in the
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arrival of the frst two claims. Chadjiconstantinidis and
Papaioannou [10] considered an extension to (1) the com-
pound Poisson risk process perturbed by difusion in which
two types of dependent claims, main claims and by-claims, are
incorporated.

In the present paper, we consider the perturbed model (1)
with the dependence structure proposed by Boudreault et al. [4],
in which the distribution of the next claim amount is defned in
terms of the time elapsed since the last claim.More precisely, we
assume that the bivariate random vectors (Wj, Xj) for j ∈ N+

are mutually independent but that the random variables Wj

and Xj are no longer independent. Te density of Xk|Wk is
defned as a special mixture of two arbitrary density functions
f1 and f2 with respective means μ1 and μ2, i.e.,

fXk|Wk
(x) � e

− βWk f1(x) + 1 − e
− βWk f2(x), x≥ 0,

(2)

for k ∈ N+. Te resulting marginal distribution of Xk is

fXk
(x) �

λ
λ + β

f1(x) +
β

λ + β
f2(x). (3)

To guarantee that ruin is not a certain event, we assume
that the following net proft condition holds.

E[cW − X]> 0. (4)

By (3), it is easy to calculate that the positive loading
condition (4) is equivalent to

c

λ
−
λμ1 + βμ2
β + λ
> 0. (5)

Associated with the risk model (1), let τ � inf t≥0 t,{

U(t)< 0} be the time of ruinwith τ �∞ if ruin does not occur.
Te defcit at ruin and the surplus just prior to ruin are denoted
by |U(τ)| and U(τ− ), respectively. Te Gerber–Shiu dis-
counted penalty function ϕ(u) is defned as

ϕ(u) � E e
− δτω(U(τ− ), |U(τ)|)I(τ <∞)|U(0) � u ,

(6)

where δ ≥ 0 is interpreted as the force of interest or the
Laplace argument, I(A) represents the indicator function of
the event A, and w(x, y) is a non-negative bivariate function
of x, y ≥ 0.

We remark that the penalty function provides a unifed
framework of identifying ruin-related quantities since it is
proposed by Gerber and Shiu [11]. Now the function may be
instrumental in understanding the vulnerability of an in-
surance institution and has been generalized in the literature
in various models, see [12–20] for more details. He et al. [21]
also provided a comprehensive review of existing works for
the Gerber–Shiu function from practical perspectives.

By observing the sample paths of U(t), we know that ruin
can be caused either by the oscillation of the Brownianmotion
or a downward jump. We decompose ϕ(u) as follows.

ϕ(u) � ϕw(u) + ϕd(u), (7)

where

ϕw(u) � E e
− δτω(U(τ− ), |U(τ)|)I(τ <∞, U(τ)< 0)|U(0) � u , (8)

is the Gerber–Shiu function when ruin is caused by a claim
and

ϕd(u) � E e
− δτω(U(τ− ), |U(τ)|)I(τ <∞, U(τ) � 0)|U(0) � u 

� ω(0, 0)E e
− δτ

I(τ <∞, U(τ) � 0)|U(0) � u ,
(9)

is the Gerber–Shiu function when ruin is caused by oscil-
lation. Without loss of generality, we assume that ω(0, 0) �

1 in what follows. Further, if δ � 0 in addition to ω(x1, x2) �

1 for any x1 and x2, (8) and (9) correspond to the infnite-
time ruin probabilities ψw(u) and ψd(u).

Te objective of this paper is to study the unifed Ger-
ber–Shiu function for a compound Poisson risk model
perturbed by a difusion process with dependence structure.
Te additional difusion term may be interpreted as the
future uncertainty of aggregate claims or the fuctuation of
investment of surplus. We obtain the integro-diferential
equations satisfed by the Gerber–Shiu penalty functions by
using a trivariate potential measure based on the joint

distribution of a drifted Brownian motion, its running
supremum, and the claim size. By using the Laplace
transform technique, we derive the defective renewal
equations satisfed by the Gerber–Shiu penalty functions.
We also provide a numerical example to illustrate the be-
havior of the ruin probability and analyze the efect of the
dependence structure.

