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Imran Nadeem ,1 Saba Siddique,2 and Yilun Shang 3

1Higher Education Department, Government Graduate College of Science, Lahore, Pakistan
2Department of Mathematics, Division of Science and Technology, University of Education, Lahore, Pakistan
3Department of Computer and Information Sciences, Northumbria University, Newcastle NE1 8ST, UK

Correspondence should be addressed to Yilun Shang; yilun.shang@northumbria.ac.uk

Received 28 July 2023; Revised 19 November 2023; Accepted 5 February 2024; Published 20 February 2024

Academic Editor: Asad Ullah

Copyright © 2024 ImranNadeem et al.Tis is an open access article distributed under the Creative CommonsAttribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Te Randić-type graph invariants are extensively investigated vertex-degree-based topological indices and have gained much
prominence in recent years.Te general Randić and zeroth-order general Randić indices are Randić-type graph invariants and are
defned for a graph G with vertex set V as Rα(G) � 􏽐υi ∼υj

(didj)
α and Qα(G) � 􏽐vi∈Vdα

i , respectively, where α is an arbitrary real
number, di denotes the degree of a vertex υi, and υi ∼υj represents the adjacency of vertices υi and υj in G. Establishing re-
lationships between two topological indices holds signifcant importance for researchers. Some implicit inequality relationships
between Rα and Qα have been derived so far. In this paper, we establish explicit inequality relationships between Rα and Qα. Also,
we determine linear inequality relationships between these graph invariants. Moreover, we obtain some new inequalities for
various vertex-degree-based topological indices by the appropriate choice of α.

1. Introduction

In this paper, we consider a simple fnite graph G � (V, E)

with the vertex set V � υ1, υ2, . . . , υn􏼈 􏼉 and the edge set E,
where the quantities n � |V| and m � |E| are known as the
order and the size of G, respectively. If n> 1, then G is called
a nontrivial graph. Te ceiling function ⌈n/2⌉ would round
n/2 to the smallest integer greater than or equal to n/2,
whereas the foor function ⌊n/2⌋ would round n/2 to the
largest integer less than or equal to n/2. For a given vertex
vi ∈ V, the neighborhood of vi is denoted by N(vi) and
defned as N(vi) � vj ∈ V: vi ∼vj􏽮 􏽯, where vi ∼vj represents
the adjacency of vertices vi and vj in G. For vi ∈ V, the degree
of the vertex is defned as di � |N(vi)|. Among all vertices of
G, the maximum degree is given by ∆ and the minimum
degree is given by δ. Without loss of generality, the degree
sequence (di) � (d1, d2, . . . , dn) of the vertices in G is or-
ganized as Δ � d1 ≥d2 ≥ · · · ≥ dn � δ > 0. If di � δ � ∆ for
each vertex υi in G, we call it a regular graph. For a vertex υi,
denote by Si � 􏽐υi ∼υj

dj. It is obvious that δ
2 � minυi∈V Si􏼈 􏼉

and ∆2 � maxυi∈V Si􏼈 􏼉.

A chemical (or molecular) graph can frequently be used
to represent the structure of a molecule. Chemical graphs
play a pivotal role in understanding and representing the
structural intricacies of molecules, thereby serving as
a fundamental tool in the realm of chemistry. Tese graphs,
composed of vertices representing atoms and edges denoting
chemical bonds, provide a visual abstraction that aids in
deciphering the three-dimensional arrangement of atoms in
a compound.Te chemical importance of graphs lies in their
ability to elucidate molecular properties, reactivity patterns,
and overall structural characteristics critical for predicting
a substance’s behavior. A plethora of literature exists, delving
into the development and application of various graph-
based approaches in chemistry [1]. Graph theory has
proven invaluable in medicinal chemistry, material science,
and computational chemistry, ofering insights into mo-
lecular relationships, reaction mechanisms, and the rational
design of novel compounds [2].

Graph theory has contributed to the development of
chemistry by providing a variety of mathematical tools such
as topological indices. A graph invariant that is calculated
from the parameters of a chemical graph is declared
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a topological index (TI) if it correlates with some molecular
property. TIs are the conclusive results of a mathematical
and logical procedure that maps the chemical phenomena
hidden inside a molecule’s symbolic representation into
a useful value, and they have been shown to be useful in
modelling varied physicochemical characteristics refected
by QSAR and QSPR calculations [3, 4].

