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Tis article focuses on the exact null controllability of a one-dimensional wave equation in noncylindrical domains. Both the fxed
endpoint and the moving endpoint are Neumann-type boundary conditions. Te control is put on the moving endpoint. When
the speed of the moving endpoint is less than the characteristic speed, we can obtain the exact null controllability of this equation
by using the Hilbert uniqueness method. In addition, we get a sharper estimate on controllability time that depends on the speed of
the moving endpoint.

1. Introduction

Given T> 0, let us consider the noncylindrical domain Q
k

T,
defned by

Q
k

T � (x, t) ∈ R2
; 0< x< αk(t), for all t ∈ (0, T) , (1)

where
αk(t) � 1 + kt. (2)

Let

V 0, αk(t)(  � φ ∈ H
1 0, αk(t)( ; φ(0) � 0 , for t ∈ [0, T],

(3)

which is a subspace of H1(0, αk(t)).[V(0, αk(t))]′ donates
its conjugate space.

Consider the motion of a string with one endpoint fxed
and the other moving. It can be described by the following
wave equation in the noncylindrical domain Q

k

T:

utt − uxx � 0, in Q
k

T,

ux(0, t) � 0, ux αk(t), t(  � v(t), on(0, T),

u(x, 0) � u
0
(x), ut(x, 0) � u

1
(x), in(0, 1),

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(4)

where v is the control variable, u is the state variable, and
(u0, u1) ∈ L2(0, 1) × [V(0, 1)]′ is any given initial value. Te
constant k is called the speed of the moving endpoint. Using
the similar method in [1, 2], system (4) has a unique solution
in the sense of a transposition.

u ∈ C [0, T]; L
2 0, αk(t)(    C

1
[0, T]; V 0, αk(t)(  

′
 .

(5)

Control problems can be found everywhere in science,
technology, and engineering practice. Fixed-time control has
been used in areas such as multiagent systems (MASs), path
following in autonomous vehicles, nonlinear parameter-
isation, nonholonomic systems, and robotic systems (for
details, see [3]). In the physical sense, the application of exact
controllability of wave equations in noncylindrical domains is
also very extensive. A classical example is the interface of an
ice-water mixture when temperature rises. Terefore, it is very
necessary to study exact controllability of such wave equations.

Te main purpose of this article is to consider the exact
null controllability of (4). For the controllability problem of
wave equations in cylindrical domains, it has already been
studied by diferent authors. However, not much work has
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been done on the wave equations defned in noncylindrical
domains.We refer to [1, 4–11] for some known results in this
respect. In [1, 4], the exact controllability of a wave equation
in a certain noncylindrical domain was studied. In [5],
a globally distributed control was obtained by stabilization of
the wave equation in a noncylindrical domain. In [6, 8–11],
the exact Dirichlet boundary controllability of the following
systems was discussed:

utt − uyy � 0, in Q
k

T,

u(0, t) � 0, u αk(t), t(  � v(t), on(0, T),

u(y, 0) � u
0
(y), ut(y, 0) � u

1
(y), in(0, 1),

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(6)

and

utt − uyy � 0, in Q
k

T,

u(0, t) � v(t), u αk(t), t(  � 0, on(0, T),

u(y, 0) � u
0
(y), ut(y, 0) � u

1
(y), in(0, 1).

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(7)

Reference [8] improved the exact controllability time of
[6]. Reference [7] dealt with the exact controllability of
a one-dimensional wave equation with mixed boundary
conditions, in which a noncylindrical domain is transformed
into a cylindrical domain. Te system is as follows:

utt − uyy � 0, in Q
k

T,

u(0, t) � 0, uy αk(t), t(  � v(t), on(0, T),

u(y, 0) � u
0
(y), ut(y, 0) � u

1
(y), in(0, 1).

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(8)

In this article, we consider the exact null controllability
of the wave equation with Neumann-type boundary con-
ditions by taking a direct calculation in a noncylindrical
domain when k ∈ (0,

�
3

√
/2). But it is still the open problem

and we need to overcome in the future when k ∈ (
�
3

√
/2, 1).

