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In this paper, we study some generalized contraction conditions for three self-mappings on generalized b-metric spaces to prove
the existence of some unique common fxed-point results. To unify our results, we establish a supportive example for three self-
mappings to show the uniqueness of a common fxed point for a generalized contraction in the said space. In addition, we present
a supportive application of nonlinear integral equations for the validation of our work. Te concept presented in this paper will
play an important role in the theory of fxed points in the context of generalized metric spaces with applications.

1. Introduction

Fixed-point (FP) theory is one of the interesting areas of
research in mathematics and other science felds. In this
theory, Banach [1] introduced a valuable and important
result for the existence and uniqueness of fxed point which
is known as the “Banach Contraction Principle (BCP)” and
stated as “a single-valued contractive type mapping on
a complete metric space (M-space) has a unique FP.” BCP
was later generalized in various directions, and many au-
thors contributed to the theory of FP. Bhaskar and Laksh-
mikantham [2] established some FP results for a mixed
monotone mapping in an ordered partial M-space using
a weak contractivity type of mappings with an application.
Jovanovic et al. [3] worked on common fxed point (CFP)

results in M-spaces. Bojor [4] proved FP theorems for Reich-
type contractions on M-spaces. Kutbi et al. [5] started to
investigate CFP results for mappings with rational expres-
sions. Batra et al. [6] presented a new extension of Kannan
contractions and related FP results. Hussain [7] proved
results for the solution of fractional diferential equations
using symmetric contraction. Debnath [8] studied Banach,
Kannan, Chatterjia, and Reich-type contractive inequalities
for multivalued mappings and proved CFP theorems.
Rasham et al. [9] established some results for the family of
multivalued mappings with the applications of functional
and integral equations. Recently, Abbas et al. [10] studied the
thermodynamic properties of the second-grade micropolar
nanofuid fow past an exponential curved Riga stretching
surface with Cattaneo–Christov double difusion.
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Furthermore, in [11], Abbas et al. discussed the thermal
analysis of MHD Casson-Sutterby fuid fow over expo-
nential stretching curved sheet.

Bakhtin [12] gave the concept of b-metric space (b-M-
space). After that, Czerwik [13] presented some FP results by
using b-M-spaces. In 1998 Czerwik [14] studied some
nonlinear set-valued contraction results in b-M-spaces.
Boriceanu et al. [15] formulated the fractal operator
theory by establishing it in b-M-spaces and verifed
some generalized CFP results. Aydi et al. [16] worked on
an FP theorem for set-valued quasi-contractions in
b-M-spaces. In [17], Roshan et al. proved CFP results for
four self-mappings on b-M-spaces. Shatanawi et al. [18]
extended contraction conditions using comparison
functions on b-M-spaces. Alqahtani et al. [19] established
CFP results on an extended b-M-space. Sintunavarat
and Kumam [20] presented CFP theorems in complex-
valued M-spaces with their applications. Recently, Bantan
et al. [21] proposed integral equations in complex-valued
b-M-spaces.

In 2006, Mustafa and Sims [22] introduced the idea of
generalized metric space (GM-space). Mustafa et al. [23]
proved an FP theorem for self-mappings on complete GM-
spaces. Abbas and Rhoades [24] discussed CFP results for
noncommuting mappings without continuity in a GM-
space. In [25], Hussain et al. discussed the unifcation of
b-metric, partial metric, and GM-spaces. Gugnani et al. [26]
formulated CFP results in GM-spaces and their applications.
In 2012, Lakzain and Samet [27] and Mustafa et al. [28],
respectively, established some FP and coincidence point
results for (ψ,φ)-weakly contractive mappings in GM-
spaces and ordered GM-spaces.

Aghajani et al. [29] introduced the idea of generalized b-
metric space (Gb M-spaces). Tey proved some CFP results
for four mappings satisfying a generalized weakly contrac-
tive condition in partially ordered complete b-M-spaces.
Teir results extended and improved several comparable
results in the published literature. Roshan et al. [30], proved
some CFP results for three mappings in discontinuous Gb

M-spaces. Cobzas and Czerwik [31] worked on the com-
pletion of Gb M-spaces and proved some FP results. Aydi
et al. [32] started to investigate a few coupled and tripled
coincidence point results and also extended, complemented,
and generalized several existing results in such spaces. In
2021, Gupta et al. [33] investigated various FP results on
completeGb M-spaces and proved CFP results. Mustafa et al.
[28] established some coupled coincidence point results for
(ψ,φ)-weakly contractive mappings in the setup of partially
ordered Gb M-spaces. Makran et al. [34] provided gener-
alized CFP results for multivalued mapping in Gb M-spaces
with an application. Mebawondu andMewomo [35] gave the
concept of Suzuki-type FP results in Gb M-spaces. Recently,
Mehmood et al. [36] established the notion of integral
equations in complex-valued Gb M-spaces and proved some
CFP results.

Te main purpose of this paper is to demonstrate some
results for the existence and uniqueness of CFP using three
self-maps satisfying the generalized contractive conditions
in Gb M-spaces with an illustrative example. Our results

improve andmodify many results presented in the literature.
Further, we support our results by an application of the
nonlinear integral equations to validate our work. Tis work
is followed by Section 2, which consists of preliminary
concepts. In Section 3, we establish some generalized CFP
theorems on Gb M-spaces with an illustrative example. In
Section 4, we present an application of nonlinear integral
equations to support our main work. Lastly, in Section 5, we
discuss the conclusion of our work.

2. Preliminaries

Defnition 1 (see [29]). Let B be a nonempty set. A function
Gb: B × B × B⟶ [0,∞) is said to be a generalized b-
metric space (Gb M-space) if the following axioms hold:

(i) Gb(b1, b2, b3) � 0 iff b1 � b2 � b3

(ii) Gb(b1, b1, b2)> 0with b1 ≠ b2

(iii) Gb(b1, b1, b2)≤Gb(b1, b2, b3)with b3 ≠ b2

(iv) Gb(b1, b2, b3) � Gb( p(b1, b2, b3) ), here, p is
a permutation of b1, b2, b3. (symmetry)

(v) Gb(b1, b2, b3)≤ s[Gb(b1, e, e) + Gb(e, b2, b3)]

For all b1, b2, b3, e ∈ B. Ten, the pair (B, Gb) is said to be
a Gb M-space.

Example 1. Let B � [0, 1] and the mapping
Gb: B × B × B⟶ R be defned as follows:

Gb b1, b2, b3(  �
1
20

b1 − b2


 + b2 − b3


 + b3 − b1


 , (1)

for b1, b2, b3 ∈ B. Ten, (B, Gb) is a Gb M-space with s � 2.

Defnition 2 (see [29]). A Gb M-space is said to be symmetric
if Gb(b1, b2, b2) � Gb(b2, b1, b1)∀ b1, b2 ∈ B.

