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Metric dimension is one of the distance-based parameters which are used to fnd the position of the robot in a network space by
utilizing lesser number of notes and minimum consumption of time. It is also used to characterize the chemical compounds. Te
metric dimension has a wide range of applications in the feld of computer science such as integer programming, radar tracking,
pattern recognition, robot navigation, and image processing. A vertex x in a network W resolves the adjacent pair of vertices
uv if x attains an unequal distance from end points of uv. A local resolving neighbourhood set RL(uv) is a set of vertices
of W which resolve uv. A mapping α: V(W)⟶ [0, 1] is called local resolving function of W if α(RL(uv))≥ 1 for any
adjacent pair of vertices of uv of W and the minimal value of α(RL(uv)) for all local resolving functions α of W is
called local fractional metric dimension of W. In this paper, we have studied the local fractional metric dimension of
wheel-related networks such as web-wheel network, subdivision of wheel network, line network of subdivision of wheel network,
and double-wheel network and also examined their boundedness.

1. Introduction and Preliminaries

Te notion of metric dimension (MD) was introduced in the
1970s independently by Slater and Harary [1, 2]. NP-
hardness and complexity of the MD problem were briefy
studied in [3, 4]. MD is substantially applied in diferent
felds such as robot navigation [5], in pharmaceutical
chemistry [6], image processing [1], and in computer science
[7]. In 2000, Chartrand et al. characterized all the connected
networks that have a specifc value of MD [6]. Liu et al.
computed MD of tenser product of path, cycles, and the
constant MD of Toeplitz networks [8, 9]. Barragán-
Ramı́rezet al. defned the concept of local MD, and they
also computed the local MD of the strong product of some
connected networks [10].

Te term fractional metric dimension (FMD) is defned
by Currie and Oellermann to fnd the solution of certain
IPP [11] and Feher et al. computed the optimal solution of
IPP by using FMD [12]. In 2011, Arumugam and Mathew

introduced the term FMD in networking theory [13], and
the notion of local fractional metric dimension (LFMD) is
defned by Aisyah et al. [14], for more about FMD see
[15, 16]. Javaid et al. played an important role in the feld of
LFMD as they have established bounds of LFMD and
characterized some connected networks those obtain the
exact value of LFMD. Furthermore, they developed
a computational technique to evaluate the lower bound of
LFMD [17, 18].

A network W is an ordered pair (V, E), where the set V

composing of the nodes called the vertex set V(W) and E is
the set of the links among these nodes is called the edge set
E(W). A path is a sequence of vertices in which each one
adjacent to the next. Te number of edges in the minimal
path between two vertices u and v is called distance between
them donated by d(u, v).

Te local resolving neighbourhood (LRN) set RL(uv) is
defned as RL(uv) � x ∈ V(W): d(x, u)≠d(x, v){ }. An
upper local resolving function (ULRF) α: V(W)⟶ [0, 1]
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and α(RL(uv))≥ 1, where α(RL(uv)) � x∈RL(uv)α(x). A
function is known as lower local resolving function (LLRF) if
β: V(W)⟶ [0, 1], where β(RL(uv))≤ 1 for each RL(uv)

of W, where α(RL(uv)) � x∈RL(uv)β(x). Ten, LFMD is
defned as

D
−
LF(W) � min |α| is the upper local minimal resolving function of W ,

D
+
LF(W) � max |β| is the lower local mximal resolving function of W .

(1)

Te line network L(W) of a networkW is defned to have
as its vertices the edges of W, with two nodes are adjacent if
the corresponding edges share a node in [19]. A subdivision
of a network S(W) is obtained by adding an additional
vertex into each edge of W. Since Javaid et al. [17, 18] have
established the bounds of LFMD of general networks and
they have also computed the exact value of LFMD of specifc
networks. In this context, we have developed bounds of
LFMD of some special class of generalized wheel networks.
Furthermore, the bounds and exact values of LFMD are
depends upon the cardinalities of the LRN of each network.