Te rest of the paper is structured as follows. In Section 2,
we analyze Lundberg’s generalized equation and its roots.
Te integro-diferential equations for the Gerber–Shiu
functions are obtained in Section 3. In Section 4, the Laplace
transforms and defective renewal equations for the Ger-
ber–Shiu functions are derived. In Section 5, we obtain the
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explicit expressions for the Laplace transforms for expo-
nential claim size distributions and numerical illustrations
are provided. Section 6 draws the conclusions.

2. Lundberg’s Generalized Equation

One important step in the analysis of the ruinmeasures is the
derivation of the so-called Lundberg’s generalized equation
and the identifcation of the number of roots to it.

Let T0 � 0 and Tk � 
k
i�1Wi, k ∈ N+, be the arrival time

of the k th claim. Denote by Un the surplus immediately after
the n-th claim; it is not hard to see that

Un �
d

u + 
n

i�1
cWi − Xi + σB Wi( ( , (10)

where �
d means equality in distribution.

To derive Lundberg’s generalized equation, we seek
a number s ∈ C such that the process e− δTn+sUn , n ∈ N 

forms a martingale. Tis is the condition that

E e
− δW+s cW+σBW− X( )  � 1. (11)

Troughout the entire paper, ∼ is added above a letter
to represent the Laplace transform of the corresponding
quantity. Using (3), the left-hand side of (11) can be written
as

E e
− δW+s cW+σBW− X( )  � E e

− δW+s cW+σBW( )E e
sX

| W  

� E e
− δW+s cW+σBW( ) e

− βW f1(s) + 1 − e
− βW

 f2(s)  

�
λ(λ + δ − π(s))f1(s) + λβf2(s)

(λ + β + δ − π(s))(λ + δ − π(s))
,

(12)

where π(s) � (σ2/2)s2 + cs. Substituting (12) into (11) yields

h1(s) − h2(s) � 0, (13)

with

h1(s) � (λ + β + δ − π(s))(λ + δ − π(s)),

h2(s) � λ(λ + δ − π(s))f1(s) + λβf2(s).
(14)

We call (13) Lundberg’s generalized equation. In order to
derive the defective renewal equations for φω(u) and φd(u),
it is necessary to identify the number of roots to (13). By the
Rouche theorem and analogously to Propositions 1 and 2 of
[10], we have the following results.

Lemma 1. For δ > 0, Lundberg’s generalized equation (13)
has exactly 2 solutions, say ρ1, ρ2, such that Re(ρi)> 0 and for
δ � 0 one root is null.

Inthe case of δ > 0, it holds that ρ1 and ρ2 are distinct
positive real numbers, see [6] for related discussions.

3. Integro-Differential Equations

Let Z(t) � − ct − σB(t), which is a Brownian motion starting
from zero with drift − c and variance σ2. Denote by Z(t) �

sup 0≤s≤t{ } Z(s) and defne potential measure P(u, dy, dx) as
follows:

P(u, dy, dx) � E e
− δW

I(Z(W)< u, Z(W) ∈ dy, X ∈ dx) , u, x> 0, u>y. (15)

Similar to [6], we can prove that the measureP(u, dy, dx)

has a density given by

p(u, y, x) �
λα1α2

(λ + δ + β) α1 + α2( 
e

− α1y
− e

− α1+α2( )u+α2y
  f1(x) − f2(x)( 

+
λβ1β2

(λ + δ) β1 + β2( 
e

− β1y
− e

− β1+β2( )u+β2y
 f2(x),

(16)
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for 0≤y< u, and

p(u, y, x) �
λα1α2

(λ + δ + β) α1 + α2( 
e
α2y

− e
− α1+α2( )u+α2y

  f1(x) − f2(x)( 

+
λβ1β2

(λ + δ) β1 + β2( 
e
β2y

− e
− β1+β2( )u+β2y

 f2(x),

(17)

for y< 0, where

α1 �
c

σ2
+

��������������

2(λ + δ + β)

σ2
+

c
2

σ4



,

α2 � −
c

σ2
+

��������������

2(λ + δ + β)

σ2
+

c
2

σ4



,

β1 �
c

σ2
+

�����������

2(λ + δ)

σ2
+

c
2

σ4



,

β2 � −
c

σ2
+

�����������

2(λ + δ)

σ2
+

c
2

σ4



.

