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Te rings Z4 + ]Z4 have been classifed into chain rings and nonchain rings based on the values of ]2 ∈ Z4 + ]Z4. In this paper, the
structure of a cyclic code of arbitrary length over the rings Z4 + ]Z4 for those values of ]2 for which these are nonchain rings has
been established. A unique form of generators for a cyclic code over these rings has also been obtained. Furthermore, the rank and
cardinality of a cyclic code over these rings have been established by fnding a minimal spanning set for the code.

1. Introduction

From a mathematical point of view, one of the main aims of
algebraic coding theory is to construct codes that can detect
and correct the maximum number of errors during data
transmission. To construct such codes, it is important to
know the structure of a code.

Te class of cyclic codes is one of the signifcant classes of
codes, as these codes ofer efcient encoding and decoding of
the data using shift registers. Tese codes have good error-
detecting and error-correcting capabilities. Te theory of
cyclic codes over fnite felds is well established. Te study of
cyclic codes over rings started after the remarkable work
done by Calderbank et al. [1], wherein a Gray map was
introduced to show that some nonlinear binary codes can be
viewed as binary images of linear codes over Z4.

Recent research involves various approaches to de-
termine the generators of cyclic codes over various fnite
commutative rings. A vast literature is available on cyclic
codes over integer residue rings [2–4], Galois rings [5, 6],
and fnite chain rings [7, 8].

Te generators of a cyclic code of arbitrary length over
fnite chain rings of the type Z2 + uZ2, u2 � 0 and
Z2 + uZ2 + u2Z2, u3 � 0 have been obtained by Abualrub
and Siap [9]. Te same approach is used to fnd the gen-
erators of a cyclic code over the ring Z2[u]/〈uk〉 by Ashker
and Hamoudeh [10] and Zp[u]/〈uk〉 by Abhay Kumar and
Kewat [11].

Te study of cyclic codes over nonchain rings can lead to
better performance in terms of error-correcting capabilities
and efciency compared to codes over chain rings. Te
algebraic structure of cyclic codes over nonchain rings can
be more complex than the structure of cyclic codes over
chain rings, which can lead to improved code properties.

Te structure of linear and cyclic codes of odd length
over a fnite nonchain ring F2[u, v]/〈u2, v2, uv − vu〉 has
been determined by Yildiz and Karadeniz [12, 13]. A unique
set of generators of a cyclic code over the ring
F2m [u, v]/〈u2, v2, uv − vu〉 has been obtained by Sobhani
and Molakarimi [14]. Te structure of a cyclic code over the
ring F2[u1, u2, . . . , uk]/〈u2

i , u2
j , uiuj − ujui〉 has been ob-

tained by Dougherty et al. [15]. Te structure of a cyclic code
of arbitrary length over the ring Zp[u, v]/〈u2, v2, uv − vu〉

has been determined by Parmod Kumar Kewat et al. [16].
Linear and cyclic codes over the nonchain ring Z4 + uZ4,
u2 � 0 were frst introduced by Yildiz et al. [17, 18]. Tey
have found some good linear codes over Z4 as the Gray
images of cyclic codes over Z4 + uZ4, u2 � 0. Te structure
of a cyclic code of arbitrary length over Z4 + uZ4, u2 � 0 has
been studied by Bandi and Bhaintwal [19]. Cyclic and some
constacyclic codes of odd length over the nonchain ring
Z4 + uZ4, u2 � 1 have been studied by Ozen et al. [20].

Inmost of the studies, the structural properties of a cyclic
code over nonchain rings have been established when the
square of the indeterminate coefcient, i.e., u2, is equal to
zero.Wemake advancements to this study in the direction of
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the structure of a cyclic code of arbitrary length when u2

takes nonzero values also.
Te rings Z4 + ]Z4 with ]2 ∈ Z4 + ]Z4 have been clas-

sifed into chain rings and nonchain rings by Adel Alahmadi
et al. [21]. Tey have proved that Z4 + ]Z4 is a chain ring for
]2 ∈ 2, 3, 1 + ], 1 + 2], 1 + 3], 2 + 2], 3 + ], 3 + 3]{ } and is
a nonchain ring for ]2 ∈ 0, 1, ], 2], 3], 2 + ], 2 + 3], 3 + 2]{ }.
Tis motivated us to investigate the algebraic structure of
a cyclic code of arbitrary length over the nonchain rings
Z4 + ]Z4, where ]2 is other than 0 which is not under
consideration until now.