Tis paper is organized as follows. In Section 2, we give
some defnitions and main theorems. In Section 3, we obtain
two key inequalities by using the multiplier method used in
Section 4. In Section 4, using the Hilbert uniqueness method,
we give the proof of exact null controllability of (4).

2. Preliminary Work and Main Results

Te goal of this paper is to study exact null controllability of
(4) in the following sense.

Defnition 1. Equation (4) is called to be null controllable at
the time T, if for any given initial value

u
0
, u

1
  ∈ L

2
(0, 1) ×[V(0, 1)]

′
, (9)

one can always fnd a control v ∈ [H1(0, T)]′ such that the
corresponding solution u of (4) in the sense of a trans-
position satisfes

u(T) � 0,

ut(T) � 0.
(10)

Defnition 2. Equation (4) is called to be exactly controllable
at the time T, if for any given initial value

u
0
, u

1
  ∈ L

2
(0, 1) ×[V(0, 1)]

′
, (11)

and any target function

u
0
d, u

1
d  ∈ L

2 0, αk(T)(  × V 0, αk(T)(  
′
, (12)

one can always fnd a control v1 ∈ [H1(0, T)]′ such that the
corresponding solution u of (4) in the sense of a trans-
position satisfes

u(T) � u
0
d, ut(T) � u

1
d. (13)

Remark 3. Null controllability of (4) is equivalent to exact
controllability of (4).

Troughout this article, we set

T
∗
k �

2
1 − k

, (14)

for the controllability time. Te specifc proof will be given
later in this paper.

Remark 4. It is easy to verify

T0 � lim
k⟶0

T
∗
k

� lim
k⟶0

2
1 − k

� 2.

(15)

Te time T0 � 2 is in accordance with the controllability
time obtained in [12].

Te main results of this paper are the following
theorems.

Theorem 5. For any givenT>T∗k , equation (4) is exactly null
controllable at time T in the sense of Defnition 1.

Te key to Proof of Teorem 5 is two important in-
equalities for the following homogeneous wave equation in
the noncylindrical domain Q

k

T:

ztt − zxx � 0, in Q
k

T,

zx(0, t) � 0, zx αk(t), t(  + 2kzt αk(t), t(  � 0, on(0, T),

z(x, 0) � z
0
(x), zt(x, 0) � z

1
(x), in(0, 1),

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(16)
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where (z0, z1) ∈ V(0, 1) × L2(0, 1) is any given initial value.
By [1], we know that (16) has a unique weak solution.

z ∈ C
1

[0, T]; V 0, αk(t)( ( ∩C [0, T]; L
2 0, αk(t)(  .

(17)

We have the following two important inequalities. Te
proof of the two important inequalities is given in Section 3.

Theorem 6. Let T>T∗k . For any (z0, z1) ∈ V(0, 1) ×

L2(0, 1), there exists a constant C> 0 such that the corre-
sponding solution z of (16) satisfes

C z
0

2
V(0,1)

+ z
1

2
L2(0,1) 

≤ 
T

0
zt αk(t), t( 



2
dt

≤C z
0

2
V(0,1)

+ z
1

2
L2(0,1)



 .

(18)

Remark 7. In fact, for a more general function αk(t), where
0< αk
′(t)<

�
3

√
/2, we can obtain the same results as in

this paper.

Remark 8. We denote by C a positive constant depending
only on T and k, which may be diferent from one place to
another.

3. Observability: Proof of Theorem 6

In this section, in order to prove Teorem 6, we need the
following lemmas.

We defne the following weighted energy function for
(16):

E(t) �
1
2


αk(t)

0
zt(x, t)



2

+ zx(x, t)



2

 dx, for t≥ 0,

(19)

where z is the solution of (16). It follows that

E(0) �
1
2


1

0
z
1
(x)



2

+ z
0
x(x)



2

 dx. (20)

Lemma  . For any (z0, z1) ∈ V(0, 1) × L2(0, 1) and
t ∈ [0, T], the corresponding solution z of (16) satisfes

E(t) − E(0) �
k 4k

2
− 3 

2


t

0
zs αk(s), s( 



2
ds. (21)

Proof. Multiplying the frst equation of (16) by zs(x, s) and
integrating on (0, αk(s)) × (0, t), we derive

0 � 
t

0

αk(s)

0
zss(x, s) − zxx(x, s) zs(x, s)dxds

�
1
2


t

0

αk(s)

0
zs(x, s)



2

+ zx(x, s)



2

 
s
dxds

− 
t

0

αk(s)

0
zs(x, s)zx(x, s)( xdxds.

