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Tis paper aims to introduce an iterative algorithm based on an inertial technique that uses the minimum number of projections
onto a nonempty, closed, and convex set.We show that the algorithm generates a sequence that converges strongly to the common
solution of a variational inequality involving inverse strongly monotone mapping and fxed point problems for a countable family
of nonexpansive mappings in the setting of real Hilbert space. Numerical experiments are also presented to discuss the advantages
of using our algorithm over earlier established algorithms. Moreover, we solve a real-life signal recovery problem via a mini-
mization problem to demonstrate our algorithm’s practicality.

1. Introduction

Te theory of variational inequality established itself as an
important feld of study covering a broad class of results and
emerged as an essential tool for solving various problems.
Tis theory is a natural framework for recent numerical
techniques developed to solve optimization problems.

Let C be a nonempty, closed, and convex subset of a real
Hilbert space H. Te classical variational inequality for
a mapping K: H⟶H is to fnd a ∈ C such that

Ka, b − a〈 〉≥ 0, (1)

for all b ∈ C. Te solution set of variational inequality
problem is denoted by VI(C, K).

One of the simplest methods to solve (1) is the projection
method which is the extension of the projected gradient
method for optimization problems. Te method worked
with the assumption that K is L-Lipschitz continuity and
strongly monotone. However, it was pointed out that the
projection method may diverge if the strongly monotone
assumption is replaced by monotonicity.

To overcome this, Korpelevich [1] proposed an extra-
gradient method based on the computation of projection
onto a feasible set twice in each iteration. In the extra-
gradient method, one needs to calculate two projections
onto C in each iteration. Since projections onto C are as-
sociated with the minimum distance problem, this might
afect the efciency and applicability of the algorithm if the
mapping K or the feasible set C have complicated structures.
So a natural question arises, can we create fast iterative
algorithms that use the minimum number of projections
onto C for solving variational inequality problems? To an-
swer this, Tseng [2] introduced an extragradient algorithm
for solving variational inequality involving a monotone and
L-Lipschitz continuous mapping. In this method, only one
projection is calculated onto C in each iteration followed by
a standard gradient step using the projection onto C. In
2011, Censor et al. [3] modifed the extragradient method of
[1] by introducing the subgradient extragradient method
where only one projection is calculated onto C, and the other
projection onto C is replaced by a specifc subgradient
projection which can be calculated easily. In 2022, Anh [4]
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presented a novel convergence outcome for addressing the
variational inequality problem characterized by strong
monotonicity over the fxed point sets of nonexpansive
mappings. Very recently, Anh [5] introduced an iterative
methodology for solving the variational inequality problem
by employing a recently devised proximal operator that
converges to a unique solution.

One of the interesting problems in nonlinear analysis is
dealing with the common elements of the set of solutions for
variational inequality problems and fxed point problems. In
2003, Takahashi and Toyoda [6] introduced an iterative
method that converges weakly to the common element for
variational inequality involving τ-inverse strongly mono-
tone mapping and fxed point problem involving non-
expansive mapping. Iiduka and Takahashi [7] obtained
a strong convergence using an additional projection of the
iterative sequence onto C by improving the iterative method
of [6]. Tere are many methods in the literature that draw
inspiration from [6] to obtain results based on fnding the
common element such as Iiduka and Takahashi’s [8] strong
convergence using Halpern’s type iterative scheme, Ceng
and Yao’s [9] strong convergence result combining the
extragradient method with Halpern’s method, and
Nadezhkina and Takahashi’s [10] weak convergence using
extragradient method.

Moudaf [11] introduced the viscosity approximation
method for approximating fxed points of a nonexpansive
mapping by the regularization procedure obtained using
a suitable convex combination of the nonexpansive map-
ping. Marino and Xu [12] studied the viscosity approxi-
mation methods to discuss the optimality condition for the
minimization problems. Chen et al. [13] incorporated vis-
cosity approximation methods for fnding the common
elements to monotone and nonexpansive mappings. Nu-
merous algorithms use viscosity approximation methods to
fnd the common element of variational inequality problem
and fxed point problem such as Ceng and Yao’s [14] strong
convergence result by combining the extragradient method
and viscosity approximation method such that the two se-
quences generated by the algorithm converge strongly to the
common element, a general three-step iterative process by
Shang et al. [15] in which two projections are calculated onto
C in frst two steps, and in the third step, the third projection
onto C is combined using viscosity approximation method,
a generalized viscosity type extragradient method by Anh
et al. [16] which uses a strongly positive linear bounded
operator to converge to the common element for variational
inequality problem, fxed point problem and equilibrium
problem, and two-step extragradient-viscosity method by
Hieu et al. [17] in which frst step calculates three projections
onto C and second step combines the projections using
viscosity approximation method.