We noticed that among the eight nonchain rings
Z4 + ]Z4, ]2 ∈ 0, 1, ], 2], 3], 2 + ], 2 + 3], 3 + 2]{ }, some ex-
hibit isomorphism with each other. Specifcally, the ring
Z4 + ]Z4, ]2 � 0 and the ring Z4 + ]Z4, ]2 � 3 + 2] are
confrmed to be isomorphic. Consequently, we can skip the
examination of the structure of the ring Z4 + ]Z4 with the
condition ]2 � 3 + 2]. Additionally, it is worth noting that
the ring Z4 + ]Z4, ]2 � ] is isomorphic to the rings Z4 + ]Z4,
where ]2 ∈ 3], 2 + ], 2 + 3]{ }. Similarly, the ring Z4 + ]Z4,
where ]2 � 1, is isomorphic to the ring Z4 + ]Z4, where
]2 � 2]. Consequently, it is enough to focus on the structure
of a cyclic code of arbitrary length over the rings Z4 + ]Z4,
where ]2 ∈ 1, ]{ }.

In this paper, a unique form of generators of a cyclic code
of arbitrary length over nonchain rings of the type Z4 + ]Z4,
]2 ∈ 1, ]{ } has been determined. Furthermore, the rank and
cardinality of a cyclic code over these rings have been
obtained.

2. Preliminaries

Let R be a ring with unity. A subset of Rn is called a code of
length n over R. A linear code C of length n is a submodule of
Rn over the ring R. An element of a linear code C is termed
a codeword. If a codeword (s0, s1, . . . , sn− 1) of C,
(sn− 1, s0, . . . , sn− 2) is also a codeword of C, then C is called
a cyclic code of length n over R. Tere is a one-to-one
correspondence between the cyclic codes of length n over R

and the ideals of the ring R[z]/〈zn − 1〉. Te rank of a cyclic
code, denoted by rank(C), is the number of elements in the
minimal (linear) spanning set of code C over R. A fnite
commutative ring R is a chain ring if all its ideals form
a chain under the inclusion relation; otherwise, R is
a nonchain ring.

Troughout this article, we will denote the nonchain
rings Z4 + ]Z4, ]2 � θ for θ ∈ 1, ]{ } by Rθ. Defne

kθ �
] ; θ � ],

1 + ] ; θ � 1.
􏼨 (1)

Lemma 1. Te map ϕθ: Rθ⟶ Z4 defned as ϕθ(x) �

x(modkθ) is a ring homomorphism for θ ∈ 1, ]{ }.

Proof. Case 1: When θ � 1. For a + ]b ∈ Rθ, ϕθ(a + ]b)

� a − b. Let x1 � a + ]b and x2 � c + ]d be arbitrary ele-
ments of Rθ, where a, b, c, d ∈ Z4.

We have, ϕθ(x1 + x2) � ϕθ(a + ]b + c + ]d) � ϕθ(a + c +

](b + d)) � (a + c) − (b + d) � (a − b) + (c − d) � ϕθ (x1) +

ϕθ(x2).
Again, ϕθ(x1x2) � ϕθ((a + ]b)(c + ]d)) � ϕθ(ac + bd+

](ad + bc)) � (ac + bd) − (ad + bc) � (a − b)(c − d) �

ϕθ(x1)ϕθ(x2).
Case 2: When θ � ]. For a + ]b ∈ Rθ, ϕθ(a + ]b) � a. Let

x1 and x2 ∈ Rθ, where x1 � a + ]b, x2 � c + ]d with a, b,

c, d ∈ Z4.
Now, ϕθ(x1 + x2) � ϕθ(a + ]b + c + ]d) � ϕθ(a + c + ]

(b + d)) � a + c � ϕθ(x1) + ϕθ(x2).
Also, ϕθ(x1x2) � ϕθ((a + ]b)(c + ]d)) � ϕθ(ac + ](bd +

ad + bc)) � ac � ϕθ(x1)ϕθ(x2).
Tus, ϕθ is a ring homomorphism for θ ∈ 1, ]{ }. □

Te following lemma by Abualrub and Siap [22] de-
termines the structure of cyclic codes of arbitrary length
over Z4.

Lemma 2 (see [22]). Let C be a cyclic code of arbitrary length
n over Z4. Ten, C � 〈g(z) + 2p(z), 2a(z)〉, where
g(z), a(z), and p(z) are binary polynomials such that
a(z)|g(z)|zn − 1 and either p(z) � 0 or a(z)|p(z)(zn − 1)/
g(z) with deg a(z)> deg p(z).