(22)

Since αk,s(s) � k, it follows from this abovementioned
equality that

0 �
1
2


t

0

z

zs

αk(s)

0
zs(x, s)



2

+ zx(x, s)



2

 dxds

−
k

2


t

0
zs αk(s), s( |

2
+ zx αk(s), s( 



2 ds

− 
t

0
zs(x, s)zx(x, s)|

αk(s)
0 ds

�
1
2


αk(t)

0
zt(x, t)



2

+ zx(x, t)



2

 dx

−
1
2


1

0
zt(x, 0)



2

+ zx(x, 0)



2

 dx

−
k

2


t

0
zs αk(s), s( 



2

+ zxαk(s), s



2

 ds

− 
t

0
zs αk(s), s( zx αk(s), s( ds

+ 
t

0
zs(0, s)zx(0, s)ds.

(23)

Considering zx(0, s) � 0 and the defnition of E(t) and
E(0), it follows from (23) that

E(t) − E(0)

�
k

2


t

0
zs αk(s), s( 



2

+ zx αk(s), s( 



2

 ds

+ 
t

0
zs αk(s), s( zx αk(s), s( ds.

(24)

Note that

zx αk(s), s(  � −2kzs αk(s), s( . (25)

Terefore, we derive that
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E(t) − E(0)

�
k

2


t

0
zs αk(s), s( 



2

+ −2kzs αk(s), s( 



2

 ds

− 2k 
t

0
zs αk(s), s( zs αk(s), s( ds

�
k 4k

2
− 3 

2


t

0
zs αk(s), s( 



2
ds.

(26)

□

Remark 10. For k ∈ (0,
�
3

√
/2), according to (21), it is easy to

check that

E
′
(t) �

k 4k
2

− 3 

2
zt αk(t), t( 



2 < 0. (27)

We can obtain that E(t) is a monotonically decreasing
function and

E(t)<E(0). (28)

Lemma 11. For any (z0, z1) ∈ V(0, 1) × L2(0, 1) and
t ∈ [0, T], the corresponding solution z of (16) satisfes


T

0
αk(t)|zt αk(t), t( |

2
dt

� 2
T

0
E(t)dt + 2

αk(T)

0
xzt(x, T)zx(x, T)dx

− 2
1

0
xzt(x, 0)zx(x, 0)dx.

(29)

Proof. Multiplying the frst equation of (16) by 2xzx(x, s)

and integrating on Q
k

T, we have

0 � 
T

0

αk(t)

0
ztt(x, t) − zxx(x, t) 2xzx(x, t)dxdt

� 2
T

0

αk(t)

0
xzt(x, t)zx(x, t)( tdxdt

− 
T

0

αk(t)

0
x zt(x, t)



2

+ x zx(x, t)



2

 
x
dxdt

+ 
T

0

αk(t)

0
zt(x, t)|

2
+ zx(x, t)



2 dxdt.

(30)

By the defnition of E(t) and αk,t(t) � k, we can deduce
that

0 � 2
T

0

z

zt

αk(t)

0
xzt(x, t)zx(x, t)dxdt

− 2k 
T

0
αk(t)zt αk(t), t( zx αk(t), t( dt

− 
T

0
x zt(x, t)



2

+ zx(x, t)



2

 

αk(t)

0
dt + 2

T

0
E(t)dt

� 2
αk(T)

0
xzt(x, T)zx(x, T)dx

− 2
1

0
xzt(x, 0)zx(x, 0)dx

− 2k 
T

0
αk(t)zt αk(t), t( zx αk(t), t( dt

− 
T

0
αk(t) zt αk(t), t( 



2

+ zx αk(t), t( 



2

 dt

+ 2
T

0
E(t)dt.

(31)

Furthermore, from zx(αk(t), t) � −2kzt(αk(t), t), we get


T

0
αk(t)|zt αk(t), t( |

2
dt

� 2
T

0
E(t)dt + 2

αk(T)

0
xzt(x, T)zx(x, T)dx

− 2
1

0
xzt(x, 0)zx(x, 0)dx.