Proposition 3 (see [29]). Let (B, Gb) be a Gb M-space. Ten,
for each b1, b2, b3, e ∈ B, it follows that

(i) Gb(b1, b2, b3) � 0 then b1 � b2 � b3

(ii) Gb(b1, b2, b3)≤ s(Gb(b1, b1, b2) + Gb(b1, b1, b3))

(iii) Gb(b1, b2, b2)≤ 2sGb(b1, b1, b2)

(iv) Gb(b1, b2, b3)≤ sGb(b1, e, b3) + sGb(e, b2, b3)

Defnition 4 (see [29]). Let (B, Gb) be a Gb M-space. A
sequence bj  in B is said to be

(i) Gb-Cauchy sequence if for any ε> 0, ∃ n0 ∈ N such
that Gb(bj, bm, bl)< ε,∀ j, m, l≥ n0

(ii) Convergent to an element b ∈ B if for all given
0< ε ∈ R,∃ n0 ∈ N such that Gb(b, bm, bm)< ε,
whenever m≥ n0

(iii) A pair (B, Gb) is said to be complete if every
Gb-Cauchy sequence is Gb-convergent in B

Proposition 5 (see [29]). Let (B, Gb) be a Gb M-space. Te
following statements are equivalent:
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(i) bj is Gb-convergent to b

(ii) Gb(bj, bj, b)⟶ 0 as j⟶∞
(iii) Gb(bj, b, b)⟶ 0 as j⟶∞

Proposition 6 (see [29]). Let (B, Gb) be a Gb M-space. Te
following statements are equivalent:

(i) bj is Gb-Cauchy sequence
(ii) Gb(bm, bj, bj)⟶ 0 as m, j⟶∞

3. Main Results

In this section, we use the approaches of Aghajani et al. [29],
Gupta et al. [33], and Mustafa et al. [28] to prove some
modifed rational contraction theorems with illustrative
examples.

Theorem 7. Let (B, Gb) be a Gb M-space with coefcient
s> 1 and T1, T2, T3: B⟶ B be three self-mappings which
satisfy

Gb T1b1, T2b2, T3b3( ≤ c1Gb b1, b2, T2b2(  + c2Gb T1b1, T1b1, b2( 

+ c3 min

Gb b1, b2, T2b2( , Gb T1b1, T1b1, b2( , Gb T1b1, b2, b2( , Gb T2b2, T2b2, b3( ,

Gb T2b2, b3, b3( ,
Gb b2, T2b2, T2b2( .Gb b3, T3b3, T3b3( 

1 + Gb T1b1, b3, b3( 
 

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

,

(2)

for all b1, b2, b3 ∈ B, c1, c2, c3 ∈ [0, 1) with sc1 < 1 and
2s2c2 < 1. Ten, the three self-mappings T1, T2, and T3 have
a CFP in B. Moreover, if (c1 + 2sc2)< 1, then T1, T2, and T3
have a unique CFP in B.

Proof. Fix b0 ∈ B. We now defne an iterative sequence in B

as follows:

b3j+1 � T1b3j,

b3j+2 � T2b3j+1, and

b3j+3 � T3b3j+2, ∀ j≥ 0.

(3)

By using (2), we have

Gb b3j+1, b3j+2, b3j+3  � Gb T1b3j, T2b3j+1, T3b3j+2 ≤ c1Gb b3j, b3j+1, T2b3j+1  + c2Gb T1b3j, T1b3j, b3j+1 

+ c3 min

Gb b3j, b3j+1, T2b3j+1 , Gb T1b3j, T1b3j, b3j+1 , Gb T1b3j, b3j+1, b3j+1 ,

Gb T2b3j+1, T2b3j+1, b3j+2 , Gb T2b3j+1, b3j+2, b3j+2 ,

Gb b3j+1, T2b3j+1, T2b3j+1 .Gb b3j+2, T3b3j+2, T3b3j+2 

1 + Gb T1b3j, b3j+2, b3j+2 
⎛⎝ ⎞⎠

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

� c1Gb b3j, b3j+1, b3j+2  + c2Gb b3j+1, b3j+1, b3j+1 

+ c3 min

Gb b3j, b3j+1, b3j+2 , Gb b3j+1, b3j+1, b3j+1 , Gb b3j+1, b3j+1, b3j+1 ,

Gb b3j+2, b3j+2, b3j+2 , Gb b3j+2, b3j+2, b3j+2 ,

Gb b3j+1, b3j+2, b3j+2 .Gb b3j+2, b3j+3, b3j+3 

1 + Gb b3j+1, b3j+2, b3j+2 
⎛⎝ ⎞⎠

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(4)

After simplifcation, we obtain
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Gb b3j+1, b3j+2, b3j+3 ≤ c1Gb b3j, b3j+1, b3j+2 . (5) Similarly, again by the view of (2),

Gb b3j+2, b3j+3, b3j+4  � Gb T2b3j+1, T3b3j+2, T1b3(j+1) ≤ c1Gb b3j+1, b3j+2, T3b3j+2  + c2Gb T2b3j+1, T2b3j+1, b3j+2 

+ c3 min

Gb b3j+1, b3j+2, T3b3j+2 , Gb T2b3j+1, T2b3j+1, b3j+2 , Gb T2b3j+1, b3j+2, b3j+2 ,

Gb T3b3j+2, T3b3j+2, b3(j+1) , Gb T3b3j+2, b3(j+1), b3(j+1) ,

Gb b3j+2, T3b3j+2, T3b3j+2 .Gb b3(j+1), T1b3(j+1), T1b3(j+1) 

1 + Gb T2b3j+1, b3(j+1), b3(j+1) 
⎛⎝ ⎞⎠

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

� c1Gb b3j+1, b3j+2, b3j+3  + c2Gb b3j+2, b3j+2, b3j+2 

+ c3 min

Gb b3j+1, b3j+2, b3j+3 , Gb b3j+2, b3j+2, b3j+2 , Gb b3j+2, b3j+2, b3j+2 ,

Gb b3j+3, b3j+3, b3(j+1) , Gb b3j+3, b3(j+1), b3(j+1) ,

Gb b3j+2, b3j+3, b3j+3 .Gb b3(j+1), b3j+4, b3j+4 

1 + Gb b3j+2, b3(j+1), b3(j+1) 
⎛⎝ ⎞⎠

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(6)

After simplifcation, we obtain

Gb b3j+2, b3j+3, b3j+4 ≤ c1Gb b3j+1, b3j+2, b3j+3 . (7)

By a similar argument as in above, we can show that

Gb b3j+3, b3j+4, b3j+5 ≤ c1Gb b3j+2, b3j+3, b3j+4 . (8)

Now, from (5), (7), and (8), we conclude that

Gb b3j+1, b3j+2, b3j+3 ≤ c1Gb b3j, b3j+1, b3j+2 ≤ · · · ≤ c1
3j+1

Gb b0, b1, b2( ⟶ 0, as j⟶∞. (9)

Hence, we have proved that the sequence bj  is
contractive under the Gb M-space for three self-mappings.
Terefore,

Lim
j⟶∞

Gb bj, bj+1, bj+2  � 0. (10)

Next, we will show that bj  is a Gb-Cauchy sequence in
B. For all j, m ∈ N, and m> j, using the rectangle inequality
and (9), we have

Gb bj, bm, bm ≤ s Gb bj, bj+1, bj+1  + Gb bj+1, bm, bm  

≤ sGb bj, bj+1, bj+1  + s
2
Gb bj+1, bj+2, bj+2  + s

3
Gb bj+2, bj+3, bj+3  + · · · + s

m
Gb bm−1, bm, bm( 

≤ sGb bj, bj+1, bj+2  + s
2
Gb bj+1, bj+2, bj+3  + s

3
Gb bj+2, bj+3, bj+4  + · · · + s

m
Gb bm−1, bm, bm+1( 

≤ sc1
j
Gb b0, b1, b1(  + s

2
c1

j+1
Gb b0, b1, b1(  + s

3
c1

j+2
Gb b0, b1, b1(  + · · · + s

m− j− 1
c1

m− 1
Gb b0, b1, b1( 

≤ sc1
j

Gb b0, b1, b1(  + sc1
1
Gb b0, b1, b1(  + s

2
c1

2
Gb b0, b1, b1(  + · · · + s

m− 1
c1

m− j− 1
Gb b0, b1, b1(  .

(11)

Since c1 < 1, we have
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Gb bj, bm, bm ≤
sc1

j

1 − sc1
Gb b0, b1, b1( ⟶ 0, as j⟶∞.