(18)

Now we consider φω(u). By conditioning on the time
and amount of the frst claim, one fnds

ϕω(u) � 
∞

0


u

− ∞


u− y

0
e

− δt Pr(Z(t)< u, Z(t) ∈ dy)

· ϕω(u − y − x)fX,W(x, t)dx dt

+ 
∞

0


u

− ∞

∞

u− y
e

− δt Pr(Z(t)< u, Z(t) ∈ dy)

· ω(u − y, x − (u − y))fX,W(x, t)dxdt

� 
u

− ∞


u− y

0
ϕω(u − y − x)p(u, y, x)dxdy

+ 
u

− ∞

∞

u− y
ω(u − y, x − (u − y))p(u, y, x)dxdy.

(19)

Let

σω,1(u) � 
u

0
ϕω(u − x)f1(x)dx + ω1(u),

σω,2(u) � 
u

0
ϕω(u − x)f2(x)dx + ω2(u),

ω1(u) � 
∞

u
ω(u, x − u)f1(x)dx,

ω2(u) � 
∞

u
ω(u, x − u)f2(x)dx.

(20)

Submitting (16) and (17) into (19), we obtain

ϕω(u) �
λα1α2

(λ + δ + β) α1 + α2( 


u

0
e

− α1y
− e

− α1+α2( )u+α2y
  σω,1(u − y) − σω,2(u − y) dy

+
λβ1β2

(λ + δ) β1 + β2( 


u

0
e

− β1y
− e

− β1+β2( )u+β2y
 σω,2(u − y)dy

+
λα1α2

(λ + δ + β) α1 + α2( 

0

− ∞
e
α2y

− e
− α1+α2( )u+α2y

  σω,1(u − y) − σω,2(u − y) dy

+
λβ1β2

(λ + δ) β1 + β2( 

0

− ∞
e
β2y

− e
− β1+β2( )u+β2y

 σω,2(u − y)dy.

(21)

Let s � u − y in (21), and we have
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ϕω(u) �
λα1α2

(λ + δ + β) α1 + α2( 
, 

u

0
e

− α1(u− s) σω,1(s) − σω,2(s) ds + 
∞

u
e
α2(u− s) σω,1(s) − σω,2(s) ds

− 
∞

0
e

− α1u− α2s σω,1(s) − σω,2(s) ds,

+
λβ1β2

(λ + δ) β1 + β2( 
, 

u

0
e

− β1(u− s)σω,2(s)ds + 
∞

u
e
β2(u− s)σω,2(s)ds − 

∞

0
e

− β1u− β2sσω,2(s)ds .

(22)

Let I be the identity operator, and let D be the dif-
ferentiation operator. Ten, we defne the following dif-
ferentiation operators:

A1(D) � D
2

+
2c

σ2
D −

2(λ + δ + β)

σ2
I,

A2(D) � D
2

+
2c

σ2
D −

2(λ + δ)

σ2
I.

(23)

From the defnitions of αi and βi, we obtain immediately

A1(D) � D + α1I(  D − α2I( ,

A2(D) � D + β1I(  D − β2I( .
(24)

Theorem  . Te Gerber–Shiu function φω(u) defned in
equation (8) when the ruin is caused by claims satisfes the
following integro-diferential equation:

A1(D)A2(D)ϕω(u) +
2λ
σ2
A2(D) σω,1(u) − σω,2(u)  +

2λ
σ2
A1(D)σω,2(u) � 0, (25)

with the boundary conditions

φω(0) � 0,φω″(0) +
2c

σ2
φω′(0) +

2λ
σ2
ω1(0) � 0. (26)

Proof. Applying the operatorA1(D)A2(D) to both sides of
(19) yields (25) after some rearrangements.Te frst boundary
condition in (26) is obvious. By taking the frst and second
derivatives of (19) and then setting u � 0, respectively, the
second boundary condition can be obtained by some
comparisons.