(32)

In the following, we will give the Proof of Teorem 6,
which has two steps. □

Proof of Teorem 6
Step 1. In the following, we give the proof of the frst
inequality in (18).
From the Cauchy inequality, we obtain the estimate

2
αk(T)

0
xzt(x, t)zx(x, t)dx




≤ 2αk(T)E(T), (33)

2
1

0
xzt(x, 0)zx(x, 0)dx




≤ 2E(0). (34)

Combining (28), (29), (33), and (34), it holds that


T

0
αk(t)|zt αk(t), t( |

2
dt

� 2
T

0
E(t)dt + 2

αk(T)

0
xzt(x, T)zx(x, T)dx

− 2
1

0
xzt(x, 0)zx(x, 0)dx

≥ 2
T

0
E(t)dt − 2αk(T)E(T) − 2E(0)

≥ 2
T

0
E(t)dt − 2αk(T)E(0) − 2E(0).

(35)
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From (21), we fnd that


T

0
αk(t)|zt αk(t), t( |

2
dt

≥ 2
T

0
E(0) +

k 4k
2

− 3 

2


t

0
zs αk(s), s( 



2
dsdt

− 2αk(T)E(0) − 2E(0).

(36)

From this, one concludes that

αk(T) − k 4k
2

− 3 T  
T

0
zt αk(t), t( 



2
dt

≥ 2 T − αk(T) − 1( E(0).

(37)

If T>T∗k , we have 2[(T − αk(T)) − 1]> 0, and from this
inequality and (37), it holds that


T

0
zt αk(t), t( 



2
dt

≥ αk(T) − k 4k
2

− 3 T 
− 1

2 T − αk(T) − 1(  E(0)

≥ αk(T) − k 4k
2

− 3 T 
− 1

2 T − αk(T) − 1(   z
0

2
V(0,1)

+ z
1

2
L2(0,1)



 .

(38)

Tis completes the proof of the frst inequality in (18).
Step 2. In the following, we give the proof of the second
inequality in (18).
From (28), (29), (33), and (34), one concludes that


T

0
αk(t)|zt αk(t), t( |

2
dt

� 2
T

0
E(t)dt + 2

αk(T)

0
xzt(x, T)zx(x, T)dx

− 2
1

0
xzt(x, 0)zx(x, 0)dx

≤ 2
T

0
E(t)dt + 2αk(T)E(T) + 2E(0)

≤ 2 T + αk(T) + 1( E(0).

(39)

Tis implies that one can fnd a positive constant C

such that


T

0
|zt αk(t), t( |

2
dt

≤C 2 T + αk(T) + 1(  E

≤C 2 T + αk(T) + 1(   z
0

2
V(0,1)

+ z
1

2
L2(0,1) .

(40)

Tis completes the proof of the second inequality
in (18).
By (38) and (40), we get the desired results in
Teorem 6. □

4. Controllability: Proof of Theorem 5

In this section, we prove the exact null controllability for
wave (4) in the noncylindrical domain Q

k

T (Teorem 5) for
k ∈ (0,

�
3

√
/2) by the Hilbert uniqueness method.

Proof of Teorem 5. We divide the Proof of Teorem 5 into
three steps.

Step 1. We defne the linear operator Γ: V(0, 1) ×

L2(0, 1)⟶ [V(0, 1)]′ × L2(0, 1).

For any (z0, z1) ∈ V(0, 1) × L2(0, 1), we denote by z

the corresponding solution of (16). Consider the wave
equation

ξtt − ξxx � 0, in Q
k

T,

ξx(0, t) � 0, ξx αk(t), t(  � Gz αk(t),t( ), on(0, T),

ξ(x, T) � 0, ξt(x, T) � 0, in(0, 1).

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(41)

It is worth noting that here Gz(αk(t),t) is defned as
follows:

Gz αk(t),t( ), ϕ 
H1(0,T)( )

′
,H1(0,T)( 

� 
T

0
zt αk(t), t( ϕt(t)dt, for any ϕ ∈ H

1
(0, T).

