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In this paper, we introduce the concept of weakly semiprime ideals and weakly n-systems in noncommutative rings. We establish
the equivalence between an ideal P being a weakly semiprime ideal and R − P being a weakly n-system. We provide alternative
defnitions and explore the properties of weakly semiprime ideals. Additionally, we investigate scenarios where all ideals in a given
ring are weakly semiprime and demonstrate that in Noetherian rings, where every ideal is weakly semiprime, the prime radical and
the Jacobson radical coincide.

1. Introduction

Te notion of weakly semiprime ideals in commutative rings
was frst introduced by Badawi [1] in 2016. In this framework,
a proper ideal P of a commutative ring R with an identity is
considered weakly semiprime if, for any a ∈ R, the condition
0≠ a2 ∈ P implies a ∈ P. Prior to this, Anderson and Smith [2]
introduced the concept of weakly prime ideals in 2003. Tey
defned an ideal P in a commutative ring R as weakly prime if,
for any a, b ∈ R, the condition 0≠ ab ∈ P implies either a ∈ P

or b ∈ P. Both weakly prime and weakly semiprime ideals can
be viewed as generalizations of prime ideals.

Exploring the extension of mathematical concepts to
noncommutative rings has garnered signifcant attention
from researchers. Notably, works such as [3, 4] have delved
into the generalization of weakly prime ideals in non-
commutative rings. In the context of these generalizations,
an ideal P of a ring R is considered weakly prime if, for any
ideals J and K of R, the condition 0≠ J. K⊆P implies either
J⊆P or K⊆P, as demonstrated in [4]. Furthermore, the
concept of almost prime, right primary, and nilary ideals has
been extended by the author and Fındık in [5–7].

Based on reference [8], let us consider a ring R. An
m-system (n-system) in R is a nonempty subset S⊆R such
that for any, a, b ∈ S (a ∈ S), there exists r ∈ R satisfying

arb ∈ S (ara ∈ S). An ideal P of R is said to be prime
(semiprime) if and only if the complement R − P is an
m-system (n-system). Furthermore, if an ideal P is maximally
disjoint from any m-systems S⊆R, then P is a prime ideal.

In this article, we introduce the concepts of weakly
semiprime ideals and weakly n-systems in a general ring R. A
weakly semiprime ideal P in R is defned as an ideal that
satisfes the condition: if A is an ideal of R with 0≠A2 ⊆P,
then A⊆P. On the other hand, a nonempty set S⊆R is
considered a weakly n-system if, for any ideal I of R with
I∩ S≠∅ and I2 ≠ 0, we have I2 ∩ S≠∅.

We establish a fundamental result that characterizes
weakly semiprime ideals: an ideal P in R is a weakly sem-
iprime ideal if and only if its complement R − P forms
a weakly n-system. We also demonstrate the existence of
minimal weakly semiprime ideals within any given weakly
semiprime ideal (Teorem 7). Moreover, we provide several
equivalent conditions for an ideal to be classifed as a weakly
semiprime ideal. Notably, Proposition 9 highlights that if an
ideal P is a weakly semiprime ideal but not a semiprime
ideal, then it is contained in the prime radical (Nil∗(R)) of
the ring R. In addition, we investigate the properties of
images and inverse images of weakly semiprime ideals under
ring homomorphisms. We provide characterizations for
rings in which every ideal is a weakly semiprime ideal.
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Specifcally, we establish that in such rings, the square of the
sum of all ideals whose squares are zero, denoted as N(R), is
contained in Nil∗(R). Furthermore, we determine the necessary
and sufcient condition for a ring to be a fully weakly semiprime
ring.Moreover, we prove that if every ideal of a Noetherian ring
with identity is a weakly semiprime ideal, then we have
Nil∗(R) � rad(R) and [N(R)]2 � [Nil∗(R)]2 � [rad(R)]2 �

0. Here, rad(R) refers to the Jacobson radical of the ring.
Troughout this paper, unless otherwise specifed, we

consider rings that are associative, noncommutative, and
without identity. Additionally, when we refer to an ideal, we
specifcally mean a proper two-sided ideal.