In the same way as Teorem 2, we can give the integro-
diferential equation for φd(u). Let

σd,1(u) � 
u

0
ϕd(u − x)f1(x)dx,

σd,2(u) � 
u

0
ϕd(u − x)f2(x)dx,

(27)

and we have the following result. □

Theorem 3. Te Gerber–Shiu function φd(u) defned in
equation (9) when the ruin is caused by oscillation satisfes the
following integro-diferential equation:

A1(D)A2(D)φd(u) +
2λ
σ2
A2(D) σd,1(u) − σd,2(u)  +

2λ
σ2
A1(D)σd,2(u) � 0, (28)

with the boundary conditions

φd(0) � 1,φd
″
(0) +

2c

σ2
φd
′(0) −

2(λ + δ)

σ2
� 0. (29)

Proof. By conditioning on whether or not ruin occurs due to
oscillation before the frst claim, we have

φd(u) � 
∞

0


u

− ∞


u− y

0
e

− δt Pr(Z(t)< u, Z(t) ∈ dy)φd(u − y − x)fX,W(x, t)dxdt + E e
− δτu I τu <W(  , (30)

where τu � inf t≥ 0: Z(t) � u{ }. Using formula (2.01) of
Borodin and Salminen [22], we have

E e
− δτu I τu <W(   � e

− β1u
, (31)

where β1 � c/σ2 +
����������������
2(λ + δ)/σ2 + c2/σ4


.
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Terefore, (30) can be rewritten as

φd(u) � e
− β1u

+ 
u

− ∞


u− y

0
φd(u − y − x)p(u, y, x)dxdy.

(32)

Submitting (16) and (17) into (32), (28) can be obtained
by imitating the same steps as those of Teorem 2. □

4. Laplace Transforms and Defective
Renewal Equations

In this section, we frst derive the Laplace transforms for
the Gerber–Shiu function when ruin is caused by claims
and by oscillations. Ten, we prove that the Gerber–Shiu
function satisfes the defective renewal equation. For
simplicity, let

π1(s) � π(s) − π ρ1( ,

π2(s) � π(s) − π ρ2( ,

a(s) � π(s) − (2λ + 2δ + β),

b(s) �
σ2

2
(π(s) − (λ + δ + β)).

(33)

Theorem 4. Te Laplace transforms of φω(u) and φd(u) are
given by

φω(s) �
l1(s) − l2(s)

h1(s) − h2(s)
, (34)

φd(s) �
k1(s) − k2(s)

h1(s) − h2(s)
, (35)

where h1(s) and h2(s) are determined by (14), and

l1(s) �
σ4

4
ϕ‴ω(0) + σ2cϕω″(0) + c

2
+
σ2

2
a(s) ϕω′(0) +

σ2

2
λσω,1′ (0) + λcω1(0) −

σ2

2
λω2(0)s,

l2(s) � λ(π(s) − (λ + δ))ω1(s) − βλω2(s),

k1(s) �
σ4

4
ϕ‴d (0) + σ2cϕω″(0) + c

2
+
σ2

2
a(s) ϕd

′(0) +
σ2

2
λσd,1′ (0) − (2λ + 2δ + β)c,

k2(s) � −
σ4

4
s
3

− σ2cs
2

− c
2

−
σ2

2
(λ + δ + β) s.

(36)

Proof. After some careful calculations, we have


∞

0
e

− su
A1(D)A2(D)ϕω(u)du � A1(s)A2(s)ϕω(s) +

2λ
σ2

ω1(0) + ω2(0)( s

− ϕ‴ω(0) +
4c

σ2
ϕω″(0) +

4
σ4

c
2

+
σ2

2
a(s) ϕω′(0) ,

(37)


∞

0
e

− su
A2(D) σω,1(u) − σω,2(u) du � A2(s) f1(s) − f2(s) ϕ(s) + A2(s) ω1(s) − ω2(s)( 

− ω1(0) − ω2(0)(  s +
2c

σ2
  − σω,1′ (0) − σω,2′ (0) ,

(38)


∞

0
e

− su
A1(D)σω,2(u)du � A1(s)f2(s)φ(s) + A1(s)ω2(s) − ω2(0) s +

2c

σ2
  − σω,2′ (0). (39)
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Taking the Laplace transform of (25) and using equations
(37)–(39) with the boundary conditions, we get (34). In the
same way as the proof of (34), we obtain (35).

Now we are ready to prove that the Gerber–Shiu
function when ruin is caused by claims and oscillations
satisfes the defective renewal equation. Let us recall the
Dickson–Hipp operator Ts defned by

Tsq(x) � 
∞

x
e

− s(y− x)
q(y)dy. (40)

We refer the reader to [23] for more properties on the
above operator.