(12)

By using Proposition 3 (ii), we have
Gb(bj, bl, bm)≤ s[Gb(bj, bm, bm) + Gb(bl, bm, bm)] for
j, l, m ∈ N with j< l<m. If we take the limit as

j, l, m⟶∞, we get Gb(bj, bl, bm)⟶ 0. Hence, bj  is a
Gb-Cauchy sequence. Since (B, Gb) is complete, there
is δ ∈ B, such that bj⟶ δ as j⟶∞ or limj⟶∞bj � δ.

We now show that T1δ � δ by contrary case, let T1δ ≠ δ.
Ten, by using the rectangular property of (B, Gb) and by the
view of (2), we have that

Gb T1δ, δ, δ( ≤ sGb T1δ, b3j+2, b3j+2  + sGb b3j+2, δ, δ ≤ sGb T1δ, b3j+2, b3j+3  + sGb b3j+2, δ, δ 

� sGb b3j+2, δ, δ  + sGb T1δ, T2b3j+1, T3b3j+2 ≤ sGb b3j+2, δ, δ  + sc1Gb δ, b3j+1, T2b3j+1 

+ sc2Gb T1δ, T1δ, b3j+1  + sc3 min

Gb δ, b3j+1, T2b3j+1 , Gb T1δ, T1δ, b3j+1 , Gb T1δ, b3j+1, b3j+1 ,

Gb T2b3j+1, T2b3j+1, b3j+2 , Gb T2b3j+1, b3j+2, b3j+2 ,

Gb b3j+1, T2b3j+1, T2b3j+1 .Gb b3j+2, T3b3j+2, T3b3j+2 

1 + Gb T1δ, b3j+2, b3j+2 
⎛⎝ ⎞⎠

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

� sGb b3j+2, δ, δ  + sc1Gb δ, b3j+1, b3j+2  + sc2Gb T1δ, T1δ, b3j+1 

+ sc3 min

Gb δ, b3j+1, b3j+2 , Gb T1δ, T1δ, b3j+1 , Gb T1δ, b3j+1, b3j+1 ,

Gb b3j+2, b3j+2, b3j+2 , Gb b3j+2, b3j+2, b3j+2 ,

Gb b3j+1, b3j+2, b3j+2 .Gb b3j+2, b3j+3, b3j+3 

1 + Gb T1δ, b3j+2, b3j+2 
⎛⎝ ⎞⎠

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(13)

After simplifcation, we obtain
Gb T1δ, b3j+2, b3j+3 ≤ sGb b3j+2, δ, δ  + sc1Gb δ, b3j+1, b3j+2 

+ sc2Gb T1δ, T1δ, b3j+1 .

(14)
Now, by taking limit j⟶∞ and by using Proposition

3 (iii), we obtain

Gb T1δ, δ, δ( ≤ 2s
2
c2Gb T1δ, δ, δ( , (15)

which implies that (1 − 2s2c2)Gb(T1δ, δ, δ)≤ 0 is a contra-
diction, since (1 − 2s2c2)> 0. Tus, Gb(T1δ, δ, δ) � 0, which
yields that T1δ � δ.

Next, we show thatT2δ � δ by contrary case. Let T2δ ≠ δ,
then again by using the rectangular property of (B, Gb) and
by the view of (2), we have that
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Gb δ, T2δ, δ( ≤ sGb δ, δ, b3j+3  + sGb b3j+3, b3j+3, T2δ ≤ sGb δ, δ, b3j+3  + sGb b3j+1, T2δ, b3j+3 

� sGb δ, δ, b3j+3  + sGb T1b3j, T2δ, T3b3j+2 ≤ sGb δ, δ, b3j+3  + sc1Gb b3j, δ, T2δ 

+ sc2Gb T1b3j, T1b3j, δ  + sc3 min

Gb b3j, δ, T2δ , Gb T1b3j, T1b3j, δ , Gb T1b3j, δ, δ ,

Gb T2δ, T2δ, b3j+2 , Gb T2δ, b3j+2, b3j+2 ,

Gb δ, T2δ, T2δ( .Gb b3j+2, T3b3j+2, T3b3j+2 

1 + Gb T1b3j, b3j+2, b3j+2 
⎛⎝ ⎞⎠

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

� sGb δ, δ, b3j+3  + sc1Gb b3j, δ, T2δ  + sc2Gb b3j+1, b3j+1, δ 

+ sc3 min

Gb b3j, δ, T2δ , Gb b3j+1, b3j+1, δ , Gb b3j+1, δ, δ ,

Gb T2δ, T2δ, b3j+2 , Gb T2δ, b3j+2, b3j+2 ,

Gb δ, T2δ, T2δ( .Gb b3j+2, b3j+3, b3j+3 

1 + Gb b3j+1, b3j+2, b3j+2 
⎛⎝ ⎞⎠

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(16)

Now, by taking limit j⟶∞, we obtain

Gb δ, T2δ, δ( ≤ sc1Gb δ, δ, T2δ( . (17)

Hence, (1 − sc1)Gb(δ, T2δ, δ)≤ 0 is a contradiction,
since (1 − sc1)> 0. Tus, Gb(δ, T2δ, δ) � 0, which yields that
T2δ � δ.

Now, we have to show that T3δ � δ by contrary case. Let
T3δ ≠ δ, then by using the rectangular property of (B, Gb)

and by the view of (2), we have that

Gb δ, δ, T3δ( ≤ sGb δ, δ, b3j+2  + sGb b3j+2, b3j+2, T3δ ≤ sGb δ, δ, b3j+2  + sGb b3j+1, b3j+2, T3δ 

� sGb δ, δ, b3j+2  + sGb T1b3j, T2b3j+1, T3δ ≤ sGb δ, δ, b3j+2  + sc1Gb b3j, b3j+1, T2b3j+1 

+ sc2Gb T1b3j, T1b3j, b3j+1  + sc3 min

Gb b3j, b3j+1, T2b3j+1 , Gb T1b3j, T1b3j, b3j+1 , Gb T1b3j, b3j+1, b3j+1 ,

Gb T2b3j+1, T2b3j+1, δ , Gb T2b3j+1, δ, δ ,

Gb b3j+1, T2b3j+1, T2b3j+1 .Gb δ, T3δ, T3δ( 

1 + Gb T1b3j, δ, δ 
⎛⎝ ⎞⎠

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

� sGb δ, δ, b3j+2  + sc1Gb b3j, b3j+1, b3j+2  + sc2Gb b3j+1, b3j+1, b3j+1 

+ sc3 min

Gb b3j, b3j+1, b3j+2 , Gb b3j+1, b3j+1, b3j+1 , Gb b3j+1, b3j+1, b3j+1 ,

Gb b3j+2, b3j+2, δ , Gb b3j+2, δ, δ ,

Gb b3j+1, b3j+2, b3j+2 .Gb δ, T3δ, T3δ( 

1 + Gb b3j+1, δ, δ 
⎛⎝ ⎞⎠

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(18)

After simplifcation, we obtain
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Gb δ, δ, T3δ( ≤ sGb δ, δ, b3j+2  + sc1Gb b3j, b3j+1, b3j+2 .

(19)

Now, by taking limit j⟶∞, we obtain
Gb(δ, δ, T3δ)≤ 0 which is a contradiction. Tus, T3δ � δ.

Hence, we have proved that “δ” is a CFP of T1, T2, and T3;
that is, T1δ � T2δ � T3δ � δ.