2. Weakly Semiprime Ideals

Defnition 1. Let P be an ideal of a ring R. We call P a weakly
semiprime ideal if whenever A is an ideal of R with
0≠A2 ⊆P, then A⊆P.

It is evident that every prime, weakly prime, and sem-
iprime ideal is also a weakly semiprime ideal. Te zero ideal
is always a weakly semiprime ideal although it may not
necessarily be a semiprime ideal in general.

Defnition 2. Let R be a ring. A nonempty set S⊆R is called
a weakly n-system if whenever I is an ideal of R with I∩ S≠ ϕ
and I2 ≠ 0, then I2 ∩ S≠ϕ.

Proposition 3. An ideal P of a ring R is a weakly semiprime
ideal if and only if R − P is a weakly n-system.

Proof. Suppose that P is a weakly semiprime ideal, and let I

be an ideal such that I∩ (R − P)≠∅, and I2 ≠ 0. Assume that
I2 ∩ (R − P) � ∅, then 0≠ I2 ⊆P, thus I⊆P. Contradiction.
Tus, I2 ∩ (R − P)≠∅.

Conversely, suppose that R − P is a weakly n-system, and
let 0≠ I2 ⊆P, for any ideal I of R, and assume that I⊆P.
Tus, I∩ (R − P)≠∅. Since R − P is a weakly n-system, then
I2 ∩ (R − P)≠∅, a contradiction because I2 ⊆P. Tus,
I⊆P. □
Theorem 4. For any ideal P of a ring R with identity, the
following statements are equivalent:

(1) P is a weakly semiprime ideal
(2) For a ∈ R, if 0≠ 〈a〉2 ⊆P, then a ∈ P

(3) For a ∈ R, if 0≠ aRa⊆P, then a ∈ P

(4) For any left ideal A of R, if 0≠A2 ⊆P, then A⊆P

(5) For any right ideal A of R, if 0≠A2 ⊆P, then A⊆P

Proof

(1) ⟹ (2) Clear by defnition.
(2) ⟹ (3) Suppose that 0≠ aRa⊆P, for any a ∈ R,

then 0≠RaRaR⊆P, thus 0≠ 〈a〉2 ⊆P, hence by (2),
a ∈ P.

(3) ⟹ (4) Let A be a left ideal such that 0≠A2 ⊆P, and
assume that A⊆P. Ten, for any a ∈ A\P and any
b ∈ A∩P, we have a + b ∈ A\P; thus,

(a + b)R(a + b)⊆A2 ⊆P. By (3), we obtain
(a + b)R(a + b) � 0, and hence, for b � 0, we have
a2 � ab � ba � b2 � 0. Tus, A2 � 0, contradiction.

(4) ⟹ (1) Te proof is immediate.
(3) ⟹ (5) Similar to (3)⟹ (4).
(5) ⟹ (1) Te proof is immediate. □

Theorem 5. Let P be an ideal of a ring R with identity. Ten,
the following statements are equivalent:

(1) P is a weakly semiprime ideal
(2) R-P is a weakly n-system
(3) For any right ideal I of R, if I∩ (R − P)≠∅ and I2 ≠ 0,

then I2 ∩ (R − P)≠∅
(4) For any a ∈ R − P, if 〈a〉2 ≠ 0, then 〈a〉2 ∩

(R − P)≠∅

Proof

(1) ⟺ (2) follows from Proposition 3.
(1) ⟹ (3) Suppose that I∩ (R − P)≠∅ and I2 ≠ 0 for

any right ideal I of R. Ten, I⊆P. Tus, by Teorem
4, I2 ⊆P, and hence, I2 ∩ (R − P)≠∅.