Since h1(s) − π1(s)π2(s) is a polynomial function of π(s)

with degree 1, then Lemma 1 and the Lagrange interpolation
formula lead to

h1(s) − π1(s)π2(s) �
π2(s)

π2 ρ1( 
h2 ρ1(  +

π1(s)

π1 ρ2( 
h2 ρ2( . (41)

Note that

π1(s)

π1 ρ2( 
+

π2(s)

π2 ρ1( 
� 1, (42)

and we have

h1(s) − h2(s) � π1(s)π2(s) +
π2(s)

π2 ρ1( 
h2 ρ1(  − h2(s)(  +

π1(s)

π1 ρ2( 
h2 ρ2(  − h2(s)( 

� π1(s)π2(s) 1 −
h2(s) − h2 ρ1( 

π2 ρ1( π1(s)
−

h2(s) − h2 ρ2( 

π1 ρ2( π2(s)
 

� π1(s)π2(s) 1 −
h2(s) − h2 ρ1( /s − ρ1( 

σ2/2 π2 ρ1(  s + ρ1 + 2c/σ2  
−

h2(s) − h2 ρ2( /s − ρ2( 

σ2/2 π1 ρ2(  s + ρ2 + 2c/σ2  
⎛⎝ ⎞⎠.

(43)

By Lemma 4 of [6], for i � 1, 2, we have

h2(s) − h2 ρi( 

s − ρi

�
λ λ + δ − cs − σ2s2/2  f1(s) + λβf2(s)  − λ λ + δ − cρi − σ2s2/2  f1 ρi(  + λβf2 ρi(  

s − ρi

�
σ2/2 λ s

2
Tsf1(0) − ρ2i Tρi

f1(0) 

ρi − s
+
λc sTsf1(0) − ρiTρi

f1(0) 

ρi − s

−
λ(λ + δ) Tsf1(0) − Tρi

f1(0) 

ρi − s
−
λβ Tsf2(0) − Tρi

f2(0) 

ρi − s

� Tsηw,i(0) −
σ2

2
s + ρi(  + c λTsf1(0),

(44)

where

ηw,i(u) �
σ2

2
ρ2i + cρi − λ − δ λTρi

f1(u) − λβTρi
f2(u).

(45)

Hence, substituting (44) into (43) yields

h1(s) − h2(s) � π1(s)π2(s) 1 −
Tsηw,1(0)

τ1(s)
−
Tsηw,2(0)

τ2(s)
 ,

(46)

where

τ1(s) �
σ2

2
π2 ρ1(  s + ρ1 +

2c

σ2
 ,

τ2(s) �
σ2

2
π1 ρ2(  s + ρ2 +

2c

σ2
 .

(47)

For i � 1, 2, defne η∗w,i(u) � 
∞
u
ω(u, x − u)ηw,i(x)dx.

An analogous procedure can be employed to fnd alternative
expressions for the numerators of (34) and (35) as follows.
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l1(s) − l2(s) � π1(s)π2(s)
Tsη
∗
w,1(0)

τ1(s)
+
Tsη
∗
w,2(0)

τ2(s)
 ,

(48)

k1(s) − k2(s) � π1(s)π2(s)
b ρ1( 

τ1(s)
+

b ρ2( 

τ2(s)
 . (49)

Based on (46), (48), and (49), the Laplace transforms of
φω(u) and φd(u) can be rewritten as

φω(s) �
Tsη
∗
w,1(0)/τ1(s)  + Tsη

∗
w,2(0)/τ2(s) 

1 − Tsηw,1(0)/τ1(s)  − Tsηw,2(0)/τ2(s) 
,

(50)

φd(s) �
b ρ1( /τ1(s)(  + b ρ2( /τ2(s)( 

1 − Tsηw,1(0)/τ1(s)  − Tsηw,2(0)/τ2(s) 
. (51)

Finally, the inversion of the generating function in (50)
and (51) gives the following results. □

Theorem 5. Te Gerber–Shiu functions φω(u) and φd(u)

satisfy the following defective renewal equations:

φω(u) � 
u

0
φω(u − x)g(x)dx + Hω(u), (52)

φd(u) � 
u

0
φd(u − x)g(x)dx + Hd(u), (53)

where the Laplace transforms of g, Hω, Hd are given by

g(s) �
Tsηw,1(0)

τ1(s)
+
Tsηw,2(0)

τ2(s)
,

Hω(s) �
Tsη
∗
w,1(0)

τ1(s)
+
Tsη
∗
w,2(0)

τ2(s)
,

Hd(s) �
b ρ1( 

τ1(s)
+

b ρ2( 

τ2(s)
.