To this end, we prove the uniqueness of the CFP. Assume
that δ∗ ∈ B is another CFP of the mappings T1, T2, and T3;
that is, T1δ

∗ � T2δ
∗ � T3δ

∗ � δ∗. Ten, from (2), we have
that

Gb δ, δ∗, δ∗(  � Gb T1δ, T2δ
∗
, T3δ
∗

( ≤ c1Gb δ, δ∗, T2δ
∗

(  + c2Gb T1δ, T1δ, δ∗( 

+ c3 min

Gb δ, δ∗, T2δ
∗

( , Gb T1δ, T1δ, δ∗( , Gb T1δ, δ∗, δ∗( ,

Gb T2δ
∗
, T2δ
∗
, δ∗( , Gb T2δ

∗
, δ∗, δ∗( ,

Gb δ∗, T2δ
∗
, T2δ
∗

( .Gb δ∗, T3δ
∗
, T3δ
∗

( 

1 + Gb T1δ, δ∗, δ∗( 
,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

� c1Gb δ, δ∗, δ∗(  + c2Gb δ, δ, δ∗( .

(20)

Now, by using Proposition 3 (iii), we get that

Gb δ, δ∗, δ∗( ≤ c1Gb δ, δ∗, δ∗(  + 2sc2Gb δ, δ∗, δ∗( , (21)

which implies that (1 − c1 − 2sc2)Gb(δ, δ∗, δ∗)≤ 0 is a con-
tradiction, since (1 − c1 − 2sc2)> 0. Terefore,
Gb(δ, δ∗, δ∗) � 0, and so δ � δ∗. Te proof is complete.

By taking c2 � 0, in Teorem 7, we get Corollary 8. □

Corollary 8. Let (B, Gb) be a Gb M-space with coefcient
s> 1 and T1, T2, T3: B⟶ B be three self-mappings which
satisfy

Gb T1b1, T2b2, T3b3( ≤ c1Gb b1, b2, T2b2(  + c3 min

Gb b1, b2, T2b2( , Gb T1b1, T1b2, b2( , Gb T1b1, b2, b2( , Gb T2b2, T2b2, b3( ,

Gb T2b2, b3, b3( ,
Gb b2, T2b2, T2b2( .Gb b3, T3b3, T3b3( 

1 + Gb T1b1, b3, b3( 
 

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

,

(22)

for all b1, b2, b3 ∈ B, and c1, c3 ∈ [0, 1) with sc1 < 1. Ten, the
three self-mappings T1, T2, and T3 have a unique CFP in B.

By specializing c1 � 0, inTeorem 7, we get Corollary 9.

Corollary 9. Let (B, Gb) be a Gb M-space with coefcient
s> 1 and T1, T2, T3: B⟶ B be three self-mappings which
satisfy

Gb T1b1, T2b2, T3b3( ≤ c2Gb T1b1, T1b1, b2(  + c3 min

Gb b1, b2, T2b2( , Gb T1b1, T1b1, b2( , Gb T1b1, b2, b2( , Gb T2b2, T2b2, b3( ,

Gb T2b2, b3, b3( ,
Gb b2, T2b2, T2b2( .Gb b3, T3b3, T3b3( 

1 + Gb T1b1, b3, b3( 
 

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

,

(23)

for all b1, b2, b3 ∈ B, and c2, c3 ∈ [0, 1) with 2s2c2 < 1. Ten,
the three self-mappings T1, T2, and T3 have a unique CFP
in B.

Theorem 10. Let (B, Gb) be a complete Gb M-space with
coefcient s> 1 and T1, T2, T3: B⟶ B be three self-
mappings which satisfy
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Gb T1b1, T2b2, T3b3( ≤ c1Gb b1, b2, T2b2(  + c2Gb T1b1, b2, b2( 

+ c3 max

Gb b1, b2, T2b2( , Gb T1b1, T1b1, b2( , Gb T1b1, b2, b2( , Gb T2b2, T2b2, b3( ,

Gb T2b2, b3, b3( ,
Gb b2, T2b2, T2b2( .Gb b3, T3b3, T3b3( 

1 + Gb T1b1, b3, b3( 
 

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

,

(24)

∀ b1, b2, b3 ∈ B, c1, c2, c3 ≥ 0 with (c1 + c3)< 1, (sc1 + sc3)<
(sc1 + 2s2c3)< 1, and (sc2 + sc3)< (sc2 + 2s2c3)< 1. Ten,
T1, T2, and T3 have a CFP in B. Moreover, if
(c1 + c2 + 2sc3)< 1, then T1, T2, andT3 have a unique CFP
in B.

Proof. Fix b0 ∈ B. We now defne the iterative sequences in
B as follows:

b3j+1 � T1b3j,

b3j+2 � T2b3j+1, ∀j≥ 0,

b3j+3 � T3b3j+2.

(25)

Now, by using (24), we have

Gb b3j+1, b3j+2, b3j+3  � Gb T1b3j, T2b3j+1, T3b3j+2 ≤ c1Gb b3j, b3j+1, T2b3j+1  + c2Gb T1b3j, b3j+1, b3j+1 

+ c3 max

Gb b3j, b3j+1, T2b3j+1 , Gb T1b3j, T1b3j, b3j+1 , Gb T1b3j, b3j+1, b3j+1 ,

Gb T2b3j+1, T2b3j+1, b3j+2 , Gb T2b3j+1, b3j+2, b3j+2 ,

Gb b3j+1, T2b3j+1, T2b3j+1 .Gb b3j+2, T3b3j+2, T3b3j+2 

1 + Gb T1b3j, b3j+2, b3j+2 
⎛⎝ ⎞⎠

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

� c1Gb b3j, b3j+1, b3j+2  + c2Gb b3j+1, b3j+1, b3j+1 

+ c3 max

Gb b3j, b3j+1, b3j+2 , Gb b3j+1, b3j+1, b3j+1 , Gb b3j+1, b3j+1, b3j+1 ,

Gb b3j+2, b3j+2, b3j+2 , Gb b3j+2, b3j+2, b3j+2 ,

Gb b3j+1, b3j+2, b3j+2 .Gb b3j+2, b3j+3, b3j+3 

1 + Gb b3j+1, b3j+2, b3j+2 
⎛⎝ ⎞⎠

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(26)

However,

Gb b3j+1, b3j+2, b3j+2 

1 + Gb b3j+1, b3j+2, b3j+2 
≤ 1. (27)

And so,

Gb b3j+1, b3j+2, b3j+2 .Gb b3j+2, b3j+3, b3j+3 

1 + Gb b3j+1, b3j+2, b3j+2 
≤Gb b3j+2, b3j+3, b3j+3 . (28)

Tus, by combining (26) and (28), we obtain
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Gb b3j+1, b3j+2, b3j+3 ≤ c1Gb b3j, b3j+1, b3j+2  + c3 max Gb b3j, b3j+1, b3j+2 , Gb b3j+2, b3j+3, b3j+3  . (29)

By using Defnition 1 (iii), we obtain

Gb b3j+1, b3j+2, b3j+3 ≤ c1Gb b3j, b3j+1, b3j+2  + c3 max Gb b3j, b3j+1, b3j+2 , Gb b3j+1, b3j+2, b3j+3  . (30)

Now, there are two possibilities: Possibility I. If max Gb(b3j, b3j+1, b3j+2),

Gb(b3j+1, b3j+2, b3j+3)} � Gb(b3j, b3j+1, b3j+2), then (30)
becomes

Gb b3j+1, b3j+2, b3j+3 ≤ λ1Gb b3j, b3j+1, b3j+2 ,where λ1 � c1 + c3( < 1. (31)

Possibility II. If the maxGb(b3j, b3j+1, b3j+2),

Gb(b3j+1, b3j+2, b3j+3) � Gb(b3j+1, b3j+2, b3j+3), then

(30) becomes

Gb b3j+1, b3j+2, b3j+3 ≤ λ2Gb b3j, b3j+1, b3j+2 ,where λ2 �
c1

1 − c3
< 1. (32)

From both cases, we obtain that

Gb b3j+1, b3j+2, b3j+3 ≤ λGb b3j, b3j+1, b3j+2 ,where λ � max λ1, λ2 < 1. (33)