Milan Randić, a chemist, proposed a degree-based to-
pological index, called the Randić index [5] which is useful
for measuring the degree of branching in the carbon-atom
skeleton of saturated hydrocarbons. Tis index is repre-
sented by R and is defned as follows:

R � R(G)

� 􏽘
υi ∼υj

didj􏼐 􏼑
− 1/2

.
(1)

Randić proved that this index is signifcantly associated
with a variety of physicochemical features of alkanes, in-
cluding boiling points, enthalpy of formation, surface areas,
and chromatographic retention times [6, 7]. Eventually R

became one of the most well-known molecular descriptors,
with two books [8, 9], several reviews, and a plethora of
research articles devoted to it. Some bounds of this index
have been studied in [10]. Bollobás and Erdös [11] extended
R by substituting an arbitrary real number α for the ex-
ponent − 1/2. Tis graph invariant is called the general
product-connectivity index or the general Randić index [12],
represented by Rα:

Rα � Rα(G)

� 􏽘
υi ∼υj

didj􏼐 􏼑
α
. (2)

Kier and Hall [13] put forward the zeroth-order Randić
index, represented by 0R. Te explicit formula of 0R is

0
R �

0
R(G)

� 􏽘
υi

d
− 1/2
i .

(3)

Eventually, Li and Zheng [14] proposed zeroth-order
general Randić index by replacing the fraction − 1/2 by an
arbitrary real number α diferent from 0 and 1, denoted by
Qα:

Qα � Qα(G)

� 􏽘
υi

d
α
i . (4)

Tis index is also studied under the name frst general
Zagreb index [15]. Moreover, it may be noted that Q2 and R2
are also studied under the names frst Zagreb index M1 [16]
and second Zagreb index M2 [17], respectively. Te Auto-
GraphiX (conjecture-generating computer method) pro-
posed [18] that the Zagreb indices are generally related to the
inequality M2(G)/m≥M1(G)/n for a connected graph G

with order n and size m. Tough there exist graphs for which
it does not hold [19], it is true for numerous classes of graphs
[20–23].

Te investigation of relationships between two topological
indices remains an intriguing and attractive problem for
researchers. Liu and Gutman [24] derived the implicit in-
equalities between Rα and Qα for α> 0 and α< 0. Later, Zhou
and Vukičević [25] established the inequalities between Rα,
Qα, Q2α, and Q2α+1. In this paper, we make a step forward by
deriving the explicit relationships betweenRα andQα for α> 0
and α< 0. Also, we obtain linear inequalities between Rα and
Qα for α> 0 and α< 0, for alpha > 0 and with some condition
on the order of graph for alpha < 0. Moreover, we obtain new
inequality between M2(G)/m and M1(G)/n for any graph G

with order n and sizem. Further, we determine new inequality
between R(G)/m and 0R(G)/n.

2. Some Known Results

In this section, we review some known results that will be
used in our main results.

Let p1, p2, . . . , pn and q1, q2, . . . , qn be positive real
numbers such that for 1≤ i≤ n, it holds that p≤pi ≤P and
q≤ qi ≤Q. Ten,

n 􏽘
n

i�1
piqi − 􏽘

n

i�1
pi 􏽘

n

i�1
qi

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤ τ(n)(P − p)(Q − q), (5)

where τ(n) � n⌈n/2⌉(1 − 1/n⌈n/2⌉). Further, equality attains
if and only if p1 � p2 � · · · � pn and q1 � q2 � · · · � qn [26].

Rodŕıguez et al. [27] established the following re-
lationships between Qα and Qα+1.