(3) ⟹ (4) Suppose that 〈a〉2 ≠ 0, for some a ∈ R − P.
Ten, (a〉∩ (R − P)≠∅. If (a〉2 � 0, then
〈a〉2 � R(a〉R(a〉 � 0, contradiction. So (a〉2 ≠ 0,
thus by (3), (a〉2 ∩ (R − P)≠∅, hence
〈a〉2 ∩ (R − P)≠∅.

(4) ⟹ (1) Suppose that 0≠ aRa⊆P. Assume that
a ∉ P. Clearly 〈a〉2 ≠ 0, and thus, by (4), we obtain
〈a〉2 ∩ (R − P)≠∅, so there is an element x ∉ P such
that x ∈ 〈a〉2 ⊆RPR⊆P, contradiction. Hence,
a ∈ P, so by Teorem 4, P is a weakly semiprime
ideal of R. □

Theorem 6. Let S⊆R be a weakly n-system of a ring R. Let P

be an ideal of R maximal with respect to the property that P is
disjoint from S. Ten, P is a weakly semiprime ideal.

Proof. Suppose that 0≠ I2 ⊆P, for any ideal I of R. Assume
that I⊆P, then by the maximal property of P, we obtain
(I + P)∩ S≠∅. Since 0≠ I2 ⊆ (I + P)2, (I + P)2 ∩ S≠∅,
which means that (I + P)2 ⊆P, and hence, I2 ⊆P, contra-
diction. Tus, I⊆P, and P is a weakly semiprime ideal. □

Theorem 7. Given a weakly semiprime ideal A in a ring R,
there exists a maximal weakly n-system S1 that is disjoint from
A. Furthermore, the complement R − S1 forms a minimal
weakly semiprime ideal with respect to A.

Proof. Let A be a weakly semiprime ideal. By Proposition 3,
we know that R − A is a weakly n-system. Let
Ω � N: N is a weakly n − system, A∩N � ∅ . It follows
that R − A ∈ Ω and Ω≠∅. By Zorn’s lemma, Ω has
a maximal element S1. (Note that R − S1 ⊆A.) Now, let
Γ � I: I is an ideal disjoint from S1 . It follows that A ∈ Γ
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and Γ ≠∅. By Zorn’s lemma, Γ has a maximal element K.
Tus, S1 ⊆R − K. However, byTeorem 6, we know that K is
a weakly semiprime ideal, and by Proposition 3, R − K is
a weakly n-system. Considering the maximal property of S1,
we conclude that S1 � R − K, which impliesR − S1 � K. If P1
is a weakly semiprime ideal such that P1 ⊆K and P1 ∩
S1 � ∅, then R − K⊆R − P1, which implies R − K � R − P1,
and therefore, K � P1.

Now, we present several results that provide insights into
the characteristics of weakly semiprime ideals. □

Proposition 8. If P is a weakly semiprime ideal of a ring R

that is not a semiprime ideal, then there exists an ideal A such
that the sum A + B is nilpotent for every ideal B of R that is
contained in P.

Proof. Suppose that P is a weakly semiprime ideal but not
a semiprime. Ten, there exists an ideal A of R such that
A2 � 0 and A⊆P. For any ideal B of R contained in P, since
A + B⊆P, (A + B)2 � AB + BA + B2 ⊆P and P is a weakly
semiprime ideal. Ten, (A + B)2 � 0. □

Proposition 9. Let P be a weakly semiprime ideal of a ring R

with identity. If P is not a semiprime ideal, then P⊆Nil∗(R).

Proof. Suppose that P is a weakly semiprime ideal but not
a semiprime. Tere exists an ideal A of R such that A2 � 0
and A⊆P. Let a ∈ P, then by Proposition 8, we obtain
(A + 〈a〉)2 � 0. Tus, (A + 〈a〉)2 ⊆Nil∗(R), and hence,
A + 〈a〉⊆Nil∗(R), because Nil∗(R) is a semiprime ideal.
Ten, A⊆Nil∗(R); thus, a ∈ 〈a〉⊆Nil∗(R), and hence,
P⊆Nil∗(R). □

Lemma 10. Let P be a weakly semiprime ideal of a ring R. If
P is not a semiprime ideal, then P2 � 0.