In this article, our objective is to compute the LFMD of
wheel-related networks such as web-wheel, subdivision of
wheel, line network of subdivision of wheel, and double-
wheel networks. Tese networks attain diferent values of
LFMD at diferent levels; therefore, it is very interesting to
investigate their LFMD. In the end, a comprehensive con-
clusion is given as well. Te article is organised as follows:
Section 2 contains the preliminary concepts involving of the
concepts involved in the article; in Section 3, all the main
results are given in detail; and Section 4 deals with the
conclusion.

2. Main Results

In this current section, we are interested in determining the
LFMD of wheel-related networks, such as web-wheel net-
work, subdivision of wheel network, and line network of
subdivision of the wheel network.

2.1. LRN Set and LFMD of Subdivision of Wheel Network.
Te subdivision of wheel network (SWk) is obtained by
adding a vertex wi and vi to each edge of wheel network Wk,
where 1≤ i≤ k. For more details, see Figure 1.

Theorem 1. Let SWk be a subdivision of wheel network.
Ten,

DLF SWk(  � 1. (2)

Proof. Since SWk is a bipartite network and the cardinality
of each LRN set of SWk is equal to its vertex. Hence,
|RL(y)| � |V(SWK)|, ∀y ∈ E(SWk). Now, we consider
a constant LRF α: V(SWk)⟶ [0, 1] as α(v) � 1/3k + 1,

∀v ∈ V(SWk), hence DLF(SWk) � 
3k+1
i�1 1/3k + 1 � 1.

Consequently,

DLF SWk(  � 1. (3)
□

2.2. Line Network of Subdivision of Wheel Network LSWk.
Te network LSWk is obtained by adding new vertex xi in
SWk, its vertex set is V(LSWk) � ui, vi, wi, x1: 1≤ i≤ k  and
its edge set is E(LSWk) � wixi, wivi, uivi, uiui+1, uiui+2, ui

ui+3, . . . ., uiui+n: 1≤ i≤ k}. For more information, see
Figure 2.

Lemma  . Let LSWk be a line network of subdivision of wheel
network. Ten,

(a) |RL(uiui+1)| � 8 and ∪ 3k
i�1RL(uiui+1) � V(LSWk)

(b) |RL(y)|≤ |RL(uiui+1)| and |∪ 2k
i�1RL(uiui+1)| � 2k − 1

Proof. Let LSWk be a web wheel network, where
k + 1(mod k) � 1

(a) RL(uiui+1) � ui, ui+1, vi, vi+1, wi, wi+1, wi+2, wi+3 , RL

(uiui+1) � ui, ui+1, vi, vi+1, wi, wi+1, wi+2, wi+3 , and
∪ 3k

i�1RL(uiui+1) � V(LSWk), therefore |∪ 3k
i�1RL

(uiui+1)| � 3k

(b) Te LRN sets other than RL(uiui+1) are RL(uivi) �

V(LSWk) − xi+1, wn+i−1 , RL(viwi) � V(LSWk) −

vi+1, wi+1, wi+2, xi , RL(vixi) � V(LSWk) − wi,

xk+i−3, wk+i−1, xk+i−1}, RL(wixi) � vi+1, vi+4, wi, wi+1,

wi+2, wi+3, wi+4, xi, xi+1, xi+2, xi+3, xi+4} and RL

(xiwi+1) � ui, ui+1, vi, vi+1, vi+2, vi+4, wi, wi+1, wi+2,

wi+3, wi+4, xi, xi+1, xi+2, xi+4}

Table 1 clears the order of each RL(y). □

Theorem 3. Let LSWk be line network of subdivision of wheel
network. Ten,

3k

3k − 2
≤DLF LSWk( ≤

3k

8
. (4)

Proof. In order to prove the theorem, we have divided into
particular case (Case A) and general case (Case B).
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Case A.
Te possible LRN sets of LSW3 are as follows:

RL w1v1(  � V LSW3(  − v2, w2, x1 ,

RL w2v2(  � V LSW3(  − v3, w3, x2 ,

RL w3v3(  � V LSW3(  − v1, w1, x3 ,

RL u1u2(  � V LSW3(  − u3, v3, w3, x3 ,

RL u2u3(  � V LSW3(  − u1, v1, w1, x1 ,

RL u3u1(  � V LSW3(  − u2, v2, w2, x2 ,

RL v1x1(  � V LSW3(  − v3, w1, w3, x3 ,

RL v2x2(  � V LSW3(  − v1, w2, w1, x1 ,

RL v3x3(  � V LSW3(  − v2, w3, w2, x2 ,

RL w1x1(  � V LSW3(  − u1, u2, u3, v1 ,

RL w2x2(  � V LSW3(  − u2, u3, u1, v2 ,

RL w3x3(  � V LSW3(  − u3, u1, u2, v3 ,

RL x1w2(  � V LSW3(  − u3, v3 ,

RL x2w3(  � V LSW3(  − u1, v1 ,

RL x3w1(  � V LSW3(  − u2, v2 ,

RL u1v1(  � V LSW3(  − w3, x2 ,

RL u2v2(  � V LSW3(  − w1, x3 ,

RL u3v3(  � V LSW3(  − w2, x1 .

(5)

It is clear from above LRN sets that |RL(xiwi+1)| � 10;
now consider α: V(LSW3)⟶ [0, 1] as maximal LRF
defned by α(x) � 1/10∀x ∈ V(LSW3), hence DLF

(LSW3)≥
12
i�11/10 � 6/5. Likewise, |RL(uiui+1)| � 8

and |RL(uiui+1)|< |RL(y)|, RL(y) are other LRN sets of
LSW3; now consider β: V(LSW3)⟶ [0, 1] as mini-
mal LRF defned by β(v) � 1/8 to each v ∈ V(LSW3)

hence DLF(LSW3)≤
12
i�11/8 � 3/2.

6/5≤DLF LSW3( ≤ 3/2. (6)

Case 2.
For k≥ 3 with the reference of Lemma 2 |RL(uivi)| �

4k − 2 and |RL(uivi)|≥ |RL(y)|. Moreover, the cardi-
nality of each LRN set is not same. Terefore, we
consider a maximal LLRF α: V(LSWk)⟶ [0, 1]

defned by α(x) � 1/4k − 2, ∀x ∈ V(LSWk) hence
DLF(LSWk)≥

4k
i�11/4k − 2 � 2k/2k − 1. Likewise, |RL

(uiui+1)| � 8 and |RL(uiui+1||≤RL(y)|, ∀y ∈ E(LSWk).
Now, we consider a minimal LRF β: V(LSWk)⟶
[0 , 1] defned by β(x) � 1/8∀x ∈ V(LSWk), hence
DLF(LSWk)≤

4k
i�11/8 � k/2.

2k

2k − 1
≤DLF LSWk( ≤

k

2
. (7)

□

2.3. Double-Wheel Network. A double-wheel network DWk

is obtained from wheel network Wk by joining all the
vertices of outer cycle with central vertex and each other.Te
vertex set V(DWk) � ui, vi, x: 1≤ i≤ k  and E(DWk) �

uiui+1, uix, vix, vivi+1: 1≤ i≤ k . For more details about
double-wheel network, see Figure 3.

Lemma 4. Let DWk be a double-wheel network. Ten,

(a) |RL(x)| � |RL(uiui+1)| � |RL(vivi+1)| � 8 and ∪ 2k
i�1RL

(x) � 2k

(b) |RL(y)|≤ |RL(uiui+1)| and |∪ 2k+1
i�1 RL(uiui+1)| � 2k

Proof. Let DWk be a double, where k + 1(mod k) � 1

(a) RL(uiui+1) � RL(vivi+1) � ui, ui+1, ui+2, uk+i−1, vi,

vi+1, vi+2, vk+i−1}, and ∪ 2k
i�1RL(x) � V(DWk) − x{ },

therefore |∪ 2k
i�1RL(x)| � 2k
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Figure 1: Subdivision of wheel network SW4.
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Figure 2: Line network subdivision of wheel network LSW6.

Table 1: LRN sets and their comparison.