3. Structure of a Cyclic Code of Arbitrary
Length over Rθ, θ ∈ 1, ν{ }

In this section, we establish the structure of a cyclic code of
arbitrary length n over the nonchain rings Rθ, θ ∈ 1, ]{ }.

Theorem 3. Let Cθ be a cyclic code of arbitrary length n over
the rings Rθ, θ ∈ 1, ]{ }. Ten, Cθ � 〈fθ1(z), fθ2(z), fθ3(z),

fθ4(z)〉, where fθ1(z) � f11(z) + 2f12(z)+ kθf13 (z) + 2kθ
f14(z), fθ2(z) � 2f22(z) + kθf23(z)+ 2kθf24(z), fθ3(z) �

kθf33 (z)+ 2kθf34(z), fθ4(z) � 2kθf44(z) such that the
polynomials fij(z) are in Z2[z]/〈zn − 1〉 for 1≤ i≤ 4,

i≤ j≤ 4. Furthermore,

f22(z) f11(z)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌z
n

− 1, (2)

either f12(z) � 0 or f22(z)|f12(z)
z

n
− 1

f11(z)
with deg  f22(z)> deg  f12(z), (3)
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f44(z) f33(z)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌z
n

− 1, (4)

either f34(z) � 0 or f44(z)|f34(z)
z

n
− 1

f33(z)
with deg  f44(z)> deg  f34(z). (5)

Proof. Let Cθ be a cyclic code of length n over Rθ, θ ∈ 1, ]{ }.
Let ϕθ with a ring homomorphism as defned in Lemma 1 for
θ ∈ 1, ]{ }. Clearly, ϕθ(Cθ) is a cyclic code of length n over Z4.
Using Lemma 2, we get ϕθ(Cθ) � 〈f11(z) + 2f12(z),

2f22(z)〉, where f22(z)|f11(z)|zn − 1 and either f12(z) � 0
or f22(z) |f12(z)(zn − 1)/f11(z) with deg f22(z)>
deg f12(z).

Let kerθ � x ∈ Cθ such  that ϕθ(x) � 0􏼈 􏼉. It is easy to see
that kerθ is kθ times a cyclic code of length n over Z4.
Terefore, using Lemma 2, we obtain kerθ � kθ〈f33(z) +

2f34(z), 2f44(z)〉, where f44(z)|f33(z)|zn − 1 and either
f34(z) � 0 or f44(z)|f34(z)(zn − 1)/f33(z) with deg
f44(z)> deg f34(z).

It follows that Cθ � 〈fθ1(z), fθ2(z), fθ3(z), fθ4(z)〉,
where fθ1(z) � f11(z) + 2f12(z) + kθf13(z) + 2kθf14(z),
fθ2(z) � 2f22(z) + kθf23(z) + 2kθf24(z), fθ3(z) � kθf33
(z) + 2kθf34(z), fθ4(z) � 2kθf44(z) such that the poly-
nomials fij(z) are in Z2[z]/〈zn − 1〉 for 1≤ i≤ 4, i≤ j≤ 4
and satisfy conditions (2)–(5).

Let Cθ be a cyclic code of length n over Rθ, θ ∈ 1, ]{ }

generated by the polynomials fθ1(z), fθ2(z), fθ3(z), fθ4(z)

as obtained in Teorem 3. Defne Residue and Torsion of Cθ
as

Res Cθ( 􏼁 � a(z) ∈
Z4[z]

〈zn
− 1〉

: a(z) + kθb(z) ∈ Cθ   for  some b(z) ∈
Z4[z]

〈zn
− 1〉

􏼨 􏼩,

Tor Cθ( 􏼁 � a(z) ∈
Z4[z]

〈zn
− 1〉

: kθa(z) ∈ Cθ􏼨 􏼩.

(6)

Clearly, Res (Cθ) and Tor (Cθ) are the ideals of the ring
(Z4[z]/〈zn − 1〉). Furthermore, defne

Cθ1 �Res(Res (Cθ))� Cθ mod (2, kθ)

Cθ2 �Tor(Res (Cθ))� a(z) ∈ Z2[z]: 2a(z) ∈ Cθ􏼈 mod
kθ}

Cθ3 �Res(Tor (Cθ))� a(z) ∈ Z2[z]: kθa(z) ∈ Cθ􏼈

mod 2kθ}

Cθ4 �Tor(Tor (Cθ))� a(z) ∈ Z2[z]: 2kθa(z) ∈ Cθ􏼈 􏼉

It is easy to see that Cθ1, Cθ2, Cθ3, Cθ4 are ideals of the ring
Z2[z]/〈zn − 1〉 generated by the unique minimal degree
polynomials f11(z), f22(z), f33(z), f44(z), respectively, as
defned in Teorem 3. □
Theorem 4. Let Cθ � 〈fθ1(z), fθ2(z), fθ3(z), fθ4(z)〉 be
a cyclic code of arbitrary length n over the ring Rθ, θ ∈ 1, ]{ },
wherefθi