Similarly, again by using (24),

Gb b3j+2, b3j+3, b3j+4  � Gb T2b3j+1, T3b3j+2, T1b3(j+1) ≤ c1Gb b3j+1, b3j+2, T3b3j+2  + c2Gb T2b3j+1, b3j+2, b3j+2 

+ c3 max

Gb b3j+1, b3j+2, T3b3j+2 , Gb T2b3j+1, T2b3j+1, b3j+2 , Gb T2b3j+1, b3j+2, b3j+2 ,

Gb T3b3j+2, T3b3j+2, b3(j+1) , Gb T3b3j+2, b3(j+1), b3(j+1) ,

Gb b3j+2, T3b3j+2, T3b3j+2 .Gb b3(j+1), T1b3(j+1), T1b3(j+1) 

1 + Gb T2b3j+1, b3(j+1), b3(j+1) 
⎛⎝ ⎞⎠

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

� c1Gb b3j+1, b3j+2, b3j+3  + c2Gb b3j+2, b3j+2, b3j+2 

+ c3 max

Gb b3j+1, b3j+2, b3j+3 , Gb b3j+2, b3j+2, b3j+2 , Gb b3j+2, b3j+2, b3j+2 ,

Gb b3j+3, b3j+3, b3(j+1) , Gb b3j+3, b3(j+1), b3(j+1) ,

Gb b3j+2, b3j+3, b3j+3 .Gb b3(j+1), b3(j+1)+1, b3(j+1)+1 

1 + Gb b3j+2, b3(j+1), b3(j+1) 
⎛⎝ ⎞⎠

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

� c1Gb b3j+1, b3j+2, b3j+3  + c3 max Gb b3j+1, b3j+2, b3j+3 ,
Gb b3j+2, b3j+3, b3j+3 .Gb b3j+3, b3j+4, b3j+4 

1 + Gb b3j+2, b3j+3, b3j+3 
⎛⎝ ⎞⎠

⎧⎨

⎩

⎫⎬

⎭.

(34)
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However,

Gb b3j+3, b3j+4, b3j+4 

1 + Gb b3j+2, b3j+3, b3j+3 
≤ 1. (35)

And so,

Gb b3j+2, b3j+3, b3j+3 .Gb b3j+3, b3j+4, b3j+4 

1 + Gb b3j+2, b3j+3, b3j+3 
≤Gb b3j+2, b3j+3, b3j+4 . (36)

By combining (34) and (36), we obtain

Gb b3j+2, b3j+3, b3j+4 ≤ c1Gb b3j+1, b3j+2, b3j+3  + c3 max Gb b3j+1, b3j+2, b3j+3 , Gb b3j+2, b3j+3, b3j+4  . (37)

By applying a similar argument as in the above two cases,
we obtain

Gb b3j+2, b3j+3, b3j+4 ≤ λGb b3j+1, b3j+2, b3j+3 ,where λ � max λ1, λ2 < 1. (38)

By a similar argument as above, one can show that

Gb b3j+3, b3j+4, b3j+5 ≤ λGb b3j+2, b3j+3, b3j+4 ,where λ � max λ1, λ2 < 1. (39)

Now, from (33), (38), and (39), we conclude that

Gb b3j+3, b3j+4, b3j+5 ≤ λGb b3j+2, b3j+3, b3j+4 ≤ · · · ≤ λ3j+3
Gb b0, b1, b2( ⟶ 0, as j⟶∞. (40)

Hence, we have proved that the sequence bj  is
contractive under the Gb M-space for three self-mappings.
Terefore,

Lim
j⟶∞

Gb bj, bj+1, bj+2  � 0. (41)

Next, we will show that bj  is a Gb-Cauchy sequence in
B. For all j, m ∈ N, and m> j, using the rectangle inequality,
we have

Gb bj, bm, bm ≤ s Gb bj, bj+1, bj+1  + Gb bj+1, bm, bm  

≤ sGb bj, bj+1, bj+1  + s
2
Gb bj+1, bj+2, bj+2  + s

3
Gb bj+2, bj+3, bj+3  + · · · + s

m
Gb bm−1, bm, bm( 

≤ sGb bj, bj+1, bj+2  + s
2
Gb bj+1, bj+2, bj+3  + s

3
Gb bj+2, bj+3, bj+4  + · · · + s

m
Gb bm−1, bm, bm+1( 

≤ sλj
Gb b0, b1, b2(  + s

2λj+1
Gb b0, b1, b2(  + s

3λj+2
Gb b0, b1, b2(  + · · · + s

m− jλm− 1
Gb b0, b1, b2( 

≤ sλj
Gb b0, b1, b2(  + s

2λj+1
Gb b0, b1, b2(  + s

3λj+2
Gb b0, b1, b2(  + · · · + s

m+j− 1λm− 1
Gb b0, b1, b2( 

≤ sλj
Gb b0, b1, b2(  + sλ1Gb b0, b1, b2(  + s

2λ2Gb b0, b1, b2(  + · · · + s
m− 1λm− 1

Gb b0, b1, b2(  .

(42)
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Since λ< 1, so the above inequality yields that

Gb bj, bm, bm ≤
sλj

1 − sλ
Gb b0, b1, b2( ⟶ 0, as j⟶∞.

(43)

By using Proposition 3 (ii), we have
Gb(bj, bl, bm)≤ s[Gb(bj, bm, bm) + Gb(bl, bm, bm)] for

j, l, m ∈ N with j< l<m. If we take the limit
as j, l, m⟶∞, we get Gb(bj, bl, bm)⟶ 0. Hence, bj  is a
Gb-Cauchy sequence. Since B is a complete Gb-metric space,
there is δ ∈ B, such that bj⟶ δ as j⟶∞ or

limj⟶∞bj � δ. We now show that T1δ � δ by contrary case,
let T1δ ≠ δ. Ten, by using the rectangular property of
Gb-metric space and by the view of (24), we have that

Gb T1δ, δ, δ(  � sGb T1δ, b3j+2, b3j+2  + sGb b3j+2, δ, δ ≤ sGb T1δ, b3j+2, b3j+3  + sGb b3j+2, δ, δ 

� sGb b3j+2, δ, δ  + sGb T1δ, T2b3j+1, T3b3j+2 ≤ sGb b3j+2, δ, δ  + sc1Gb δ, b3j+1, T2b3j+1 

+ sc2Gb T1δ, b3j+1, b3j+1  + sc3 max

Gb δ, b3j+1, T2b3j+1 , Gb T1δ, T1δ, b3j+1 , Gb T1δ, b3j+1, b3j+1 ,

Gb T2b3j+1, T2b3j+1, b3j+2 , Gb T2b3j+1, b3j+2, b3j+2 ,

Gb b3j+1, T2b3j+1, T2b3j+1 .Gb b3j+2, T3b3j+2, T3b3j+2 

1 + Gb T1δ, b3j+2, b3j+2 
⎛⎝ ⎞⎠

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

� sGb b3j+2, δ, δ  + sc1Gb η, b3j+1, b3j+2  + sc2Gb T1δ, b3j+1, b3j+1 

+ sc3 max

Gb δ, b3j+1, b3j+2 , Gb T1δ, T1δ, b3j+1 , Gb T1δ, b3j+1, b3j+1 ,

Gb b3j+2, b3j+2, b3j+2 , Gb b3j+2, b3j+2, b3j+2 ,

Gb b3j+1, b3j+2, b3j+2 .Gb b3j+2, b3j+3, b3j+3 

1 + Gb T1δ, b3j+2, b3j+2 
⎛⎝ ⎞⎠

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(44)

After simplifcation, we obtain

Gb T1δ, δ, δ( ≤ sGb b3j+2, δ, δ  + sc1Gb δ, b3j+1, b3j+2  + sc2Gb T1δ, b3j+1, b3j+1 

+ sc3 max

Gb δ, b3j+1, b3j+2 , Gb T1δ, T1δ, b3j+1 , Gb T1δ, b3j+1, b3j+1 ,

Gb b3j+1, b3j+2, b3j+2 .Gb b3j+2, b3j+3, b3j+3 

1 + Gb T1δ, b3j+2, b3j+2 
⎛⎝ ⎞⎠

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

.