Anh and Phuong [18] in 2018 introduced, in their work,
a robust convergence outcome for locating the common
solution of a system encompassing unrelated variational
inequalities and fxed-point problems. Tis addresses dis-
tinct feasible domains, adding versatility to the proposed
solution methodology. Recently, Anh et al. [19] provided
a weak convergence result using only one projection onto

a closed convex set and combining using Mann-type iter-
ation under some specifc assumptions. In 2019, Tong and
Hieu [20] introduced an extragradient viscosity algorithm
with a step-size rule (VSEGM) which does not require the
Lipschitz constant of the mapping. In 2022, Tan et al. [21]
proposed a viscosity-type inertial subgradient extragradient
algorithm (iVSEGM) which is a combination of VSEGM
[20] with the inertial term. Te use of inertial techniques
helps to speed up the convergence.Temost crucial aspect of
algorithms based on the inertial term is that the next iter-
ation depends upon combining the previous two iteration
values. Tis improves the performance of the iterative al-
gorithm to a great extent. For more literature on inertial
techniques, we refer to [22] and references cited therein.

Motivated by the research going in this direction, we
establish a new viscosity-type extragradient algorithm that
uses a minimum number of projections onto C and con-
verges strongly to the common solution of the variational
inequality problem involving τ-inverse strongly monotone
mapping and fxed point problem for a countable family of
nonexpansive mappings in the setting of real Hilbert space.
Tis new iterative algorithm is based on an inertial term
combined with the viscosity type approximation method
and a step-size selection rule enabling the algorithm to
choose the step size value faster.Te step-size choice plays an
important role in determining the efciency of the algo-
rithm. We prove that under some suitable assumptions, the
sequence generated by our algorithm converges strongly to
the common element.

Some highlights of this paper are as follows:

(i) At each step, a single projection is calculated onto
a closed and convex set.

(ii) We use a strongly positive linear bounded operator
in our algorithm with a relaxed condition. Te
beneft of using this operator can be seen in our
numerical experiments.

(iii) We provide a real-life application to our algorithm
involving the recovery of signals.

We organize the rest of the paper as follows: Section 2
gives some preliminary results and defnitions required to
understand and prove the main results. Section 3 presents
the main iterative algorithm and proves its strong conver-
gence. In Sections 4 and 5, we provide numerical examples
and applications, respectively, to support our results.

2. Preliminaries

In this section, we present several basic defnitions and
results that will be useful for proving the main result.

Suppose that C is a closed, convex subset of a real Hilbert
space H. We denote the weak convergence and strong
convergence of a sequence an􏼈 􏼉 to a by an⇀ a and an⟶a,
respectively.

For each point a ∈ H, we have a unique point PC(a) in C

such that ‖a − PC(a)‖≤ ‖a − b‖ for all b ∈ C. Tis PC(a) is
called metric projection (see [23]) of H onto C and for all
a, b ∈ H, PC satisfes
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a − b, PCa − PCb􏼊 􏼋≥ PCa − PCb
����

����
2
. (2)

From (2), we can write for all a ∈ C, b ∈ H,

a − b, a − PCb􏼊 􏼋≥ a − PCb
����

����
2
. (3)

Also, for all b ∈ C, we have

a − PCa, b − PCb􏼊 􏼋≤ 0. (4)

Defnition 1. Let K be a self-mapping on H. Ten, K is said
to be

(i) L-Lipschitz continuous with L> 0 if for all a, b ∈ H

‖Ka − Kb‖≤L‖a − b‖. (5)

(ii) Contraction if for all a, b ∈ H, there exists a constant
t ∈ [0, 1) such that

‖Ka − Kb‖≤ t‖a − b‖. (6)

(iii) Nonexpansive if for all a, b ∈ H

‖Ka − Kb‖≤ ‖a − b‖. (7)

(iv) Monotone if for all a, b ∈ H

Ka − Kb, a − b〈 〉≥ 0. (8)

(v) τ-inverse strongly monotone (τ-ism) with τ > 0 if
for all a, b ∈ H

a − b, Ka − Kb〈 〉≥ τ‖Ka − Kb‖
2
. (9)

(vi) Strongly positive linear bounded operator if there
exists a constant �ρ> 0, such that for all a ∈ H,

Ka, a〈 〉≥ �ρ‖a‖
2
. (10)

A set-valued monotone mapping U from H to 2H is
considered to be maximal if the graph, Graph (U) of U is not
properly contained in other monotone mapping’s graph. Let
K be τ-ism mapping of C into H, and NCa be the normal
cone to C at a ∈ C, which is defned as NCa � c ∈ H: a −〈{

b, c〉≥ 0, for all b ∈ C}. Now, defne

Ua �
Ka + NCa if a ∈ C

ϕ otherwise.
􏼨 (11)

Ten, themapU is maximal monotone and 0 ∈ Ua if and
only if a ∈ VI(C, K).