LRN set Comparison
RL(uivi) 3k − 2> 8
RL(uix) 2k − 3> 8
RL(wixi) 12> 8
RL(xiwi+1) 15> 8
RL(wivi) 3k − 4> 8
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(b) Te RL(vix) � V(DWk), RL(uix) � V(DWk) −

ui+1, uk+i−1 

Table 2 clears the order of each RL(y). □

Theorem 5. Let DW3 be a double-wheel network. Ten,

1<DLF DW3( ≤
7
3
. (8)

Proof. Te possible LRN sets of DW3 are

RL u1x(  � u1, v1, x ,

RL u2x(  � u2, v2, x ,

RL u3x(  � u3, v3, x ,

RL u1u2(  � u1, u2, v1, v2 ,

RL u2u3(  � u2, u3, v2, v3 ,

RL u3u1(  � u3, u1, v3, v1 ,

RL u1v1(  � V DW3( ,

RL u2v2(  � V DW3( ,

RL u3v3(  � V DW3( .

(9)

It is clear from above LRN sets that |RL(uix)| � 7 now
consider a maximal LRF α: V(DW3)⟶ [0, 1] defned by
α(v) � 1/7∀v ∈ V(DW3) hence DLF(DW3)>

7
i�11/7 � 1.

Likewise, |RL(uivi)| � 3. and |RL(uiui+1|≤ |RL(y)|, where
RL(y) are other LRN sets of DW3 now consider a minimal
LRF β: V(DW3)⟶ [0, 1] defned by β(v) � 1/3∀v ∈
V(DW3) hence DLF(DW3)≤

7
i�11/3 � 7/3.

1<DLF DW3( ≤
7
3
. (10)

□

Theorem 6. Let DW5 be a double-wheel network. Ten,

DLF DW5(  � 5. (11)

Proof. Te possible LRN sets of DW5 are

RL v1x(  � u1, u2, u3, v1, x ,

RL v2x(  � u2, u3, u4, v2, x ,

RL v3x(  � u3, u4, u5, v3, x ,

RL v4x(  � u4, u5, u1, v4, x ,

RL v5x(  � u5, u1, u2, v5, x ,

RL u1x(  � u1, v1, v2, v3, x ,

RL u2x(  � u2, v2, v3, v4, x ,

RL u3x(  � u3, v3, v4, v5, x ,

RL u4x(  � u4, v4, v5, v1, x ,

RL u5x(  � u2, v5, v1, v2, x ,

RL u1u2(  � u1, u2 ,

RL u2u3(  � u2, u3 ,

RL u3u4(  � u3, u4 ,

RL u4u5(  � u2, u3 ,

RL u5u1(  � u1, u5 ,

RL v1v2(  � v1, v2 ,

RL v2v3(  � v2, v3 ,

RL v3v4(  � v3, v4 ,

RL v4v5(  � v4, v5 ,

RL v5v1(  � v1, v5 .

(12)

Since |RL(x)| � |RL(uiui+1)| � |RL(vivi+1)| � 2 and
|RL(x)|≤ |RL(y)|, ∀y ∈ E(DW5), we consider a constant
LRF α: V(DW5)⟶ [0, 1] defned by α(v) � 1/2 ∀v ∈
uiui+1 ∪ vivi+1 . Terefore, DLF(DW5) � 

10
i�11/2 � 5.

DLF DW5(  � 5. (13)
□

Theorem 7. Let DWk be a double-wheel network. Ten,

1<DLF DWk( ≤
k

2
. (14)
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Figure 3: Double-wheel network DW8.

Table 2: LRN sets and their comparison.

LRN set Comparison
RL(vix) 2k + 1> 4
RL(uix) 2k − 1> 4
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Proof. In order to prove the theorem, we have divided into
a particular case (Case A) and general case (Case B).