Proof. Suppose that P is a weakly semiprime ideal but not
a semiprime. Ten, there exists an ideal A of R such that
A2 � 0 and A⊆P. Now, assume that P2 ≠ 0, then
0≠P2 ⊆ (A + P)2 ⊆P, thus A + P⊆P, and hence, A⊆P,
a contradiction; thus, P2 � 0.

In the following example, we show that an ideal P with
P2 � 0 needs not to be weakly semiprime ideal. □

Example 1. Let R � M2(Z16), and let P � M2(〈4〉). Ten,

P2 � 0. Now, 0≠ 2 4
0 2 R

2 4
0 2 ⊆P. However,

2 4
0 2  ∉ P. Tus, P is not weakly semiprime ideal, by (3) of

Teorem 4.

Corollary 11. Let P be an ideal of a ring R. If P2 ≠ 0, then the
semiprime and weakly semiprime ideals coincide.

Proof. Clear by Lemma 10. □

Remark 12. Let P be an ideal of a semiprime ring R. If P is
semiprime, then clearly P is weakly semiprime. For the

converse, suppose that P is weakly semiprime. If P � 0, then
P is trivially semiprime. If P is not zero, then it must be
semiprime; otherwise, it would be contained in the prime
radical of R according to Proposition 9, which is zero.

Terefore, in semiprime rings, the concepts of semi-
prime ideals and weakly semiprime ideals coincide.

Theorem 13. Let R be a ring. Let P ⊂ R be a weaky semiprime
ideal that is not semiprime.Ten, we have we have the following:

(1) Whenever I2 ⊆P, then I2 � 0, for any ideal I of R.
(2) Every ideal of R contained in P is a weakly

semiprime ideal.
(3) IP (or PI) is a weakly semiprime ideal for any ideal I

of R. Particularly, Nil∗(R)P (or Nil∗(R)) is a weakly
semiprime ideal.

Proof. Since P is a weakly semiprime ideal but not a semi-
prime, then P2 � 0 by Lemma 10.

(1) Let I be an ideal such that I2 ⊆P, then the square of I

must be zero since if it is not, then I⊆P, and hence
I2 ⊆P2 � 0, a contradiction.

(2) Let I be an ideal of R contained in P. Suppose that J is
an ideal of R such that 0≠ J2 ⊆ I, then 0≠ J2 ⊆P, thus
J⊆P, and hence J2 ⊆P2 � 0, contradiction.

(3) Since IP⊆P, by (2), we are done.

Te pseudo radical of an ideal A in a ring R, denoted as��
A

√
, is defned as the sum of all ideals W of R such that

Wn ⊆A for some positive integer n. On the other hand, the
prime radical of an ideal A, denoted as rad(A), is the in-
tersection of all prime ideals that contain A. Furthermore,��

A
√
⊆ rad(A); see [9]. □

Corollary 14. Te pseudo radical of any ideal P of a Noe-
therian ring R is a weakly semiprime ideal.

Proof. Let 0≠A2 ⊆
��
P

√
for any ideal A of R. Ten, A2n �

[An]2 ⊆P for some positive integer n, by Lemma 1.2 of [9], and
hence A⊆

��
P

√
. Tus,

��
P

√
is a weakly semiprime ideal. □

Example 2. Let F be a feld. Consider the ring R � F[x, y].
Ten, R is Noetherian. Tus, by Corollary 14,

��
P

√
is a weakly

semiprime ideal for any ideal P of R.