Let G be a nontrivial graph having the parameters n and
m. Ten, for α> 0,

Qα+1(G)≥
2m

n
Qα(G), (6)

and for α< 0,

Qα+1(G)≤
2m

n
Qα(G). (7)

Equality attains in each case if and only if G is regular.
Also, Rodŕıguez et al. [27] derived the following relation

between Qα and Q2α.
If G is a nontrivial graph with the parameters n, δ, and ∆,

then for α< 0,

Q2α(G)≤
1
4n

∆
δ

􏼠 􏼡

α

+
δ
∆􏼠 􏼡

α

+ 2􏼢 􏼣Q
2
α(G). (8)

Further, equality attains if and only if G is regular.
Liu and Gutman [24] derived the following implicit

quadratic inequality between Rα and Qα.
If G is a nontrivial graph with the parameters n, δ, and ∆,

then for α> 0,

Rα(G)≤
1
2
Qα(G) 1 −

1
n

􏼒 􏼓Qα(G) +(∆ − n + 1)δα􏼔 􏼕, (9)
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and the equality is achieved if and only if G is regular.
Also, Liu and Gutman [24] established the following

inequality between Rα, Qα, Qα+1, and Q2α.

If G is a nontrivial graph having the parameters n and δ,
then for α< 0,

Rα(G)≥
1
2

Q
2
α(G) − (n − 1)δαQα(G) + δαQα+1(G) − Q2α(G)􏽨 􏽩. (10)

Further, equality attains if and only if G is regular.

3. Main Results

Lemma 1. Let G be a nontrivial graph; then, for any real
number α,

Qα+1(G) � 􏽘
n

i�1
Si(α), (11)

where Si(α) � 􏽐υj∈N(υi)
dα

j .

Proof

Qα+1(G) � 􏽘
n

i�1
d
α+1
i

� 􏽘
n

i�1
did

α
i � d1d

α
1 + d2d

α
2 + · · · + dnd

α
n

� d
α
1 + d

α
1 + · · · + d

α
1􏽼√√√√√√√􏽻􏽺√√√√√√√􏽽

d1times

+ d
α
2 + d

α
2 + · · · + d

α
2􏽼√√√√√√√􏽻􏽺√√√√√√√􏽽

d2times

+ · · · + d
α
n + d

α
n + · · · + d

α
n􏽼√√√√√√√􏽻􏽺√√√√√√√􏽽

dntimes

.

(12)

By rearranging with respect to the sum of degrees of
neighbor vertices of each vertex υi, we have

Qα+1(G) � 􏽘
n

i�1
􏽘

υj∈N υi( )

d
α
j . (13)

By setting Si(α) � 􏽐υj∈N(υi)
dα

j , the required result
follows. □

Lemma 2. Let G be a nontrivial graph; then, for any real
number α,

Rα(G) �
1
2

􏽘

n

i�1
d
α
i Si(α), (14)

where Si(α) � 􏽐υj∈N(υi)
dα

j .

Proof

Rα(G) �
1
2

􏽘
υi ∼υj

2d
α
i d

α
j

�
1
2

d
α
1 􏽘

υj∈N v1( )

d
α
j + d

α
2 􏽘

υj∈N v2( )

d
α
j + · · · + d

α
n 􏽘

υj∈N vn( )

d
α
j

⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎦

�
1
2

􏽘

n

i�1
d
α
i 􏽘

υj∈N vn( )

d
α
j .

(15)

By taking Si(α) � 􏽐υj∈N(υi)
dα

j , the desired result follows.
In the following theorem, we derive the left and right

explicit inequalities between Rα and Qα for α> 0 and α< 0,
respectively. □

Theorem 3. Let G be a nontrivial graph with order n, size m,
minimum vertex-degree δ, and maximum vertex-degree Δ.
Ten, the following left and right inequalities hold for α> 0
and α< 0, respectively:
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− ϕ(m, n, α) +
Qα(G)

n
􏼠 􏼡

2

≤
Rα(G)

m
≤

Qα(G)

n
􏼠 􏼡

2

+ ϕ(m, n, α), (16)

where ϕ(m, n, α) � τ(n)/2mn(∆α − δα)2(∆α + δα) and
τ(n) � n⌈n/2⌉(1 − 1/n⌈n/2⌉). Further, each equality holds if
and only if G is a regular graph.