Case A
RL u1u2(  � u1, u2, u3, u6 ,

RL u2u3(  � u2, u3, u4, u1 ,

RL u3u4(  � u3, u4, u5, u2 ,

RL u4u5(  � u4, u5, u6, u3 ,

RL u5u6(  � u5, u6, u1, u4 ,

RL u6u1(  � u5, u1, u2, u5 ,

RL v1v2(  � v1, v2, v3, v6 ,

RL v2v3(  � v2, v3, v4, v1 ,

RL v3v4(  � v3, v4, v5, v2 ,

RL v4v5(  � v4, v5, v6, v3 ,

RL v5v6(  � v5, v6, v1, v4 ,

RL v6v1(  � v6, v1, v2, v5 ,

RL u1x(  � V DW6( ,

RL u2x(  � V DW6( ,

RL u3x(  � V DW6( ,

RL u4x(  � V DW6( ,

RL u5x(  � V DW6( ,

RL u6x(  � V DW6( ,

RL v1x(  � V DW6( ,

RL v2x(  � V DW6( ,

RL v3x(  � V DW6( ,

RL v4x(  � V DW6( ,

RL v5x(  � V DW6( ,

RL v6x(  � V DW6( .

(15)

From above LRN sets that |RL(vix)| � |RL(uix)| � 13
now consider a maximal ULRF α: V(DW6)⟶ [0, 1]

by α(v) � 1/13∀v ∈ V(LSW6) hence DLF(DW6)≥


13
i�11/13 � 1. Likewise, |RL(uiui+1)| � |RL(vivi+1)| � 4

and |RL(uiui+1|≤ |RL(y)|, where RL(y) are other LRN
sets of DW6 now consider a minimal LLRF
β: V(DW6)⟶ [0, 1] defned by β(v) � 1/4∀v ∈
V(DW5) hence DLF(DW6)≤

12
i�11/4 � 3.

1<DLF DW6( ≤ 3. (16)

Case B.
For k≥ 6 with the reference of Lemma 4, |RL(uivi)| �

2k + 1 and |RL(uivi)|≥ |RL(y)|,∀y ∈ E(DWk). Now,we

consider a maximal LLRF α: V(DWk)⟶ [0, 1] de-
fned by α(v) � 1/2k + 1 to each v ∈ V(DWk) henceDLF
(DWk)>

2k+1
i�1 1/2k + 1 � 1. Likewise, |RL(ui ui+1)| � 4

and |RL(uiui+1)|≤ |RL(y)|. Again, we consider a minimal
LRF β: V(DWk)⟶ [0, 1] defned by β(v) � 1/4
∀v ∈ V(DWk) hence DLF(DWk)≤ 

2k
i�11/4 � k/2.

1<DLF DWk( ≤
k

2
. (17)

□

3. Conclusion

In this article, we have obtained the sharp bounds of the local
fractional metric dimension of wheel-related networks such
as the web-wheel network, subdivision of wheel network,
line network of subdivision of wheel network, and double-
wheel network. It has been proved that link networks of
subdivision of wheel network (LSWk) and double-wheel
network (DWk) remain unbounded when the order of these
networks approaches to ∞. Moreover, the LFMD of sub-
division of wheel network is exactly 1, and in future, it would
be very interesting to investigate the LFMD of all the wheel-
related networking attaining an exact value.

Te boundedness and unboundedness other than the
subdivision of wheel networks is also obtained in Table 3.

Data Availability

Te data used to support the fndings of this study are in-
cluded within this article. However, the reader may contact
the corresponding author for more details on the data.

Conflicts of Interest

Te authors declare that they have no conficts of interest.

Acknowledgments

Te work of Hassan Zafar and Muhammad Javaid was
supported by the Higher Education Commission of Pakistan
through the National Research Program for Universities
under Grant 20-16188/NRPU/R&D/HEC/2021 2021.

References

[1] P. J. Slater, “Leaves of trees,” Congressus Numerantium,
vol. 14, no. 1, pp. 549–559, 1975.

[2] F. Harary and R. Melter, “On the metric dimension of
a graph,” Ars Combinatoria, vol. 2, pp. 19–195, 1976.

[3] M. Hauptmann, R. Schmied, and C. Viehmann, “Approxi-
mation complexity of metric dimension problem,” Journal of
Discrete Algorithms, vol. 14, pp. 214–222, 2012.

Table 3: Bounds of wheel-related networks (WWk, SWk, LSWk, and DWk).