Proposition 15. Let R, S be any rings with identities. Ten,
we have the following:

(1) If I × S is a weakly semiprime ideal of R × S, then I is
a weakly semiprime ideal, for any ideal I of R

(2) If I is a weakly semiprime ideal of R, and R is
a semiprime ring, then I × S is a weakly semiprime
ideal of R × S

Proof

(1) Suppose that 0≠A2 ⊆ I for any ideal A of R. Ten,
0 × 0≠A2 × 0 � (A × 0)2 ⊆ I × S. Since I × S is
a weakly semiprime ideal, A × 0⊆ I × S, and hence,
A⊆ I.
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(2) Suppose that 0 × 0≠ (A × B)2 ⊆ I × S, for any idealA,
B of R, S, respectively. Ten, A2 ⊆ I. If A � 0, then
A⊆ I. If A≠ 0, then since R is a semiprime ring, we
obtain 0≠A2 ⊆ I, and since I is a weakly semiprime
ideal of R, we have A⊆ I. In both cases, we see that
A × B⊆ I × S. □

Theorem 16. Let I be an ideal of a ring R. Let P be an ideal of
R such that I⊆P. Ten, we have the following:

(1) If P is a weakly semiprime ideal of R, then P/I is
a weakly semiprime ideal of R/I

(2) If I and P/I are weakly semiprime ideals of R and R/I,
respectively, then P is a weakly semiprime ideal

Proof

(1) Suppose that P is a weakly semiprime ideal of R and
let 0≠ (A)2 ⊆P/I for any ideal A of R/I. Ten,
A � A/I where A⊇ I. So, 0≠ (A2 + I)/I⊆P/I; thus,
0≠A2 ⊆P. So by assumption, A⊆P, which implies
A⊆P/I. Hence, P/I is a weakly semiprime ideal
of R/I.

(2) Suppose that 0≠A2 ⊆P for any ideal A of R. If
0≠A2 ⊆ I, then A⊆P. If A2 ⊆ I, then 0≠
[(A + I)/I]2 ⊆P/I. Tus, [(A + I)/I]⊆P/I. Hence,
A⊆P. □

Theorem 17. Let R be a ring. Ten, we have the following:

(1) Te sum of a fnite number of weakly semiprime ideals
of a ring R is a weakly semiprime ideal

(2) Te intersection of a fnite number of weakly semi-
prime ideals of a ring R is a weakly semiprime ideal

Proof. It is sufcient to prove that the sum and intersection
of two weakly semiprime ideals is weakly semiprime, and
then, the proof follows by induction. Suppose that P and Q

are weakly semiprime ideals of R.

(1) Since Q is weakly semiprime ideal of R, Q/(P∩Q) is
a weakly semiprime ideal of R/(P∩Q) by (1)
of Teorem 16. Since (P + Q)/Q � Q/(P∩Q), (P +

Q)/Q is a weakly semiprime ideal ofR/Q.Tus, by (2)
of Teorem 16, P + Q is a weakly semiprime ideal
of R.

(2) One can easily show this.

Te following theorem indicates that the property of
being a weakly semiprime ideal is preserved when passing to
the image ring via a ring epimorphism f. □

Theorem 18. Let f: R1⟶ R2 be a ring epimorphism. Let P

be an ideal of R1 such that Ker(f)⊆P. Ten, we have the
following:

(1) If P is a weakly semiprime ideal of R1, then f(P) is
a weakly semiprime ideal of R2.

(2) If P is a weakly semiprime ideal of R2 and Ker(f) is
a weakly semiprime ideal of R1, then f−1(P) is
a weakly semiprime ideal of R1.

Proof

(1) Suppose that P is a weakly semiprime ideal of R1.
Since Ker(f)⊆P, we obtain that P/Ker(f) is
a weakly semiprime ideal of R1/Ker(f), by (1) of
Teorem 16. Hence, since R1/Ker(f) � R2, f(P) �

P/Ker(f) is a weakly semiprime ideal of R2.
(2) Suppose that P is a weakly semiprime ideal of R2.