(42)

By [1], we know that (41) has a unique weak solution ξ
in the sense of a transposition. We set

ξ0, ξ1 ≜ ξ(x, 0), ξt(x, 0)(  ∈ L
2
(0, 1) ×[V(0, 1)]

′
.

(43)
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Now, we defne the operator

Γ: V(0, 1) × L
2
(0, 1)⟶ L

2
(0, 1) ×[V(0, 1)]

′
,

z
0
, z

1
 ⟶ ξ0, −ξ1 .

(44)

Terefore,

Γ z
0
, z

1
 , z

0
, z

1
   � 

1

0
z
1ξ0 − z

0ξ1dx. (45)

Step 2. Multiplying the frst equation of (41) by z(x, t)

and integrating on Q
k

T, we obtain

0 � 
T

0

αk(t)

0
ξtt(x, t) − ξxx(x, t) z(x, t)dxdt

� 
T

0

αk(t)

0
ξt(x, t)z(x, t) − ξ(x, t)zt(x, t) tdxdt

− 
T

0

αk(t)

0
ξx(x, t)z(x, t) − ξ(x, t)zx(x, t) xdxdt.

(46)

Since αk,t(t) � k, it follows from (46) that

0 � 
αk(t)

0
ξt(x, t)z(x, t) − ξ(x, t)zt(x, t)dx 



T

0

− k 
T

0
ξt αk(t), t( z αk(t), t(  − ξ αk(t), t( zt αk(t), t(  dt

− 
T

0
ξx(x, t)z(x, t) − ξ(x, t)zx(x, t) 


αk(t)

0 dt

� 
αk(T)

0
ξt(x, T)z(x, T) − ξ(x, T)zt(x, T)dx

− 
1

0
ξt(x, 0)z(x, 0) − ξ(x, 0)zt(x, 0)dx

− k 
T

0
ξt αk(t), t( z αk(t), t(  − ξ αk(t), t( zt αk(t), t(  dt

− 
T

0
ξx αk(t), t( z αk(t), t(  − ξ αk(t), t( zx αk(t), t(  dt

+ 
T

0
ξx(0, t)z(0, t) − ξ(0, t)zx(0, t) dt.

(47)

Using the following conditions,

ξt(T) � ξ(T) � zx(0, t)

� ξx(0, t) � 0,

zx αk(t), t(  + 2kzt αk(t), t(  � 0,

(48)

equation (47) can conclude that


T

0
Gz αk(t),t( )z αk(t), t( dt � 

1

0
z
1ξ0 − z

0ξ1dx. (49)

From (42), it holds that


T

0
zt αk(t), t( 



2
dt � 

1

0
z
1ξ0 − z

0ξ1dx. (50)

ByTeorem 6, Γ is bounded and coercive. Hence, by the
Lax–Milgram theorem, we can conclude that Γ is an
isomorphism.
Step 3. We proved exact null controllability of (4).
Indeed, for any given initial value

u
0
, u

1
  ∈ L

2
(0, 1) ×[V(0, 1)]

′
, (51)

we choose

v(·) � Gz(·,t) ∈ H
1
(0, T) 

′
, (52)

where z is the solution of (16) associated to Γ(z0, z1) �

(u0, −u1).

From the defnition of (14), we conclude that

Γ z
0
, z

1
  � ξ0, −ξ1 , (53)

where ξ is the solution of (41). Ten, ξ satisfes

ξ0, −ξ1  � u
0
, −u

1
 . (54)

By the uniqueness of (41), u satisfes

u(x, T), ut(x, T)(  � (0, 0). (55)

Hence, we obtain exact null controllability of (4). □
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5. Conclusion

In this paper, we focus on exact null controllability of a one-
dimensional wave equation in noncylindrical domains. Both
the fxed endpoint and the moving endpoint are Neumann-
type boundary conditions. When the speed of the moving
endpoint is less than the characteristic speed, we obtain exact
null controllability of this equation by using the Hilbert
uniqueness method. In the future, we will consider the case
of more complex wave equations, such as variable coefcient
wave equations.
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