Lemma 2. Te following results hold in H.

(1) ‖a + b‖2 � ‖a‖2 + ‖b‖2 + 2 a, b〈 〉 for all a, b ∈ H

(2) ‖ta + (1 − t)b‖2 � t‖a‖2 + (1 − t)‖b‖2 − t(1 − t)‖a −

b‖2 for all a, b ∈ H

Lemma 3 (see [24]). Let U: C⟶C be a nonexpansive
mapping such that Fix(U)≠ ϕ, where C is a closed convex
subset of a real Hilbert space H. If a sequence an􏼈 􏼉 ∈ C such
that an⇀ c and an − Uan⟶0, then c � Uc.

Lemma 4 (see [12]). Assume that K is strongly positive linear
bounded operator with coefcient �c> 0 on a Hilbert space H

such that 0< ρ≤ ‖K‖− 1, then ‖I − ρK‖≤ 1 − ρ �c.

Lemma 5 (see [25]). Assume that an􏼈 􏼉 is a sequence of
nonnegative real numbers such that

an+1 ≤ 1 − τn( 􏼁an + δn, n≥ 0, (12)

where τn􏼈 􏼉 ⊂ (0, 1) and δn􏼈 􏼉 is a sequence in R such that

(1) 􏽐
∞
n�1τn �∞

(2) limsupδn/τn≤ 0 or 􏽐
∞
n�1|δn|<∞

Ten, limn⟶∞an � 0.

Before mentioning the next lemma, we discuss the
AKTT-condition that is used to deal with the family of
mappings. Let Un􏼈 􏼉

∞
n�1 be a family of mappings on C such

that ∩∞n�1Fix(Un)≠ ϕ. Ten, Un􏼈 􏼉 satisfes the AKTT-
condition if for each bounded subset C1 of C, we have

􏽘

∞

n�1
sup Un+1c − Unc

����
����: c ∈ C1􏽮 􏽯<∞. (13)

To understand AKTT-condition through an example, we
consider Unc � 1/2n− 1 sin c, n ∈ N. Ten, it can be easily seen
that Un􏼈 􏼉

∞
n�1 is a family of nonexpansive mappings and

∩∞n�1Fix(Un) � 0. Ten, for each bounded subset C1 of R,
we see that

􏽘

∞

n�1
sup Un+1c − Unc

����
����: c ∈ C1􏽮 􏽯 � 􏽘

∞

n�1
sup

1
2n sin c −

1
2n− 1 sin c

�������

�������
: c ∈ C1􏼨 􏼩

≤ 􏽘
∞

n�1

1
2n −

1
2n− 1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
<∞.

(14)
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Tus, we see that Un􏼈 􏼉 satisfes AKTT-condition.

Lemma 6 (see [26]). Let C be a nonempty closed subset of
Banach space B and Un􏼈 􏼉 be a family of self mappings onto C

which satisfes the AKTT-condition. Ten, Una􏼈 􏼉 converges
strongly to a point in C for each a ∈ C. Moreover,

Ua � lim
n⟶∞

Una, for all a ∈ C. (15)

Ten, for every bounded subset C1 of C,

lim sup
n⟶∞

Un+1c − Unc
����

����: c ∈ C1􏽮 􏽯 � 0. (16)

3. Main Results

Tis section presents our algorithm for the common element
of solutions to variational inequality and common fxed
points of a countable family of nonexpansive mappings.

Troughout this section, we denote C as a closed and
convex subset of real Hilbert space H. We consider the
following assumptions:

(A1) Un: H⟶H􏼈 􏼉 is a countable family of non-
expansive mappings
(A2) K: H⟶H is τ-ism mapping
(A3) ∩∞n�1Fix(Un)∩VI(C, K)≠ϕ
(A4) G: H⟶H is strongly positive linear bounded
operator with coefcient 0< �ρ< 1 and 0< ‖G‖≤ 1
(A5) g: C⟶C is t-contraction with t ∈ (0, 1)

(A6) εn􏼈 􏼉 is a positive sequence such that
limn⟶∞εn/ωn � 0, and ωn ∈ (0, 1) satisfes
limn⟶∞ωn � 0, 􏽐

∞
n�1ωn �∞ and 􏽐

∞
n�1|ωn − ωn+1|<∞

Remark 7. Te sequence κn􏼈 􏼉 generated by Algorithm 1 is
non-increasing and limn⟶∞κn exists (see [21]).