Ten, Ker(f)⊆f−1(P). Hence, since R1/Ker(f) �

R2, f−1(P)/Ker(f) � P is a weakly semiprime ideal
of R1/Ker(f). Tus, by (2) of Teorem 16, the ideal
f−1(P) is a weakly semiprime ideal of R1. □

Remark 19. We can also prove part (1) of Teorem 18 as the
following. Suppose that 0≠B2 ⊆f(P) for any ideal B of R2.
Ten, Ker(f)⊆f−1(B) � A for some ideal A of R1. Hence,
f(A) � B because f is an epimorphism. Ten, we have

0≠B
2

� [f(A)]
2

� f A
2

 ⊆f(P). (1)

Tus,

0≠A
2 ⊆f

−1
f A

2
  ⊆f

−1
(f(P)) � P. (2)

Now by assumption, A⊆P, i.e., B⊆f(P).

3. Fully Weakly Semiprime Rings

Defnition 20. A ring R is called fully weakly semiprime
(right) ring, if every (right) ideal of R is a weakly
semiprime ideal.

If R2 � 0, then clearly R is a fully weakly semiprime
(right) ring. Tus, we can conclude the following corollary.

Corollary  1. Let P be a weakly semiprime ideal of a ring R.
If P is not a semiprime ideal, then P is a fully weakly
semiprime ring.

Proof. By Lemma 10, P2 � 0; hence, every ideal of P is
a weakly semiprime ideal.

As an example, consider a local ring R with a unique
maximal ideal M. If M2 � 0, then R is a fully almost prime
ring (as shown in [6]) and a fully almost right primary ring
(as shown in [7]). Furthermore, R is a fully weakly semi-
prime ring. If the local ring R satisfes the property aR � Ra

for all a ∈ R, and every principal ideal is almost prime, then
by Teorem 2.16 of [6], we have M2 � 0, and therefore, R is
a fully weakly semiprime ring. □

Proposition   . A ring R is a fully weakly semiprime ring if
and only if, for any ideal P of R, either P2 � 0 or P is
idempotent.
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Proof. Suppose that the ring R is fully weakly semiprime
ring, and let P be an ideal of R. If P2 ≠ 0, then 0≠P2 ⊆P2.
Since P2 is a weakly semiprime ideal, P⊆P2. Hence P � P2.

Conversely, for any ideal P of R, let A be an ideal of R

such that 0≠A2 ⊆P. Ten, A � A2 ⊆P. □

Example 3. For the set R � 0, r1, r2, r3 , we defne the
following binary operations:

Ten, R is noncommutative ring. Te right ideals of the
ring R are I � 0, r2 , J � 0, r3 , K � 0, r1 , and 0. More-
over, I2 � I, J2 � 0, and K2 � K.

Te proofs of the right ideal versions of Lemma 10 and
Proposition 22 can be set analogously of their proofs. Hence,
R is a fully weakly semiprime right ring.

It can be observed that in a fully weakly semiprime ring R,
every nonzero idempotent ideal is a semiprime ideal. Tis
follows from Lemma 10 and Proposition 22. Terefore, a fully
weakly semiprime ring that does not contain a nonzero nil-
potent ideal is a fully idempotent ring, and hence a fully
semiprime ring. In such cases, it can be noted that the center of
R is regular, as stated in Proposition 1.5 of [10].

Theorem  3. Let R be a fully weakly semiprime ring. Ten,
we have the following:

(1) [N(R)]2 � 0
(2) N(R)⊆Nil∗(R)

Proof

(1) Suppose N(R)≠ 0. Let L � I1, . . . , In  be a fnite set
of nonzero ideals whose squares are zero for n⩾ 1.
Ten, each term of (I1 + · · · + In)n+1 contains at least
one repeated ideal Ii with 1⩽ i⩽ n. As a result, each
term of (I1 + · · · + In)n+1 is contained in some I2i ,
implying that (I1 + · · · + In)n+1 � 0. Now, since N(R)

is not an idempotent ideal, Proposition 22 shows that
(I1 + · · · + In)2 � 0, thus leading to [N(R)]2 � 0.