(45)

By taking limit j⟶∞, we obtain

Gb T1δ, δ, δ(  � sc2Gb T1δ, δ, δ(  + sc3 max Gb T1δ, T1δ, δ( , Gb T1δ, δ, δ(  . (46)

To this end, we have two possibilities to consider:
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Possibility I. If Gb(T1δ, T1δ, δ) be the maximum term,
then

Gb T1δ, δ, δ(  � sc2Gb T1δ, δ, δ(  + sc3Gb T1δ, T1δ, δ( ≤ sc2Gb T1δ, δ, δ(  + 2s
2
c3Gb T1δ, δ, δ( . (47)

And so, (1 − sc2 − 2s2c3)Gb(T1δ, δ, δ)≤ 0 is a contra-
diction, since (1 − sc2 − 2s2c3)> 0. Tus, T1δ � δ.

Possibility II. If Gb(T1δ, δ, δ) be the maximum term,
then

Gb T1δ, δ, δ(  � sc2Gb T1δ, δ, δ(  + sc3Gb T1δ, δ, δ( .

(48)

And so, (1 − sc2 − sc3)Gb(T1δ, δ, δ)≤ 0 is a contradic-
tion, since (1 − sc2 − sc3)> 0. Tus, T1(δ) � δ. Hence, from
both possibilities, we get that T1δ � δ.

Next, we show that T2δ � δ by contrary case and let
T2δ ≠ δ. Ten, by using the rectangular inequality of
Gb-metric space and by the view of (13), we have that

Gb δ, T2δ, δ( ≤ sGb T2δ, b3j+3, b3j+3  + sGb b3j+3, δ, δ ≤ sGb b3j+1, T2δ, b3j+3  + sGb b3j+3, δ, δ 

� sGb b3j+3, δ, δ  + sGb T1b3j, T2δ, T3b3j+2 ≤ sGb b3j+3, δ, δ  + sc1Gb b3j, δ, T2δ  + sc2Gb T1b3j, δ, δ 

+ sc3 max

Gb b3j, δ, T2δ , Gb T1b3j, T1b3j, δ , Gb T1b3j, δ, δ ,

Gb T2δ, T2δ, b3j+2 , Gb T2δ, b3j+2, b3j+2 ,

Gb δ, T2δ, T2δ( .Gb b3j+2, T3b3j+2, T3b3j+2 

1 + Gb T1b3j, b3j+2, b3j+2 
⎛⎝ ⎞⎠

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

� sGb b3j+3, δ, δ  + sc1Gb b3j, δ, T2δ  + sc2Gb b3j+1, δ, δ 

+ sc3 max

Gb b3j, δ, T2δ , Gb b3j+1, b3j+1, δ , Gb b3j+1, δ, δ ,

Gb T2δ, T2δ, b3j+2 , Gb T2δ, b3j+2, b3j+2 ,

Gb δ, T2δ, T2δ( .Gb b3j+2, b3j+3, b3j+3 

1 + Gb b3j+1, b3j+2, b3j+2 
⎛⎝ ⎞⎠

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(49)

By taking limit j⟶∞ and after simplifcation, we
obtain

Gb δ, T2δ, δ( ≤ sc1Gb δ, δ, T2δ(  + sc3 max Gb δ, δ, T2δ( , Gb T2δ, T2δ, δ(  . (50)

Now, as above, there are two possibilities:
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Possibility I. If Gb(δ, δ, T2δ), Gb(T2δ, T2δ, δ)  �

Gb(δ, δ, T2δ), then (50) implies

Gb δ, T2δ, δ( ≤ sc1Gb δ, δ, T2δ(  + sc3Gb δ, δ, T2δ( .

(51)

And so, (1 − sc1 − sc3)Gb(δ, T2δ, δ)≤ 0 is a contradic-
tion, since (1 − sc1 − sc3)> 0. Tus, T2δ � δ.

Possibility II. If Gb(δ, δ, T2δ), Gb(T2δ, T2δ, δ)  �

Gb(T2δ, T2δ, δ), then (28) implies

Gb δ, T2δ, δ( ≤ sc1Gb δ, δ, T2δ(  + sc3Gb T2δ, T2δ, δ( 

≤ sc1Gb δ, δ, T2δ(  + 2s
2
c3Gb T2δ, δ, δ( .

(52)

And so, (1 − sc1 − 2s2c3)Gb(δ, T2δ, δ)≤ 0 is a contra-
diction, since (1 − sc1 − 2s2c3)> 0. Tus, T2δ � δ. Hence,
from both possibilities, we get that T2δ � δ.

Now, we have to show that T3δ � δ by contrary case and
let T3δ ≠ δ. By using (24), we have that

Gb δ, δ, T3δ( ≤ sGb δ, δ, b3j+1  + sGb b3j+1, b3j+1, T3δ ≤ sGb δ, δ, b3j+1  + sGb b3j+1, b3j+2, T3δ 

� sGb δ, δ, b3j+1  + sGb T1b3j, T2b3j+1, T3δ ≤ sGb δ, δ, b3j+1  + sc1Gb b3j, b3j+1, T2b3j+1 

+ sc2Gb T1b3j, b3j+1, b3j+1  + sc3 max

Gb b3j, b3j+1, T2b3j+1 , Gb T1b3j, T1b3j, b3j+1 , Gb T1b3j, b3j+1, b3j+1 ,

Gb T2b3j+1, T2b3j+1, δ , Gb T2b3j+1, δ, δ ,

Gb b3j+1, T2b3j+1, T2b3j+1 .Gb δ, T3δ, T3δ( 

1 + Gb T1b3j, δ, δ 
⎛⎝ ⎞⎠

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

� sGb δ, δ, b3j+1  + sc1Gb b3j, b3j+1, b3j+2  + sc2Gb b3j+1, b3j+1, b3j+1 

+ sc3 max

Gb b3j, b3j+1, b3j+2 , Gb b3j+1, b3j+1, b3j+1 , Gb b3j+1, b3j+1, b3j+1 ,

Gb b3j+2, b3j+2, δ , Gb b3j+2, δ, δ ,

Gb b3j+1, b3j+2, b3j+2 .Gb δ, T3δ, T3δ( 

1 + Gb b3j+1, δ, δ 
⎛⎝ ⎞⎠

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(53)

After simplifcation, we obtain

Gb δ, δ, T3δ( ≤ sGb δ, δ, b3j+1  + sc1Gb b3j, b3j+1, b3j+2  + sc3 max

Gb b3j, b3j+1, b3j+2 , Gb b3j+2, b3j+2, δ , Gb b3j+2, δ, δ ,

Gb b3j+1, b3j+2, b3j+2 .Gb δ, T3δ, T3δ( 

1 + Gb b3j+1, δ, δ 
⎛⎝ ⎞⎠

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

.

(54)

By taking limit j⟶∞, we get Gb(δ, δ, T3δ)≤ 0, which
is a contradiction.Tus, T3δ � δ. Hence, it is proved that ″δ″
is a CFP of T1, T2, and T3, that is, T1δ � T2δ � T3δ � δ.