(54)

Proof. To demonstrate that the renewal equations are de-
fective, it remains to show that κ(δ) � 

∞
0 g(x)dx < 1. By

(46), we have


g(s) � 1 −

h1(s) − h2(s)

π1(s)π2(s)
. (55)

Terefore.

κ(δ) � g(0)

� 1 −
h1(0) − h2(0)

π1(0)π2(0)

� 1 −
(λ + δ + β)δ

σ2/2 ρ21 + cρ1  σ2/2 ρ22 + cρ2 
< 1.

(56)

In the case of δ � 0, setting s � ρ2(δ) in (11), we get

E e
− δW+ρ2(δ)(cW+σB(W)− X)

  � 1. (57)

Diferentiating the above equation with respect to δ and
then setting δ � 0, we obtain

ρ2′(0) �
EW

E(cW − X)
. (58)

Since E(cW − X)> 0 due to (4), taking the limit δ⟶ 0
in (56) gives

lim
δ⟶0

κ(δ) � 1 −
(λ + β)E(cW − X)

σ2/2 ρ21(0) + cρ1(0) cEW
< 1. (59)

Te proof is completed. □

5. Numerical Illustration

In this section, we assume that f1(x) � λ1e− λ1x, f2(x) �

λ2e− λ2x with λ1, λ2 > 0. For i � 1, 2, it is readily seen from
(45) that

ηw,i(u) � ξi,1e
− λ1u

+ ξi,2e
− λ2u

, (60)

where

ξi,1 �
λλ1 σ2/2 ρ2i + cρi − δ − λ 

ρi + λ1
,

ξi,2 � −
λβλ2
ρi + λ2

,

(61)

with

Tsηw,i(0) �
ξi,1

s + λ1
+

ξi,2

s + λ2
. (62)

Multiplying both the denominators and the numerators
in (35) by 2/σ2π1(ρ2)

2
i�1(s + λi)τi(s) gives

φω(s) �
ϑ1(s)Tsη

∗
w,1(0) − ϑ2(s)Tsη

∗
w,2(0)

ϑ(s)
, (63)

where

ϑi(s) � s + ρj +
2c

σ2
  

2

k�1
s + λk( , i, j � 1, 2, i≠ j,

ϑ(s) �
σ2

2
π2 ρ1(  

2

i�1
s + λi(  s + ρi +

2c

σ2
 

− ϑ1(s)Tsηw,1(0) + ϑ2(s)Tsηw,2(0).

(64)

It is easy to see that ϑ(s) is a polynomial of degree 4 with
leading coefcient σ2/2π2(ρ1). On the other hand, Lemma 1
implied that ϑ(s) has no zeros with nonnegative real part;
then, it can be expressed as

ϑ(s) �
σ2

2
π2 ρ1( 

4

i�1
s + Ri( , (65)
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with Re(Ri)> 0 for i � 1, 2, 3, 4. In what follows, we assume
that Ri are distinct. By partial fractions, we have

ϑi(s)

ϑ(s)
� 

4

j�1

ϑi,j

s + Rj

, i � 1, 2, (66)

where

ϑi,j �
ϑi − Rj 

σ2/2 π2 ρ1( 
4
n�1,n≠j Rn − Rj 

. (67)

Submitting (66) into (63) yields

φω(s) � 
4

j�1

ϑ1,jTsη
∗
ω,1(0)

s + Rj

−
ϑ2,jTsη

∗
ω,1(0)

s + Rj

 . (68)

Denote by c(s) � ϑ1(s)b(ρ1) − ϑ2(s)b(ρ2). By using the
same arguments, one gets the following expression of φd(s).

φd(s) � 

4

j�1

cj

s + Rj

, (69)

where

cj �
c − Rj 

σ2/2 π2 ρ1( 
4
n�1,n≠j Rn − Rj 

. (70)

Upon inversion of the Laplace transforms in (68) and
(69), we can obtain the explicit expressions for φω(u) and
φd(u), respectively. In the following example, we consider
the ruin probabilities ψω(u) and ψd(u) by letting δ � 0 and
ω(x1, x2) ≡ 1.