Remark 8. Te iterative algorithm presented by Anh et al.
[19] yields a weak convergence result by employing the
Mann-type method and executing single projections onto
a closed convex set. In contrast, our Algorithm 1 delivers
a strong convergence result through a viscosity-type ap-
proximation, featuring a more relaxed condition on the
strongly positive linear bounded operator.

Remark 9. In [16], Anh et al. achieve a strong convergence
through a generalized viscosity-type approximation. Tis
algorithm aims to identify a common element satisfying
three distinct problems, with the norm of a strongly positive
linear bounded operator constrained to be 1. In our method,
we employ a generalized viscosity-type approximation with
a more adaptable constraint on the norm of the strongly
positive linear bounded operator G, permitting 0< ‖G‖≤ 1.
Tis adaptation is applied in the pursuit of a common so-
lution to two specifc problems.

Now, we state and prove our main result.

Theorem 10. Under the assumptions (A1)-(A6) and if
Un􏼈 􏼉, U􏼈 􏼉 satisfes the AKTT-condition. Ten, the sequence
an􏼈 􏼉 generated by algorithm converges strongly to

p ∈ ∩∞n�1Fix(Un)∩VI(C, K).

Proof. To begin with, we prove that the sequence an􏼈 􏼉 is
bounded. As K is τ-ism mapping, then for all a, b ∈ C, we
have

I − κnK( 􏼁a − I − κnK( 􏼁b
����

����
2

� a − b − κn(Ka − Kb)
����

����
2

� a − b‖
2

− 2κn a − b, Ka − Kb〈 〉 + κ2n
����

����Ka − Kb‖
2

≤ a − b‖
2

+ κn κn − 2τ( 􏼁
����

����Ka − Kb‖
2
.

(17)

As the sequence κn􏼈 􏼉 is non-increasing, κn ≤ κ1, we get

I − κnK( 􏼁a − I − κnK( 􏼁b
����

����
2 ≤ a − b‖

2
+ κ1 κ1 − 2τ( 􏼁

����
����Ka − Kb

�����
2
. (18)
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Since κ1 ∈ (0, 2τ), we get

I − κnK( 􏼁a − I − κnK( 􏼁b‖
2 ≤

����
����a − b‖

2
. (19)

So, (I − κnK) is a nonexpansive mapping. Using (A3),
assume that p ∈ ∩∞n�1Fix(Un)∩VI(C, K). Tis means,
p � PC(p − κnKp). Consider

bn − p
����

���� � PC cn − κnKcn( 􏼁 − p
����

����

≤ cn − κnKcn − p − κnKp( 􏼁
����

����

� I − κnK( 􏼁cn − I − κnK( 􏼁p
����

����

≤ cn − p
����

����

� an + cn an − an− 1( 􏼁 − p
����

����

≤ an − p
����

���� + ωn

cn

ωn

an − an− 1
����

����.

(20)

Using (A6) and assumptions of cn, we get
cn/ωn‖an − an− 1‖⟶0 as n⟶∞. Tus, there exists a con-
stant L1 > 0 such that cn/ωn‖an − an− 1‖≤ L1, for all n≥ 1.
Hence, we get

bn − p
����

����≤ cn − p
����

����≤ an − p
����

���� + ωnL1, for all n≥ 1.

(21)

Using Lemma 4, (A5) and (21), we have

an+1 − p
����

���� � ωnρg an( 􏼁 + I − ωnG( 􏼁Unbn − p
����

����

� ωn ρg an( 􏼁 − Gp( 􏼁 + I − ωnG( 􏼁 Unbn − p( 􏼁
����

����

≤ωn ρg an( 􏼁 − Gp
����

���� + 1 − ωn�ρ􏼐 􏼑 Unbn − p
����

����

≤ωntρ an − p
����

���� + ωn‖ρg(p) − Gp‖ + 1 − ωn�ρ􏼐 􏼑 Unbn − p
����

����

≤ωntρ an − p
����

���� + ωn‖ρg(p) − Gp‖ + 1 − ωn�ρ􏼐 􏼑 bn − p
����

����

≤ωntρ an − p
����

���� + ωn‖ρg(p) − Gp‖ + 1 − ωn�ρ􏼐 􏼑 an − p
����

���� + ωnL1􏼐 􏼑

≤ 1 − ωn(�ρ − tρ)􏼐 􏼑 an − p
����

���� + ωn(�ρ − tρ)
‖ρg(p) − Gp‖ + L1( 􏼁

�ρ − tρ

≤max an − p
����

����,
‖ρg(p) − Gp‖ + L1

�ρ − tρ
􏼨 􏼩

⋮

≤max a0 − p
����

����,
‖ρg(p) − Gp‖ + L1

�ρ − tρ
􏼨 􏼩.