We now show the uniqueness. Assume that
δ∗ ∈ B is another CFP of the mappings T1, T2, and T3 such
that
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T1δ
∗

� T2δ
∗

� T3δ
∗

� δ∗. (55) Ten, from (24), we have that

Gb δ, δ∗, δ∗(  � Gb T1δ, T2δ
∗
, T3δ
∗

( ≤ c1Gb δ, δ∗, T2δ
∗

(  + c2Gb T1δ, δ∗, δ∗( 

+ c3 max

Gb δ, δ∗, T2δ
∗

( , Gb T1δ, T1δ, δ∗( , Gb T1δ, δ∗, δ∗( ,

Gb T2δ
∗
, T2δ
∗
, δ∗( , Gb T2δ

∗
, δ∗, δ∗( ,

Gb δ∗, T2δ
∗
, T2δ
∗

( .Gb δ∗, T3δ
∗
, T3δ
∗

( 

1 + Gb T1δ, δ∗, δ∗( 
,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

� c1Gb δ, δ∗, δ∗(  + c2Gb δ, δ∗, δ∗(  + c3 max

Gb δ, δ∗, δ∗( , Gb δ, δ, δ∗( , Gb δ, δ∗, δ∗( , Gb δ∗, δ∗, δ∗( ,

Gb δ∗, δ∗, δ∗( ,
Gb δ∗, δ∗, δ∗( .Gb δ∗, δ∗, δ∗( 

1 + Gb δ, δ∗, δ∗( 

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

.

(56)

After simplifcation, we obtain

Gb δ, δ∗, δ∗( ≤ c1 + c2( Gb δ, δ∗, δ∗(  + c3 max Gb δ, δ∗, δ∗( , Gb δ, δ, δ∗(  . (57)

By using Proposition 3 (iii), we have

Gb δ, δ∗, δ∗( ≤ c1 + c2( Gb δ, δ∗, δ∗(  + c3 max Gb δ, δ∗, δ∗( , 2sGb δ, δ∗, δ∗(  . (58)

Note that 2sGb(δ, δ∗, δ∗) is a maximum term in (58);
therefore,

Gb δ, δ∗, δ∗( ≤ c1 + c2 + 2sc3( Gb δ, δ∗, δ∗( , (59)

which implies that (1 − c1 − c2 − 2sc3)Gb(δ, δ∗, δ∗)≤ 0 is
a contradiction, since (1 − c1 − c2 − 2sc3)> 0; therefore, δ �

δ∗. Hence, the mappings T1, T2, and T3 have a unique CFP
in B. Te proof is complete.

By taking c2 � 0, in Teorem 10, we get
Corollary 11. □

Corollary 11. Let (B, Gb) be a complete Gb M-space with
coefcient s> 1 and T1, T2, T3: B⟶ B be three self-
mappings which satisfy

Gb T1b1, T2b2, T3b3( ≤ c1Gb b1, b2, T2b2(  + c3 max

Gb b1, b2, T2b2( , Gb T1b1, T1b1, b2( , Gb T1b1, b2, b2( , Gb T2b2, T2b2, b3( ,

Gb T2b2, b3, b3( ,
Gb b2, T2b2, T2b2( .Gb b3, T3b3, T3b3( 

1 + Gb T1b1, b3, b3( 
 

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

,

(60)

∀ b1, b2, b3 ∈ B, c1, c3 ≥ 0 with (c1 + c3)< 1 and
(sc1 + sc3)< (sc1 + 2s2c3)< 1. Moreover, if (c1 + 2sc3)< 1,

then the three self-mappings T1, T2, and T3 have a unique
CFP in B.
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Specializing c1 � 0, in Teorem 10, we get Corollary 12. Corollary 12. Let (B, Gb) be a complete Gb M-space with
coefcient s> 1 and T1, T2, T3: B⟶ B be three self-
mappings which satisfy

Gb T1b1, T2b2, T3b3( ≤ c2Gb T1b1, b2, b2(  + c3 max

Gb b1, b2, T2b2( , Gb T1b1, T1b1, b2( , Gb T1b1, b2, b2( , Gb T2b2, T2b2, b3( ,

Gb T2b2, b3, b3( ,
Gb b2, T2b2, T2b2( .Gb b3, T3b3, T3b3( 

1 + Gb T1b1, b3, b3( 
 

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

,

(61)

∀ b1, b2, b3 ∈ B, c2, c3 ≥ 0 with (sc2 + sc3)< (sc2 + 2s2c3)<
1. Moreover, if (c2 + 2sc3)< 1, then the three self-mappings
T1, T2, and T3 have a unique CFP in B.

Example 2. Let (B, Gb) be a Gb M-space where B � [0,∞)

and Gb: B × B × B⟶ R is defned as follows:

Gb b1, b2, b3(  � max b1 − b2


, b2 − b3


, b3 − b1


 , (62)

for all b1, b2, b3 ∈ B. Now, we defne the three self-mappings,
that is, T1, T2, T3: B⟶ B by

T1b1 �

b1

10
+

9
10

, for b1 ∈ [0, 1],

1
7

5b1 + 22( , for b1 ∈ (1,∞),

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

T2b2 �

4b2

5
+

9
10

, for b2 ∈ [0, 1],

1
3

2b2 + 11( , for b2 ∈ (1,∞),

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

T3b3 �

3b3

5
+

9
10

, for b3 ∈ [0, 1],

1
8

7b3 + 11( , for b3 ∈ (1,∞).

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(63)

Now, frst, we calculate all the terms of (24) and we have
that

Gb T1b1, T2b2, T3b3(  � max T1b1 − T2b2


, T2b2 − T3b3


, T3b3 − T1b1


 

�
1
10

max b1 − 8b2


, 8b2 − 3b3


, 3b3 − b1


 .

(64)

Also,

Gb b1, b2, T2b2(  � max b1 − b2


, b2 − T2b2


, T2b2 − b1


 

�
1
5
max 5 b1 − b2


, b2 +

9
2




, 4b2 +

9
2

− 5b1



 .

(65)
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Similarly, we can calculate the remaining terms of (13) as
follows:

Gb T1b1, T1b1, b2(  � Gb T1b1, b2, b2(  � T1b1 − b2


 �
1
10

b1 + 9 − 10b2


,

Gb T2b2, T2b2, b3(  � Gb T2b2, b3, b3(  � T2b2 − b3


 �
1
10

8b2 + 9 − 10b3


,

Gb b2, T2b2, T2b2(  � T2b2 − b2


 �
1
10

9 − 2b2


, Gb b3, T2b2, T2b2(  � T2b2 − b3


 �
1
10

9 − 7b3


,

(66)

and Gb(T1b1, b3, b3) � |T1b1 − b3| � 1/10|b1 + 9 − 10b3|.
Now, from (24), (64), and (65), we have that

Gb T1b1, T2b2, T3b3(  �
1
10

max b1 − 8b2


, 8b2 − 3b3


, 3b3 − b1


 ≤
2
15

max 5 b1 − b2


, b2 +
9
2




, 4b2 +

9
2

− 5b1




 

�
2
3

1
5
max 5 b1 − b2


, b2 +

9
2




, 4b2 +

9
2

− 5b1



  

≤
2
3
Gb b1, b2, T2b2(  +

1
20

Gb T1b1, b2, b2( 

+
1
30

max

Gb b1, b2, T2b2( , Gb T1b1, T1b1, b2( , Gb T1b1, b2, b2( , Gb T2b2, T2b2, b3( ,

Gb T2b2, b3, b3( ,
Gb b2, T2b2, T2b2( .Gb b3, T3b3, T3b3( 

1 + Gb T1b1, b3, b3( 
 

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

.