(z), 1≤ i≤ 4 are polynomials as defned inTeorem 3.
Ten, there exists a set of generators gθ1(z), gθ2(z), gθ3􏽮

(z), gθ4(z)} of Cθ, where gθ1(z) � g11(z) + 2g12(z) + kθg13
(z) + 2kθg14(z), gθ2(z) � 2g22(z) + kθg23(z) + 2kθg24(z),
gθ3(z) � kθg33(z) + 2kθg34(z), and gθ4(z) � 2kθg44(z) such
that the polynomials gij(z) are in Z2[z]/〈zn − 1〉 satisfy
conditions (2)–(5) as defned in Teorem 3 and gii(z) are
unique minimal degree polynomial generators of Cθi, 1≤ i≤ 4.
Also, either gij(z) � 0 or deg gij(z)< deg gjj(z) for
1≤ i≤ 3, i< j≤ 4.

Proof. Clearly, fθ1(z) � f11(z) + 2f12(z) + kθf13(z) + 2kθ
f14(z), fθ2(z) � 2f22(z) + kθf23(z) + 2kθf24(z), fθ3(z) �

kθf33(z) + 2kθf34(z), and fθ4(z) � 2kθf44(z) are the
generators of Cθ such that either f12(z) � 0 or deg f12(z)<
deg f22(z) and either f34(z) � 0 or deg f34(z)< deg
f44(z). Furthermore, if eitherfij(z) � 0 or deg fij(z)< deg
fjj(z) for all 1≤ i≤ 2, i< j≤ 4, then we get the required
result. Otherwise, let us suppose that deg fij(z)≥ deg
fjj(z) for some i � 1, 2 and j � 3, 4. Assume that deg
fij(z)≥ deg fjj(z) for i � 1 and j � 3, 4, i.e., deg f13(z)≥
deg f33(z). By division algorithm, there exist some
q13(z), g13(z) ∈ Z2[z] such that f13(z) � q13(z) f33(z)+

g13(z), where either g13(z) � 0 or deg g13(z)< deg f33(z).
Consider fθ1(z) − q13(z)fθ3(z) � f11(z)+ 2f12(z) + kθg13
(z) + 2kθ(f14(z) − q13(z)f34(z)). Furthermore, deg
(f14(z) − q13(z)f34(z))≥ deg f44(z). Again by division
algorithm, there exist some q14(z), g14(z) ∈ Z2(z) such that
f14(z) − q13(z)f34(z) � f44(z)q14(z) + g14(z), where ei-
ther g14(z) � 0 or deg g14(z)< deg f44(z). Now, consider
the polynomial gθ1(z) � fθ1(z) − q13(z)fθ3(z) − q14(z)fθ4
(z) � f11(z) + 2f12(z)+ kθg13(z) + 2kθg14(z). Clearly, gθ1
(z) ∈ Cθ. Also, we have that either g13(z) � 0 or deg
g13(z)< deg f33(z) and either g14(z) � 0 or deg g14(z)<
deg f44(z). Since gθ1(z) is a linear combination of
fθ1(z), fθ3(z), and fθ4(z), we have Cθ � 〈fθ1(z), fθ2(z),

fθ3(z), fθ4(z)〉 � 〈gθ1(z), fθ2(z), fθ3(z), fθ4(z)〉. Further-
more, using similar arguments, we can fnd polynomials
gθ2(z), gθ3(z) and gθ4(z) ∈ Cθ satisfying the required
properties such that Cθ � 〈gθ1(z), gθ2(z), gθ3(z), gθ4(z)〉

and complete the proof of the theorem.
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In the following theorem, a unique form of the gener-
ators of a cyclic code Cθ of arbitrary length n over
Rθ, θ ∈ 1, ]{ } has been determined. □

Theorem 5. Let Cθ � 〈gθ1(z), gθ2(z), gθ3(z), gθ4(z)〉 be
a cyclic code of arbitrary length n over the ring Rθ, θ ∈ 1, ]{ },
where gθ1(z) � g11(z) + 2g12(z) + kθg13(z) + 2kθg14(z),
gθ2(z) � 2g22(z) + kθg23(z) + 2kθg24(z), gθ3(z) � kθg33
(z) + 2kθg34(z), and gθ4(z) � 2kθg44(z) such that the
polynomials gij(z) ∈ Z2[z]/〈zn − 1〉 and satisfy conditions
(2)–(5) as defned in Teorem 3 with either gij(z) � 0 or deg
gij(z)< deg gjj(z) for 1≤ i≤ 3, i< j≤ 4 and gii(z) are the
unique minimal degree polynomial generators of Cθi

, 1≤ i≤ 4.
Ten, the polynomials gθ1(z), gθ2(z), gθ3(z), gθ4(z) are
uniquely determined.