(22)

Initialization: Take c> 0, κ1 ∈ (0, 2τ), 0< ρ< ρ/t and ] ∈ (0, 1). Let a0, a1 ∈ H, then calculate an+1 as:

Step 1: Set cn � an + cn(an − an− 1), where cn �
min εn/‖an − an− 1‖, c􏼈 􏼉 if an ≠ an− 1
c otherwise􏼨 and calculate bn � PC(cn − κnKcn).

Step 2: Compute an+1 � ωnρg(an) + (I − ωnG)Unbn and update κn+1 �
min ]‖cn − bn‖/‖Kcn − Kbn‖, κn􏼈 􏼉 if Kcn − Kbn ≠ 0
κn otherwise.􏼨

Set n← n + 1 and go to Step 1.

ALGORITHM 1: New inertial generalized viscosity-type approximation method.
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It implies that the sequence an􏼈 􏼉 is bounded. So, the
sequences cn􏼈 􏼉, bn􏼈 􏼉, Unbn􏼈 􏼉, Kan􏼈 􏼉 and g(an)􏼈 􏼉 are also
bounded.

Now, we have to show that ‖an+1 − an‖⟶0 and ‖bn −

Unbn‖⟶0 as n⟶∞. Since PC and (I − κn+1K) are
nonexpansive mappings, we have

bn+1 − bn

����
���� � PC cn+1 − κn+1Kcn+1( 􏼁 − PC cn − κnKcn( 􏼁

����
����

≤ cn+1 − κn+1Kcn+1 − cn + κnKcn

����
����

� cn+1 − κn+1Kcn+1( 􏼁 − cn − κn+1Kcn( 􏼁 + κn − κn+1( 􏼁Kcn

����
����

≤ I − κn+1K( 􏼁cn+1 − I − κn+1K( 􏼁cn

����
���� + κn − κn+1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 Kcn

����
����

≤ cn+1 − cn

����
���� + κn − κn+1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 Kcn

����
����.

(23)

Using (21) and (23), we get

an+1 − an

����
���� � ωnpg an( 􏼁 + I − ωnG( 􏼁Unbn − ωn− 1pg an− 1( 􏼁 − I − ωn− 1G( 􏼁Un− 1bn− 1

����
����

� ωnp g an( 􏼁 − g an − 1( 􏼁( 􏼁 + p ωn − ωn− 1( 􏼁g an − 1( 􏼁 + I − ωnG( 􏼁 Unbn − Un− 1bn− 1( 􏼁 − ωn − ωn− 1( 􏼁GUn− 1bn− 1
����

����

≤ωnp g an( 􏼁 − g an− 1( 􏼁
����

���� + p ωn − ωn− 1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 g an− 1( 􏼁
����

���� + 1 − ωn
�p􏼐 􏼑 Unbn − Un− 1bn− 1

����
���� + ωn − ωn− 1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 GUn− 1bn− 1
����

����

≤ωnpt an − an− 1
����

���� + p ωn − ωn− 1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 g an− 1( 􏼁
����

���� + 1 − ωn
�p􏼐 􏼑 Unbn − Unbn− 1 + Unbn− 1 − Un− 1 − bn− 1

����
����

+ ωn − ωn− 1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 GUn− 1bn− 1
����

����

≤ωnpt an − an− 1
����

���� + p ωn − ωn− 1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 g an− 1( 􏼁
����

���� + 1 − ωn
�p􏼐 􏼑 Unbn − Unbn− 1

����
����

+ 1 − ωn
�p􏼐 􏼑 Unbn− 1 − Un− 1bn− 1

����
���� + ωn − ωn− 1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 GUn− 1bn− 1
����

����

≤ωnpt an − an− 1
����

���� + p ωn − ωn− 1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 g an− 1( 􏼁
����

���� + 1 − ωn
�p􏼐 􏼑 bn − bn− 1

����
����

+ 1 − ωn
�p􏼐 􏼑 Unbn− 1 − Un− 1bn− 1

����
���� + ωn − ωn− 1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 GUn− 1bn− 1
����

����

≤ωnpt an − an− 1
����

���� + p ωn − ωn− 1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 g an− 1( 􏼁
����

���� + 1 − ωn
�p􏼐 􏼑 cn − cn− 1

����
���� + kn− 1 − kn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 kcn− 1
����

����􏼐 􏼑

+ 1 − ωn
�p􏼐 􏼑 Unbn− 1 − Un− 1bn− 1

����
����

+ ωn − ωn− 1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 GUn− 1bn− 1
����

����

� ωnpt an − an− 1
����

���� + p ωn − ωn− 1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 g an− 1( 􏼁
����

���� + 1 − ωn
�p􏼐 􏼑 cn − cn− 1

����
����

+ 1 − ωn
�p􏼐 􏼑 kn− 1 − kn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 kcn− 1
����

���� + 1 − ωn
�p􏼐 􏼑 Unbn− 1 − Un− 1bn− 1

����
���� + ωn − ωn− 1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 GUn− 1bn− 1
����

����.