Example 1. Suppose that f1 and f2 are exponentially dis-
tributed as above with λ1 � 2, λ2 � 0.5. Set c � 2, λ � 1.5,
(σ2/2) � 1. And the values of β are 1.5, 1, 0.6, respectively.
Ten it is not difcult to check that the net proft condition (5)
is fulflled in such settings. After solving Lundberg’s gener-
alized (13) for these settings, we obtain the roots ρ1 and ρ2.
Furthermore, we can calculate exact values for ψd(u) by
inverting (69). Figure 1 shows the behavior of ψd(u) with
diferent β. As expected, ψd(u) decreases as the initial surplus
u increases. Meanwhile, ψd(u) is increasing with respect to β.

In the same way, we can deal with ψω(u). By inverting
(68), we can give explicit expression for ψω(u). Figure 2
shows the behavior of ψω(u) for diferent β. We notice that
the ruin probabilities caused by claims increase frst and then
decrease as the initial capital increases.

6. Conclusions

In this paper, we model insurance surplus by considering
a perturbed risk model and time-dependent claims, in which
the distribution of the next claim amount is defned in terms of
the time elapsed since the last claim. By using some analytic
techniques, the expected discounted penalty functions φω(u)

and φd(u) when ruin is caused by claims and by oscillations are
fully discussed. Te integro-diferential equations and the
Laplace transforms for the Gerber–Shiu functions are obtained.
We also prove that the Gerber–Shiu functions satisfy some
defective renewal equations. For the situation when claim
amounts follow exponential distribution, we give explicit ex-
pressions of the Gerber–Shiu functions. Numerical examples
are provided to illustrate the ruin probabilities caused by claims
and oscillations. It shows that the results obtained in the paper
are readily programmable and confrm the expectancy. From

β= 1
β = 1.5
β= 0.6

0.0

0.2

0.4

0.6

0.8

1.0

1.2

ψ 
(u

)

12 140 206 168 10 1842
u

Figure 1: Ruin probabilities due to oscillation for diferent de-
pendent parameters.
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β = 1
β= 0.6

2 4 6 8 10 12 14 16 18 200
u

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

ψ 
(u

)

Figure 2: Ruin probabilities due to a claim for diferent dependent
parameters.
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practical perspectives, the model considered can be used to
assess the vulnerability issues of insurance companies in
a market full of uncertainties. Furthermore, the results derived
may also be used to help an insurance company protect itself
against possible bankruptcy by informing the minimum capital
levels required to limit ruin probability below a certain
threshold.
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[16] C. Labbé, H. S. Sendov, and K. P. Sendova, “Te gerber–shiu
function and the generalized cramér–lundberg model,” Ap-
plied Mathematics and Computation, vol. 218, no. 7,
pp. 3035–3056, 2011.

[17] D. Landriault and G. E. Willmot, “On series expansions for
scale functions and other ruin-related quantities,” Scandi-
navian Actuarial Journal, vol. 2020, no. 4, pp. 292–306, 2020.

[18] X. Sheldon Lin, G. EWillmot, and S. Drekic, “Te classical risk
model with a constant dividend barrier: analysis of the
Gerber-Shiu discounted penalty function,” Insurance:
Mathematics and Economics, vol. 33, no. 3, pp. 551–566, 2003.

[19] S. Drekic and G. E. Willmot, “On the density and moments of
the time of ruin with exponential claims,” ASTIN Bulletin,
vol. 33, no. 1, pp. 11–21, 2003.

[20] G. E. Willmot and J. K. Woo, Surplus Analysis of Sparre
Andersen Insurance Risk Processes, Springer, Berlin, Germany,
2017.

[21] Y. He, R. Kawai, Y. Shimizu, and K. Yamazaki, “Te Gerber-
Shiu discounted penalty function: a review from practical
perspectives,” Insurance: Mathematics and Economics,
vol. 109, pp. 1–28, 2023.

[22] A. N. Borodin and P. Salminen, Handbook of Brownian
Motion-Facts and Formulae, Birkh auser, Basel, 2002.

[23] S. Li and J. Garrido, “On ruin for the Erlang(n) risk process,”
Insurance: Mathematics and Economics, vol. 34, no. 3,
pp. 391–408, 2004.

10 Journal of Mathematics