Proof. Consider another set of generators hθ1(z), hθ2(z),􏽮

hθ3(z), hθ4(z)} of Cθ, where hθ1(z) � h11(z) + 2h12(z)+ kθ
h13(z) + 2kθh14(z), hθ2(z) � 2h22(z) + kθh23(z)+ 2kθh24
(z), hθ3 (z) � kθh33(z)+ 2kθh34(z), and hθ4(z) � 2kθh44(z)

such that the polynomials hij(z) are in Z2[z]/〈zn − 1〉 and
satisfy conditions (2)–(5) as defned in Teorem 3 with
either hij(z) � 0 or deg hij(z)< deg hjj(z) for 1≤ i≤ 3,

i< j≤ 4 and hii(z) are the unique minimal degree poly-
nomial generators of Cθi

, 1≤ i≤ 4.
Clearly, gii(z) � hii(z), for 1≤ i≤ 4. Consider gθ1(z)− hθ1

(z) � 2(g12(z) − h12(z))+kθ(g13(z) − h13(z)) +2kθ (g14
(z) − h14(z)) ∈ Cθ. Tis implies that g12(z) − h12(z) ∈
Cθ2 � 〈g22(z)〉. Also deg (g12(z) − h12(z))< deg g22(z)

which is a contradiction because g22(z) is a minimal degree
polynomial in Cθ2. Hence, g12(z) � h12(z). It follows that gθ1
(z) − hθ1(z) � kθ(g13(z) − h13(z))+2kθ(g14(z) − h14 (z))

∈ Cθ which implies that g13(z) − h13(z) ∈ Cθ3 � 〈g33(z)〉.
As deg (g13(z) − h13(z))< deg g33(z), we must have
g13(z) � h13(z).

Subsequently, gθ1(z) − hθ1(z) � 2kθ(g14(z) − h14(z)) ∈
Cθ implying that g14(z) − h14(z) ∈ Cθ4 � 〈g44(z)〉. Tis
together with the fact that deg (g14(z) − h14(z))< deg
g44(z) implies that g14(z) � h14(z).

In a similar manner, we can prove that g23(z) � h23(z),
g24(z) � h24(z), and g34(z) � h34(z). Hence, the unique-
ness of the polynomials gθ1(z), gθ2(z), gθ3(z), and gθ4(z) is
established. □

Te following theorem which gives some divisibility
properties of polynomials gij(z), 1≤ i≤ 4, i≤ j≤ 4 in Z2[z]/
〈zn − 1〉 can be proved through simple calculations. Tese
properties will be required to prove the results of Section 4.

Theorem 6. Let Cθ � 〈gθ1(z), gθ2(z), gθ3(z), gθ4(z)〉 be
a cyclic code of arbitrary length n over the ring Rθ, θ ∈ 1, ]{ },
where the generators gθ1(z) � g11(z)+ 2g12(z) + kθg13
(z)+ 2kθg14(z), gθ2(z) � 2g22(z)+ kθg23(z) + 2kθg24(z),
gθ3(z) � kθg33(z)+ 2kθg34(z), and gθ4(z) � 2kθg44(z) are
in the unique form as in Teorem 5. Ten, the following
divisibility relations hold over the ring Z2.

(i) g33(z)|(zn − 1)/g11(z)(g13(z) − (g12(z)/g22 (z))

g23(z))

(ii) g44(z)|g23(z)

(iii) g33(z)|(g11(z)/g22(z))g23(z)

(iv) g44(z)|(zn − 1)/g22 (z)(g24 (z) − (g23(z)/g33(z))

g34(z))

(v) g44(z)|g13(z) − (g11(z)/g22(z))g24(z) + (g11(z)/
g22(z)g33(z))g23(z)g34(z)

(vi) g44 (z)|(zn − 1)/g11(z)(g14(z) − (g12(z)/g22(z))

g24 (z) + (− g13(z) + (g12(z)g23(z)/g22(z))/g33
(z)) g34(z))

(vii) g33(z)|g11(z), g44(z)|g11(z), g44(z)|g22(z) + g23
(z) for θ � 1

(viii) g44(z)|g12(z) + g13(z) − (g11(z)/g33(z))g34(z)

for θ � 1, and g44(z)|g13(z) for θ � ].