(24)

Using triangle inequality, we have

cn − cn− 1
����

����≤ an − an− 1
����

���� + cn an − an− 1( 􏼁 − cn− 1 an− 1 − an− 2( 􏼁
����

����

≤ an − an− 1
����

���� + c an − an− 1
����

���� + an− 1 − an− 2
����

����􏼐 􏼑.
(25)
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Choose W � supn≥1 c(‖an − an− 1‖ + ‖an− 1 − an− 2‖)􏼈 􏼉 and
using (25) in (24), we get

an+1 − an

����
����≤ωnρt an − an− 1

����
���� + ρ ωn − ωn− 1

����
���� g an− 1( 􏼁
����

���� + 1 − ωn�ρ􏼐 􏼑 an − an− 1
����

���� + 1 − ωn�ρ􏼐 􏼑W

+ 1 − ωn�ρ􏼐 􏼑 κn− 1 − κn

����
���� Kcn− 1
����

���� + 1 − ωn�ρ􏼐 􏼑 Unbn− 1 − Un− 1bn− 1
����

����

+ ωn − ωn− 1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 GUn− 1bn− 1
����

����.

(26)

Take R � max supn∈N ρ‖g(an− 1)‖, supn∈N‖GUn− 1bn− 1‖􏼈 􏼉

and S � supn∈N ‖Kcn− 1‖􏼈 􏼉. So, we get

an+1 − an

����
����≤ 1 − (�ρ − tρ)ωn􏼐 􏼑 an − an− 1

����
���� + 2R ωn − ωn− 1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + 1 − ωn�ρ􏼐 􏼑W

+ 1 − ωn�ρ􏼐 􏼑 κn− 1 − κn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌S + 1 − ωn�ρ􏼐 􏼑 sup

b∈ bn{ }
Unb − Un− 1b

����
����.

(27)

From Remark 7 we see that 􏽐
∞
n�1|κn − κn− 1| is a tele-

scoping series, which is convergent. Tus, we have
􏽐
∞
n�1|κn − κn− 1|<∞. Also Un􏼈 􏼉 satisfes the AKTT-

condition, 􏽐
∞
n�1|ωn − ωn− 1|<∞, so from Lemma 5, we get

an+1 − an

����
����⟶0 as n⟶∞. (28)

Further, we consider

an+1 − p
����

����
2

� ωnρg an( 􏼁 + I − ωnG( 􏼁Unbn − p
����

����
2

� ωn ρg an( 􏼁 − Gp( 􏼁 + I − ωnG( 􏼁 Unbn − p( 􏼁
����

����
2

≤ ωn ρg an( 􏼁 − Gp( 􏼁
����

���� + I − ωnG
����

���� Unbn − p
����

����􏼐 􏼑
2

≤ ωn ρg an( 􏼁 − Gp
����

���� + 1 − ωn�ρ􏼐 􏼑 bn − p
����

����􏼐 􏼑
2

≤ωn ρg an( 􏼁 − Gp‖
2

+ 1 − ωn�ρ􏼐 􏼑
�����

�����bn − p‖
2

+ 2ωn 1 − ωn�ρ􏼐 􏼑 ρg an( 􏼁 − Gp
����

���� bn − p
����

����

≤ωn ρg an( 􏼁 − Gp‖
2

+ 1 − ωn�ρ􏼐 􏼑
�����

����� I − κnK( 􏼁cn − I − κnK( 􏼁p‖
2

+ 2ωn 1 − ωn�ρ􏼐 􏼑 ρg an( 􏼁 − Gp
����

���� I − κnK( 􏼁cn − I − κnK( 􏼁p
����

����

� ωn ρg an( 􏼁 − Gp‖
2

+ 1 − ωn�ρ􏼐 􏼑
����� 􏼐

�����cn − p‖
2

− 2κn cn − p, Kcn − Kp􏼊 􏼋

+ κ2n Kcn − Kp
����

����
2
􏼓 + 2ωn 1 − ωn�ρ􏼐 􏼑 ρg an( 􏼁 − Gp

����
���� I − κnK( 􏼁cn − I − κnK( 􏼁p
����

����.