Proof. We choose pi � dα
i and qi � Si(α) in inequality (1);

then, forα≥ 0, δα ≤dα
i ≤∆

α and δ2α ≤ Si(α)≤∆2α and for α≤ 0,
∆α ≤ dα

i ≤ δ
α and ∆2α ≤ Si(α)≤ δ2α, where i � 1, 2, . . . , n. Note

that for any real number α, (∆α − δα)(∆2α − δ2α) � (δα − ∆α)

(δ2α − ∆2α). Ten, for any real number α, inequality (1) takes
the form

n 􏽘
n

i�1
d
α
i Si(α) − 􏽘

n

i�1
d
α
i 􏽘

n

i�1
Si(α)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤ τ(n) ∆α − δα( 􏼁 ∆2α − δ2α􏼐 􏼑,

(17)

where τ(n) � n⌈n/2⌉(1 − 1/n⌈n/2⌉).
From (11) and (14), we have

2nRα(G) − Qα(G)Qα+1(G)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ τ(n) ∆α − δα( 􏼁
2 ∆α + δα( 􏼁.

(18)

Tis implies that

− τ(n) ∆α − δα( 􏼁
2 ∆α + δα( 􏼁≤ 2nRα(G) − Qα(G)Qα+1(G)≤ τ(n) ∆α − δα( 􏼁

2 ∆α + δα( 􏼁. (19)

Tis gives

− τ(n) ∆α − δα( 􏼁
2 ∆α + δα( 􏼁 + Qα(G)Qα+1(G)≤ 2nRα(G)

≤Qα(G)Qα+1(G) + τ(n) ∆α − δα( 􏼁
2 ∆α + δα( 􏼁.

(20)

By using (6) with α> 0 and (7) with α< 0 in the left and
right inequalities, respectively, we have

− τ(n) ∆α − δα( 􏼁
2 ∆α + δα( 􏼁 +

2m

n
Qα(G)( 􏼁

2 ≤ 2nRα(G)

≤
2m

n
Qα(G)( 􏼁

2
+ τ(n) ∆α − δα( 􏼁

2 ∆α + δα( 􏼁.

(21)

By taking ϕ(m, n, α) � τ(n)/2mn(∆α − δα)2(∆α + δα),
the required inequality (16) follows.

Since equality attains in (5) if and only if p1 � p2 � · · · �

pn and q1 � q2 � · · · � qn, this gives that equality attains in
(16) if and only if dα

1 � dα
2 � · · · � dα

n and S1(α) � S2
(α) � · · · � Sn(α). Also, dα

1 � dα
2 � · · · � dα

n and S1(α) � S2
(α) � · · · � Sn(α) imply that d1 � d2 � · · · � dn and S1 � S2

� · · · � Sn. Tis recommends that each equality in (16) at-
tains if and only if G is a regular graph.

In the following corollary, we derive the linear inequality
between Qα and Rα for any positive real number α. □

Corollary  . Let G be a nontrivial graph having order n, size
m, minimum vertex-degree δ, and maximum vertex-degree ∆
with n(n − 1)≠ 2m. Ten, for α> 0, we have

Rα(G)≥
m

n(n − 1) − 2m
(n − ∆ − 1)δαQα(G) − n(n − 1)ϕ(m, n, α)􏼂 􏼃, (22)
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where ϕ(m, n, α) � τ(n)/2mn(∆α − δα)2(∆α + δα) and τ(n)

� n⌈n/2⌉(1 − 1/n⌈n/2⌉). Moreover, equality attains if and
only if G is a regular graph.

Proof. From inequality (9) with α> 0, we have

Rα(G)≤
n(n − 1)

2
Qα(G)

n
􏼠 􏼡

2

+
1
2

(∆ − n + 1)δαQα(G).

(23)

Also, from left inequality (16), we get

Qα(G)

n
􏼠 􏼡

2

≤
Rα(G)

m
+ ϕ(m, n, α), (24)

where ϕ(m, n, α) � τ(n)/2mn(∆α − δα)2(∆α + δα) and
τ(n) � n⌈n/2⌉(1 − 1/n⌈n/2⌉).

By using inequality (24) in inequality (23), we have

Rα(G)≤
n(n − 1)

2
Rα(G)

m
+ ϕ(m, n, α)􏼢 􏼣 +

1
2

(∆ − n + 1)δαQα(G). (25)

After simplifying (25) and then rearranging, we get the
desired inequality (22).