Network LFMD Lower bound Upper bound Comment
WWk 1<DLF(WWk)≤ 2k + 1/8. 1 2 Bounded
LSWk 3k/3k − 2≤DLF(SWk)≤ 3k/8. 1 ∞ Unbounded
DWk 1<DLF(DWk)≤ k/2. 1 ∞ Unbounded

Journal of Mathematics 5



[4] H. R. Lewis, M. R. Garey, Computers, and intractability,
“Michael R. ΠGarey and David S. Johnson. Computers and
intractability. A guide to the theory of NP-completeness,”Te
Journal of Symbolic Logic, vol. 48, no. 2, pp. 498–500, 1983.

[5] S. Khuller, B. Raghavachari, and A. Rosenfeld, “Landmarks in
graphs,” Discrete Applied Mathematics, vol. 70, no. 3,
pp. 217–229, 1996.

[6] G. Chartrand, L. Eroh, M. A. Johnson, and O. R. Oellermann,
“Resolvability in graphs and the metric dimension of a graph,”
Discrete Applied Mathematics, vol. 105, no. 1–3, pp. 99–113,
2000.

[7] P. Manuel, R. Bharati, I. Rajasingh, and C. Monica M, “On
minimum metric dimension of honeycomb networks,”
Journal of Discrete Algorithms, vol. 6, no. 1, pp. 20–27, 2008.

[8] J. B. Liu, M. F. Nadeem, H. M. A. Siddiqui, and W. Nazir,
“Computing metric dimension of certain families of Toeplitz
graphs,” IEEE Access, vol. 7, pp. 126734–126741, 2019.

[9] S. Li, J. B. Liu, and M. Munir, “On the metric dimension of
generalized tensor product of interval with paths and cycles,”
Journal of Mathematics, vol. 2020, Article ID 2168713, 6 pages,
2020.

[10] G. A. Barragán-Ramı́rez and J. A. Rodŕıguez-Velázquez, “Te
local metric dimension of strong product graphs,” Graphs and
Combinatorics, vol. 32, no. 4, pp. 1263–1278, 2016.

[11] J. Currie and O. R. Oellermann, “Te metric dimension and
metric independence of a graph,” Journal of Combinatorial
Mathematics and Combinatorial Computing, vol. 39,
pp. 157–167, 2001.

[12] M. Fehr, S. Gosselin, and O. R. Oellermann, “Te metric
dimension of Cayley digraphs,” Discrete Mathematics,
vol. 306, no. 1, pp. 31–41, 2006.

[13] S. Arumugam and V. Mathew, “Te fractional metric di-
mension of graphs,” Discrete Mathematics, vol. 312, no. 9,
pp. 1584–1590, 2012.

[14] S. Aisyah, M. Utoyo, and L. Susilowati, “On the local fractional
metric dimension of corona product graphs,” IOP Conference
Series: Earth and Environmental Science, vol. 243,
pp. 012043-012044, 2019.

[15] H. Zafar, M. Javaid, and E. Bonyah, “Studies of connected
networks via fractional metric dimension,” Journal of
Mathematics, vol. 2022, Article ID 1273358, 7 pages, 2022.

[16] A. H. Alkhaldi, M. K. Aslam, M. Javaid, and A. M. Alanazi,
“Bounds of fractional metric dimension and applications with
Grid-Related networks,” Mathematics, vol. 9, no. 12, p. 1383,
2021.

[17] M. Javaid, M. Raza, P. Kumam, and J. B. Liu, “Sharp bounds of
local fractional metric dimensions of connected networks,”
IEEE Access, vol. 8, pp. 172329–172342, 2020.

[18] M. Javaid, H. Zafar, Q. Zhu, and A. M. Alanazi, “Improved
lower bound of LFMD with applications of prism-related
networks,” Mathematical Problems in Engineering,
vol. 2021, Article ID 9950310, 9 pages, 2021.

[19] F. Harary and R. Z. Norman, “Some properties of line di-
graphs,” Rendiconti del Circolo Matematico di Palermo, vol. 9,
no. 2, pp. 161–168, 1960.

6 Journal of Mathematics