(29)

Using (A2) in the above inequality, we have

an+1 − p
����

����
2 ≤ωn ρg an( 􏼁 − Gp

����
����
2

+ 1 − ωn�ρ􏼐 􏼑 cn − p
����

����
2

− 2κnτ Kcn − Kp‖
2

+ κ2n
����

����Kcn − Kp
�����
2

􏼒 􏼓

+ 2ωn 1 − ωn�ρ􏼐 􏼑 ρg an( 􏼁 − Gp
����

���� I − κnK( 􏼁cn − I − κnK( 􏼁p
����

����

� ωn ρg an( 􏼁 − Gp
����

����
2

+ 1 − ωn�ρ􏼐 􏼑 cn − p‖
2

+ κn κn − 2τ( 􏼁
����

����􏼐 Kcn − Kp
�����
2
􏼓

+ 2ωn 1 − ωn�ρ􏼐 􏼑 ρg an( 􏼁 − Gp
����

���� I − κnK( 􏼁cn − I − κnK( 􏼁p
����

����

≤ωn ρg an( 􏼁 − Gp
����

����
2

+ cn − p
����

����
2

+ 1 − ωn�ρ􏼐 􏼑κ1 κ1 − 2τ( 􏼁 Kcn − Kp
����

����
2

+ 2ωn 1 − ωn�ρ􏼐 􏼑 ρg an( 􏼁 − Gp
����

���� I − κnK( 􏼁cn − I − κnK( 􏼁p
����

����.

(30)
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From (21), we have ‖cn − p‖2 ≤ ‖an − p‖2 + ωnL2, for
some L2 > 0. Terefore, we get

an+1 − p
����

����
2 ≤ωn ρg an( 􏼁 − Gp

����
����
2

+ an − p‖
2

+ ωnL2 + 1 − ωn�ρ􏼐 􏼑κ1 κ1 − 2τ( 􏼁
�����

�����Kcn − Kp
�����
2

+ 2ωn 1 − ωn�ρ􏼐 􏼑 ρg an( 􏼁 − Gp
����

���� I − κnK( 􏼁cn − I − κnK( 􏼁p
����

����.

(31)

Rearranging the terms, we get

− 1 − ωn�ρ􏼐 􏼑κ1 κ1 − 2τ( 􏼁 Kcn − Kp
����

����
2 ≤ωn ρg an( 􏼁 − Gp

����
����
2

+ an − p‖
2
−

����
����an+1 − p

�����
2

+ ωnL2

+ 2ωn 1 − ωn�ρ􏼐 􏼑 ρg an( 􏼁 − Gp
����

���� I − κnK( 􏼁cn − I − κnK( 􏼁p
����

����

≤ωn ρg an( 􏼁 − Gp
����

����
2

+ an+1 − an

����
���� an − p

����
���� + an+1 − p

����
����􏼐 􏼑 + ωnL2

+ 2ωn 1 − ωn�ρ􏼐 􏼑 ρg an( 􏼁 − Gp
����

���� I − κnK( 􏼁cn − I − κnK( 􏼁p
����

����.

(32)

Using (28) and (A6), we get

Kcn − Kp
����

����⟶0 as n⟶∞. (33)

Now, from the properties of projection mapping, we
have

bn − p
����

����
2

� PC cn − κnKcn( 􏼁 − PC p − κnKp( 􏼁
����

����
2

≤ cn − κnKcn( 􏼁 − p − κnKp( 􏼁, bn − p􏼊 􏼋

�
1
2

cn − κnKcn − p − κnKp( 􏼁‖
2
+

����
����􏼐 bn − p‖

2

− cn − κnKcn − p − κnKp( 􏼁 − bn − p( 􏼁
����

����
2
􏼓

≤
1
2

cn − p‖
2
+

����
����bn − p‖

2
+ κ1 κ1 − 2τ( 􏼁 Kcn − Kp‖

2
−

����
����cn − bn − κn Kcn − Kp( 􏼁‖

2
􏼐 􏼑

≤ cn − p
����

����
2

− cn − bn‖
2

+ κ1 κ1 − 2τ( 􏼁
����

����Kcn − Kp
�����
2

+ 2κn cn − bn, Kcn − Kp􏼊 􏼋

− κ2n Kcn − Kp
����

����
2

≤ an − p
����

����
2

+ ωnL2 − cn − bn‖
2

+ κ1 κ1 − 2τ( 􏼁
����

����Kcn − Kp
�����
2

+ 2κn cn − bn, Kcn − Kp􏼊 􏼋 − κ2n Kcn − Kp
����

����
2
.