(67)

Hence, it is proved that all the conditions of Teorem 10
are satisfed with c1 � 2/3, c2 � 1/20, c3 � 1/30 and s �

5/4> 1, that is, c( 1 + c3) � 7/10< 1, (sc1 + sc3) � 7/8<
(sc1 + 2s2c3) � 15/16< 1, (sc2 + sc3) � 5/48< (sc2 +

2s2c3) � 11/96< 1, and (c1 + c2 + 2sc3) � 4/5< 1. Te three
self-mappings T1, T2, and T3 have a unique CFP in B,

which is 11 ∈ [0,∞).

4. Application

In this section, we present an application to nonlinear in-
tegral equations (NLIEs) to support our results. Te con-
sidered system of NLIEs is of the form as follows:

b1(μ) � 
h2

h1

τ1 μ, v, b1(v)( dv,

b2(μ) � 
h2

h1

τ2 μ, v, b2(v)( dv,

b3(μ) � 
h2

h1

τ3 μ, v, b3(v)( dv,

(68)

where μ ∈ [h1, h2], for all b1, b2, b3 ∈ B where
B � C([h1, h2],R) is the set of all real-valued continuous
functions on [h1, h2] and τ1, τ2, τ3: [h1, h2] × [h1, h2] ×

R⟶ R. A Gb−metric Gb: B × B × B⟶ R be defned as
follows:

Gb b1, b2, b3(  � b1 − b2
����

���� + b2 − b3
����

���� + b3 − b1
����

����  for all b1, b2, b3 ∈ B. (69)

Ten, easily one can prove that (B, Gb) is a complete
Gb−metric space. Now, we establish a theorem based on
NLIEs to achieve the previous results on the existence of
a common solution to support our work.
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Theorem 13. Let T1, T2, T3: B⟶ B be three self-mappings
and let there exist β ∈ (0,1) satisfying

Gb T1b1, T2b2, T3b3( ≤ βM T , b1, b2, b3(  for all b1, b2, b3 ∈ B,

(70)

where T � T1, T2, T3 and

M T , b1, b2, b3(  � max M1 T , b1, b2, b3( , M2 T , b1, b2, b3( , M3 T , b1, b2, b3(  . (71)

Now, we defne M1(T , b1, b2, b3) � k1(T , b1, b2, b3),

M2(T , b1, b2, b3) � k2(T , b1, b2, b3), and

M3 T , b1, b2, b3(  � min
k1 T , b1, b2, b3( , k2 T , b1, b2, b3( , k3 T , b1, b2, b3( ,

k4 T , b1, b2, b3( , k5 T , b1, b2, b3( , k6 T , b1, b2, b3( 
 , (72)

where

k1 T , b1, b2, b3(  � b1 − b2
����

���� + b2 − T2b2
����

���� + T2b2 − b1
����

����,

k2 T , b1, b2, b3(  � k3 T , b1, b2, b3(  � 2 T1b1 − b2
����

����,

k4 T , b1, b2, b3(  � k5 T , b1, b2, b3(  � 2 T2b2 − b3
����

����,

k6 T , b1, b2, b3(  �
4 T2b2 − b2
����

����. T3b3 − b3
����

����

1 + 2 T1b1 − b3
����

���� 
,

(73)

for all b1, b2, b3 ∈ B. Ten, the system of NLIEs (68) has
a unique common solution.

Proof. Te integral operators T1, T2, T3: B⟶ B be defned
as follows:

T1b1( (μ) � T1b1 � 
h2

h1

τ1 μ, v, b1(v)( dv,

T2b2( (μ) � T2b2 � 
h2

h1

τ2 μ, v, b2(v)( dv,

T3b3( (μ) � T3b3 � 
h2

h1

τ3 μ, v, b3(v)( dv.

(74)

Now, we apply Teorem 7. Ten, we may have the
following three cases:

(1) If M1(T , b1, b2, b3) be the maximum term in (71),
then, from (69) and (70), we have that

Gb T1b1, T2b2, T3b3( ≤ β b1 − b2
����

���� + b2 − T2b2
����

���� + T2b2 − b1
����

���� , ∀ b1, b2, b3 ∈ B. (75)

Tus, the mappings T1, T2, and T3 satisfy all the
conditions of Teorem 7 with β � c1 and c2 � c3 � 0
in (2). Ten, the given NLIEs, i.e., (35) have a unique
common solution in B.

(2) If M2(T , b1, b2, b3) be the maximum term in (71),
then, from (69) and (70), we have that

Gb T1b1, T2b2, T3b3( ≤ β 2 T1b1 − b2
����

���� , ∀ b1, b2, b3 ∈ B.

(76)

Tus, the mappings T1, T2, and T3 satisfy all the
conditions of Teorem 7 with β � c2 and
c1 � c3 � 0, in (2). Ten, the given NLIEs (35) have
a unique common solution in B.

(3) If M3(T , b1, b2, b3) be the maximum term in (71),
then

M T , b1, b2, b3(  � min
k1 T , b1, b2, b3( , k2 T , b1, b2, b3( , k3 T , b1, b2, b3( ,

k4 T , b1, b2, b3( , k5 T , b1, b2, b3( , k6 T , b1, b2, b3( 
 . (77)
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Ten further, we may have occurrence of the following
four subcases:

3(i) if k1(T , b1, b2, b3) be the minimum term in (77),
thenM(T , b1, b2, b3) � k1(T , b1, b2, b3). Now, from (69)
and (70), we have that

Gb T1b1, T2b2, T3b3( ≤ β b1 − b2
����

���� + b2 − T2b2
����

���� + T2b2 − b1
����

���� , ∀ b1, b2, b3 ∈ B. (78)

3(ii) if k2(T , b1, b2, b3) be the minimum term in
(77) and k2(T , b1, b2, b3) � k3(T , b1, b2, b3), then
M(T , b1, b2, b3) � k2(T , b1, b2, b3). Now, from (69) and
(70), we have that

Gb T1b1, T2b2, T3b3( ≤ β 2 T1b1 − b2
����

���� , ∀ b1, b2, b3 ∈ B.

(79)

3(iii) if k4(T , b1, b2, b3) be the minimum term in
(77) and k4(T , b1, b2, b3) � k5(T , b1, b2, b3), then

M(T , b1, b2, b3) � k4(T , b1, b2, b3). Now, from (69) and
(70), we have that

Gb T1b1, T2b2, T3b3( ≤ β 2 T2b2 − b3
����

���� , ∀ b1, b2, b3 ∈ B.

(80)

3(vi) if k6(T , b1, b2, b3) be the minimum term in (77),
thenM(T , b1, b2, b3) � k6(T , b1, b2, b3). Now, from (69)
and (70), we have that

Gb T1b1, T2b2, T3b3( ≤ β
4 T2b2 − b2
����

����. T3b3 − b3
����

����

1 + 2 T1b1 − b3
����

���� 
⎛⎝ ⎞⎠, ∀ b1, b2, b3 ∈ B. (81)

Tus, the subcases (3(i)–3(iv)) satisfying all the condi-
tions of Teorem 7 with β � c3 and c1 � c2 � 0 in (1) are
satisfed. Ten, the given system of NLIEs, i.e., (68), has
a unique common solution in B. □

5. Conclusion

In this paper, we established some CFP theorems for three
self-mappings on complete Gb M-spaces. We proved the
uniqueness of CFP by using some generalized rational-type
contraction conditions in Gb M-spaces without the conti-
nuity of self-mappings. We presented an illustrative example
of a unique CFP for three self-mappings to justify our results.
In addition, we presented an application of nonlinear in-
tegral equations to get the existing results for a unique
common solution to support our work. By using this
concept, one can defne various rational-type contraction
conditions for three or more single-valued and multivalued
mappings in the context of generalized metric spaces such as
generalized b-metric spaces, complex-valued generalized
metric spaces, and complex-valued generalized b-metric
spaces with applications of diferent types of diferential
equations and nonlinear integral equations.
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