(2) Since, by (1), [N(R)]2 � 0, [N(R)]2 ⊆Nil∗(R), and
thus, N(R)⊆Nil∗(R). □

Theorem  4. Let R be a fully weakly semiprime ring with
identity. If R does not contain any nonzero idempotent ideal,
then we have the following:

(1) N(R) and Nil∗(R) are prime ideals
(2) N(R) � Nil∗(R) � rad(R) and

[N(R)]2 � [Nil∗(R)]2 � [rad(R)]2 � 0

Proof

(1) Let P be any ideal of R. Ten, by Proposition 22,
P2 � 0, thus P2 ⊆Nil∗(R), hence P⊆Nil∗(R). Tus,
Nil∗(R) is a prime ideal. On the other hand, since

P2 � 0, P⊆N(R), and hence, N(R) is also
a prime ideal.

(2) Since N(R) is prime ideal by (1), Nil∗(R)⊆N(R), and
by Teorem 23, N(R)⊆Nil∗(R). Hence, N(R) �

Nil∗(R). Furthermore, [N(R)]2 � [Nil∗(R)]2 � 0. In
addition, [rad(R)]2 � 0⊆Nil∗(R), and thus, rad(R)⊆
Nil∗(R)⊆ rad(R).

Recall that the ring R/Nil∗(R) is always a semiprime ring.
Teorem 24 provides further insight by stating that if R is
a fully weakly semiprime ring with identity and does not
contain any nonzero idempotent ideal, then the quotient
ring R/Nil∗(R) is a prime ring. □

Proposition  5. Let R be a fully weakly semiprime ring with
identity. If R is Noetherian, then Nil∗(R) � rad(R) and
[N(R)]2 � [Nil∗(R)]2 � [rad(R)]2 � 0.

Proof. In a fully weakly semiprime ring R, it holds that for
any ideal P of R, either P2 � 0 or P2 � P, as stated in
Proposition 22. Consequently, if [rad(R)]2 � 0, it follows
that Nil∗(R) � rad(R). Similarly, if [rad(R)]2 � rad(R),
considering that rad(R) is fnitely generated, Nakayama’s
lemma implies rad(R) � 0, which in turn leads to
Nil∗(R) � rad(R). □

Proposition  6. If every nonzero ideal of a ring R with
identity is a weakly semiprime but not a semiprime, then R is
simple, i.e., a semiprime ring.

Proof. Let P be any ideal of R. Ten, by Proposition 9,
P⊆Nil∗(R). However, Nil∗(R) � 0, and thus, P � 0. □

Theorem  7. Let R be a ring, and I be an ideal of R. If R is
a fully weakly semiprime ring, so is R/I.

Proof. Suppose that P is an ideal of R/I. Ten, there exists an
ideal P⊇ I of R such that P � P/I. Clearly, P is a weakly
semiprime ideal of R. Hence, by (1) of Teorem 16, P is
a weakly semiprime ideal of R/I. □

Theorem  8. Let f: R⟶ S be a ring epimorphism. If R is
a fully weakly semiprime ring, so is S.

Proof. Let P be an ideal of S. Ten, f−1(P) is a weakly
semiprime ideal of R. Tus, by (1) of Teorem 18, we obtain
that f(f−1(P)) � P is a weakly semiprime ideal of S. □

4. Conclusions

We have characterized weakly semiprime ideals and estab-
lished their key properties. We have shown that an ideal P is
weakly semiprime if and only if its complement forms a weakly
n-system. We have also explored minimal weakly semiprime
ideals, equivalent conditions for weakly semiprime ideals, and
their relationship to the prime radical of the ring. Additionally,
we have investigated the behavior of weakly semiprime ideals
under ring homomorphisms and studied the conditions for
a ring to be fully weakly semiprime. Our fndings provide
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valuable insights into the structure and properties of weakly
semiprime ideals in ring theory.
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