4. Rank and Cardinality of a Cyclic Code of
Arbitrary Length over Rθ, θ ∈ 1, ν{ }

In this section, the rank and cardinality of a cyclic code of
arbitrary length over Rθ, θ ∈ 1, ]{ } have been obtained by
determining a minimal spanning set of a cyclic code over Rθ.

Defnition 7. A set S of elements of a cyclic code C over
a fnite commutative ring R is called a spanning set of C if
each element of C can be written as a linear combination of
elements of S with coefcients in R.

Defnition 8. A spanning set S of a cyclic code C is called
a minimal spanning set of C if no proper subset of S spans C.

Defnition 9. Te rank of a cyclic code C is the number of
elements in the minimal spanning set of C.

Obviously, the minimal spanning set of a cyclic code C is
not unique. However, the number of elements in any
minimal spanning set of C remains the same. We prove this
in the following theorem.

Theorem 10. Let S1 � u1, u2, . . . , um􏼈 􏼉 and S2 � v1, v2, . . . ,􏼈

vn} be two minimal spanning sets of a cyclic code C over
a fnite commutative ring R. Ten, m � n.

Proof. Without loss of generality, we may assume that m is
the least positive number such that no set with less than m

elements spans C. Clearly, m≤ n. Suppose, if possible, m< n.
It is easy to see that vi is not a zero divisor for some i, 1≤ i≤ n.
Without loss of generality, we may assume that v1 is not
a zero divisor. Since S1 spans C and v1 ∈ C, we can fnd
α1, α2, . . . , αm ∈ R such that v1 � α1u1 + α2u2 + · · · + αmum.
Furthermore, it is easy to see that at least one αj, 1≤ j≤m is
not a zero divisor.Without loss of generality, we may assume
that α1 is not a zero divisor. It follows that

u1 �
1
α1

v1 −
α2
α1

u2 − · · · −
αm

α1
um, (7)

and hence, the set v1, u2, . . . , um􏼈 􏼉 also spans C. Conse-
quently, we have that C � 〈v1〉⊕C1, where C1 is the cyclic
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code spanned by the set u2, u3, . . . , um􏼈 􏼉. It is easy to see that
u2, u3, . . . , um􏼈 􏼉 is a minimal spanning set for C1. Clearly,
v2, v3, . . . , vn􏼈 􏼉 is also a minimal spanning set of C1. Re-
peating the same arguments on the sets u2, u3, . . . , um􏼈 􏼉 and
v2, v3, . . . , vn􏼈 􏼉, we get that the set v2, u3, . . . , um􏼈 􏼉 also spans

C1 and therefore v1, v2, u3, . . . , um􏼈 􏼉 spans C. Tus,
C � 〈v1〉⊕ 〈v2〉⊕C2, where u3, u4 · · · , um􏼈 􏼉 and v3, v4, . . . ,􏼈

vn} are minimal spanning sets of C2. Furthermore, repeating
the above process a number of times, we obtain that the set
v1, v2, . . . , vm􏼈 􏼉 also spans C. Tis is a contradiction to the
fact that S2 is a minimal spanning set of C.Terefore, m must
be equal to n.

In the following theorem, the rank of a cyclic code of
arbitrary length over Rθ, θ ∈ 1, ]{ } has been obtained. □

Theorem 11. Let Cθ � 〈gθ1(z), gθ2(z), gθ3(z), gθ4(z)〉 be
a cyclic code of arbitrary length n over the ring Rθ, θ ∈ 1, ]{ },
where the generators gθ1(z) � g11(z)+ 2g12(z) + kθg13
(z)+ 2kθg14(z), gθ2(z) � 2g22(z)+ kθg23(z) + 2kθg24(z),
gθ3(z) � kθg33(z)+ 2kθg34(z), and gθ4(z) � 2kθg44(z) are
in the unique form as given in Teorem 5. Ten, rank(Cθ) is
n + s1 +

􏽥
s − s2 − s3 − s4, where si � deg gii(z) for 1≤ i≤ 4 and

􏽥
s � min s2, s3􏼈 􏼉.