Since the equality attains in both inequality (9) and left
inequality (16) if and only if G is a regular graph, equality in
(22) holds if and only if G is a regular graph. □

Lemma 5. For α< 0, it is easy to observe that

Qα+1(G)≥ δQα, (26)

where equality attains if and only if G is a regular graph.

In the upcoming corollary, we derive the linear in-
equality between Rα and Qα for any negative real number α
which satisfes some condition on the order of graph G.

Corollary 6. Let G be a nontrivial graph having order n, size
m, minimum vertex-degree δ, and maximum vertex-degree ∆.
Ten, for α< 0 and n> λ/4,

Rα(G)≤
m

n(4n − λ) − 8m
4δα(n − δ − 1)Qα(G) + n(4n − λ)ψ(m, n, α)􏼂 􏼃, (27)

where λ � λ(α) � (∆/δ)α + (δ/∆)α + 2,ϕ(m, n, α) � τ(n)/
2mn(∆α − δα)2(∆α + δα)andτ(n) � n⌈n/2⌉(1 − 1/n⌈n/2⌉).
Further, equality attains if and only if G is a regular graph.

Proof. From inequalities (4) and (14) with α< 0, inequality
(6) becomes

Rα(G)≥
1
2

1 −
1
4n

∆
δ

􏼠 􏼡

α

+
δ
∆􏼠 􏼡

α

+ 2􏼠 􏼡􏼢 􏼣Q
2
α(G) − (n − δ − 1)δαQα(G)􏼢 􏼣. (28)

By taking λ � λ(α) � (∆/δ)α + (δ/∆)α + 2 and rear-
ranging, we have

Rα(G)≥
1
2

n n −
λ
4

􏼠 􏼡
Qα(G)

n
􏼠 􏼡

2

− (n − δ − 1)δαQα(G)⎡⎣ ⎤⎦.

(29)

Also, from right inequality (9) with α< 0 and n> λ/4, we
get

Rα(G)≥
n(4n − λ)

8
Rα(G)

m
− ϕ(m, n, α)􏼢 􏼣 −

(n − δ − 1)

2
δαQα(G), (30)

where ϕ(m, n, α) � τ(n)/2mn(∆α − δα)2(∆α + δα) and τ(n)

� n⌈n/2⌉(1 − 1/n⌈n/2⌉).
After simplifying (30), we achieve the desired

inequality (27).
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Since equality attains in right inequality (16) and each of
the inequalities (4), (14), and (6) if and only if G is a regular
graph, this implies that equality in (27) attains if and only if
G is a regular graph.

In the following corollary, we get a new inequality be-
tween M2(G)/m and M1(G)/n for any graph G with order n

and size m by taking α � 2 in the left inequality (16). □

Corollary 7. Let G be a nontrivial graph with order n and
size m; then,

M2(G)

m
≥

M1(G)

n
􏼠 􏼡

2

− ϕ(m, n), (31)

where ϕ(m, n) � τ(n)/2mn(∆4 − δ4)(∆2 − δ2) and τ(n)

� n⌈n/2⌉(1 − 1/n⌈n/2⌉). Further, each equality holds if and
only if G is a regular graph.

In the following corollary, we obtain a new inequality
between R(G)/m and 0R(G)/n for any graph G with order n

and size m by setting α � − 1/2 in the right inequality (16).

Corollary 8. Let G be a nontrivial graph having order n and
size m; then,

R(G)

m
≤

0R(G)

n
􏼠 􏼡

2

+ ψ(m, n), (32)

where ψ(m, n) � τ(n)(∆ − δ)(
��
∆

√
−

�
δ

√
)/2mn(∆δ)3/2 and

τ(n) � n⌈n/2⌉(1 − 1/n⌈n/2⌉). Moreover, each equality holds
if and only if G is a regular graph.

4. Conclusions

A major contribution of this paper lies in the derivation of
explicit inequality relationships between the general Randić
and zeroth-order general Randić indices. Furthermore, the
paper goes beyond the implicit relationships and determines
linear inequality relationships between the general Randić
and zeroth-order general Randić indices, providing a more
comprehensive framework for their comparison. We would
like to conclude this paper by proposing the following open
problem.

Open Problem 9. Drive the linear inequality between the
general Randić index Rα and zeroth-order general Randić
index Qα for any negative real number α.
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