Proof. It can be easily seen that the set Aθ � gθ1(z),􏽮

zgθ1(z), . . ., zn− s1− 1gθ1(z), gθ2(z), zgθ2(z), . . ., zn− s2− 1gθ2
(z), gθ3(z), zgθ3(z), . . ., zn− s3− 1gθ3(z), gθ4 (z), zgθ4 (z), . . . ,

zn− s4− 1gθ4(z)} is a spanning set of Cθ.
To prove that rank(Cθ) is n + s1 + 􏽥s − s2 − s3 − s4, it is

sufcient to show that the set Bθ � gθ1(z), zgθ1􏽮

(z), . . . , zn− s1− 1 gθ1(z), gθ2(z), z gθ2(z), . . . , zs1− s2− 1

gθ2(z), gθ3 (z), zgθ3(z), . . . , zs1− s3− 1gθ3 (z), gθ4(z), zgθ4(z),

. . . , z􏽥s− s4− 1gθ4(z)} is a minimal spanning set of Cθ, where
􏽥s � min s2, s3􏼈 􏼉.

To prove that the set Bθ spans Cθ, it is enough to show
that z􏽥s− s4gθ4(z), zs1− s3gθ3(z), zs1− s2gθ2(z) ∈ span(Bθ). First,
let us suppose that 􏽥s � s3. As g44(z)|g33(z) in
Z2[z]/〈zn − 1〉, there exists some m(z) ∈ Z2[z] with deg
m(z) � s3 − s4 such that g33(z) � g44(z)m (z) � g44
(z)(m0 + zm1 + · · · + zs3− s4− 1 ms3− s4− 1 + zs3− s4), mi ∈ Z2.
Multiplying both sides by 2kθ, we get

2gθ3(z) � m0 + zm1 + · · · + z
s3− s4− 1

ms3− s4− 1􏼐 􏼑gθ4(z) + z
s3− s4gθ4(z), (8)

which implies that zs3− s4gθ4(z) ∈ span(Bθ). Next, suppose
that 􏽥s � s2. Using the divisibilities g44(z)|g22(z) + g23(z) for
θ � 1 and g44(z)|g23(z) for θ � ] fromTeorem 6, it can be
proved that zs2− s4gθ4(z) ∈ span(Bθ) by working on the same
lines as above. Tus, we have z􏽥s− s4gθ4(z) ∈ span(Bθ), where
􏽥s � min s2, s3􏼈 􏼉. By taking gθ1(z) as a divisor and applying
the division algorithm for gθ2(z) and gθ3(z), respectively, we
can show that zs1− s2gθ2(z) ∈ span(Bθ) and zs1− s3gθ3(z) ∈
span(Bθ). Tus, Bθ is a spanning set of Cθ.

Now to prove that the set Bθ is a minimal spanning set, it
is enough to show that none of zn− s1− 1gθ1(z), zs1− s2− 1gθ2
(z), zs1− s3− 1gθ3(z) and z􏽥s− s4− 1gθ4(z) can be written as
a linear combination of other elements of Bθ. Suppose, if
possible, that zn− s1− 1gθ1(z) can be written as a linear
combination of other elements of Bθ, i.e.,

z
n− s1− 1

gθ1(z) � a(z)gθ1(z) + b(z)gθ2(z)

+ c(z)gθ3(z) + d(z)gθ4(z),
(9)

where deg a(z)< n − s1 − 1, deg b(z)< s1 − s2, deg
c(z)< s1 − s3, and deg d(z)<􏽥s − s4. Multiplying equation
(9) on both sides by 2kθ for θ � 1, we get

2kθz
n− s1− 1

g11(z) � 2kθa(z)g11(z), θ � 1. (10)

Multiplying equation (9) on both sides by 2(kθ − 1) for
θ � ], we get

2 kθ − 1( 􏼁z
n− s1− 1

g11(z) � 2 kθ − 1( 􏼁a(z)g11(z), θ � ].

(11)

Equations (10) and (11) are not possible as degrees of
left-hand side and right-hand side in each of these equations
do not match. Tus, zn− s1− 1gθ1(z) cannot be written as
a linear combination of other elements of Bθ. Using a similar
argument, it can be shown that none of zs1− s2− 1gθ2
(z), zs1− s3− 1gθ3(z) and z

􏽥
s− s4− 1gθ4(z) can be written as

a linear combination of other elements of Bθ. Hence, Bθ is
a minimal spanning set of Cθ. Furthermore, rank(Cθ) �

number of elements in Bθ � (n − s1)+ (s1 − s2) + (s1−

s3)+ (
􏽥
s − s4) � n + s1 +

􏽥
s − s2 − s3 − s4, where 􏽥

s � min
s2, s3􏼈 􏼉.

Corollary 12 follows immediately from the above
theorem. □

Corollary 12. Let Cθ � 〈gθ1(z), gθ2(z), gθ3(z), gθ4(z)〉 be
a cyclic code of arbitrary length n over the rings Rθ, θ ∈ 1, ]{ },
where the generators gθ1(z) � g11(z)+ 2g12(z) + kθg13
(z)+ 2kθg14(z), gθ2(z) � 2g22(z)+ kθg23(z) + 2kθg24(z),
gθ3(z) � kθg33(z)+ 2kθg34(z), and gθ4(z) � 2kθg44(z).
Ten, cardinality of Cθ is defned as follows:

Cθ
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 �
24n+s1+􏽥s− 3s2− 2s3− s4 , ; g23(z)≠ 0,

24n+􏽥s− 2s2− 2s3− s4 , ; g23(z) � 0,

⎧⎪⎨

⎪⎩
(12)

where si � deg gii(z) for 1≤ i≤ 4 and 􏽥s � min s2, s3􏼈 􏼉.

Te following examples illustrate the above results.
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Example 1. Let Cθ � 〈z3 + z2 + z + 1 + ](z + 3), 2(z2 + 1) +

2], ](z2 + 1), 2](z + 1)〉 be a cyclic code of length 4 over the
ring Rθ for θ � 1. Here, s1 � 3, s2 � 2, s3 � 2, s4 � 1. Using
Teorem 11, minimal spanning set of Cθ is z3 + z2 +􏼈 z +

1 + ](z + 3), 2(z2 + 1) + 2], ](z2 + 1), 2](z + 1)}. Hence,
rank(Cθ) � 4 and |Cθ| � 29.

Example 2. Let Cθ � 〈z3 + z2 + z + 3 + ](z2 + 1) + 2], 2
(z + 1), ](z3 + z2 + z + 1), 2](z + 1)〉 be a cyclic code of
length 4 over the ring Rθ for θ � ]. Here, s1 � 3, s2 �

1, s3 � 3, s4 � 1. UsingTeorem 11, minimal spanning set of
Cθ is z3 + z2 + z + 3 + ](z2 + 1) + 2], 2􏼈 (z + 1), 2(z2 + z)}.
Hence, rank(Cθ) � 3 and |Cθ| � 28.

Example 3. Let Cθ � 〈z4 + z3 + z + 1 + 2(1 + ])(z + 1),
2(z2 + z + 1), (1 + ])(z4 + z3 + z + 1), 2(1 + ])(z2 + z + 1)〉

be a cyclic code of length 6 over the ring Rθ for θ � 1. Here,
s1 � 4, s2 � 2, s3 � 4, s4 � 2. Using Teorem 11, minimal
spanning set of Cθ is {z4 + z3 + z + 1 + 2(1 + ])(z + 1),
z5 + z4 + z2 + z + 2(1 + ])(z2 + z)), 2(z2 + z + 1), 2(z3 +

z2 + z)}. Hence, rank(Cθ) � 4 and |Cθ| � 212.

Example 4. Let Cθ � 〈z5 + z4 + z3 + z2 + z + 1 + ](z4 +

z2 + 1), 2(z + 1) + ](z + 1), ](z5 + z4 + z3 + z2 + z + 1), 2]〉

be a cyclic code of length 6 over the ring Rθ for θ � ]. Here,
s1 � 5, s2 � 1, s3 � 5, s4 � 0. Using Teorem 11, minimal
spanning set of Cθ is {z5 + z4 + z3 + z2 + z + 1 + ](z4 +

z2 + 1), 2(z + 1) + ](z + 1), 2z(z + 1) + ]z(z + 1), 2z2

(z + 1) + ]z2(z + 1), 2z3(z + 1) + ]z3(z + 1), 2]}. Hence,
rank(Cθ) � 6 and |Cθ| � 217.

5. Conclusion and Future Scope

In this paper, the structure of a cyclic code of arbitrary length
over the rings Z4 + ]Z4 for those values of ]2 for which these
are nonchain rings has been established. A unique form of
the generators of these codes has been obtained. Further-
more, formulae for rank and cardinality of a cyclic code over
these rings have been established by fnding their minimal
spanning sets. Tis study can be used to fnd some new and
good codes over Z4. Also, the structural properties of cyclic
codes of arbitrary length over the rings R � Z4 + ]Z4 + · · · +

]k− 1Z4 where k≥ 3 for ]k ∈ R can be established.
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