(34)

Using (34), we have
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an+1 − p
����

����
2 ≤ωn ρg an( 􏼁 − Gp‖

2
+ 1 − ωn�ρ􏼐 􏼑

�����

�����bn − p‖
2

+ 2ωn 1 − ωn�ρ􏼐 􏼑 ρg an( 􏼁 − Gp
����

���� bn − p
����

����

≤ωn ρg an( 􏼁 − Gp
����

����
2

+ 1 − ωn�ρ􏼐 􏼑 an − p‖
2

+ 1 − ωn�ρ􏼐 􏼑ωnL2 − 1 − ωn�ρ􏼐 􏼑
�����

�����cn − bn

�����
2

+ κ1 κ1 − 2τ( 􏼁 Kcn − Kp
����

����
2

+ 2κn 1 − ωn�ρ􏼐 􏼑 cn − bn, Kcn − Kp􏼊 􏼋 − 1 − ωn�ρ􏼐 􏼑κ2n Kcn − Kp
����

����
2

+ 2ωn 1 − ωn�ρ􏼐 􏼑 ρg an( 􏼁 − Gp
����

���� bn − p
����

����.

(35)

Tus, we have

1 − ωn�ρ􏼐 􏼑 cn − bn

����
����
2 ≤ωn ρg an( 􏼁 − Gp

����
����
2

+ an − p
����

���� + an+1 − p
����

����􏼐 􏼑 an+1 − an

����
����􏼐 􏼑

+ 1 − ωn�ρ􏼐 􏼑ωnL2 + κ1 κ1 − 2τ( 􏼁 Kcn − Kp
����

����
2

+ 2κn 1 − ωn�ρ􏼐 􏼑 cn − bn, Kcn − Kp􏼊 􏼋

− 1 − ωn�ρ􏼐 􏼑κ2n Kcn − Kp
����

����
2

+ 2ωn 1 − ωn�ρ􏼐 􏼑 ρg an( 􏼁 − Gp
����

���� bn − p
����

����.

(36)

Since ωn⟶0, ‖Kcn − Kp‖⟶0 and ‖an+1 − an‖⟶ 0
as n⟶∞, we get

cn − bn

����
����⟶0. (37)

Further, we consider

an+1 − Unbn

����
���� � ωnρg an( 􏼁 + I − ωnG( 􏼁Unbn − Unbn

����
����

� ωn ρg an( 􏼁 − GUnbn

����
����.

(38)

As ωn⟶0 and since g(an)􏼈 􏼉 and GUnbn􏼈 􏼉 are bounded,
we get

an+1 − Unbn

����
����⟶0 as n⟶∞. (39)

Tis means

an − Unbn

����
����⟶0 as n⟶∞. (40)

Moreover

an − cn

����
���� � cn an − an− 1

����
����

�
cn

ωn

ωn an − an− 1
����

����,
(41)

this implies

an − cn

����
����⟶0 as n⟶∞. (42)

Further, it is easy to see that ‖an − bn‖⟶0,

‖an − Unan‖⟶0, ‖bn − Unbn‖⟶0, ‖Uan − an‖⟶0 as
n⟶∞.

Next, we’ll show that an􏼈 􏼉 converges to the common
element. We observe that PF1

(cg + I − G) is a contraction,
where F1 � ∩∞n�1Fix(Un)∩VI(C, K). Since ‖I − G‖≤ 1 − �ρ
and 0< ρ< �ρ/t, we get

PF1
(ρg + I − G)a − PF1

(ρg + I − G)b
�����

�����≤ ‖(ρg + I − G)a − (ρg + I − G)b‖

� ‖ρg(a) + a − Ga − ρg(b) − b + Gb‖

≤ ρ‖g(a) − g(b)‖ +‖I − G‖‖a − b‖

≤ ρt‖a − b‖ +(1 − �ρ)‖a − b‖

≤ (1 − (�ρ − ρt))‖a − b‖.

(43)
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Tus, from Banach’s contraction principle we see that
PF1

(ρg + I − G) has a unique fxed point, say p ∈ H, such
that PF1

(ρg + I − G)p � p. Tus, we have

(ρg − G)p, a − p􏼊 􏼋≤ 0 for all a ∈ F1. (44)

Let bnk
􏽮 􏽯 be a subsequence of bn􏼈 􏼉 such that

limsup
n⟶∞

(ρg − G)p, Unbn − p􏼊 􏼋 � lim
k⟶∞

(ρg − G)p, Unk
bnk

− p􏽄 􏽅. (45)

Since bnk
􏽮 􏽯 is a bounded sequence, thus a subsequence

bnki
􏼚 􏼛 of bnk

􏽮 􏽯 converges weakly to u. We may assume that

bnk
⇀ u, without loss of generality. Since ‖bn − Unbn‖⟶0,

we obtain Unk
bnk
⇀ u. By Lemmas 3 and 6 and the fact that

‖an − Uan‖⟶0, ‖an − bn‖⟶0, we have u ∈ ∩∞n�1Fix(Un).

Let Sa �
Ka + NCa, if a ∈ C

ϕ, otherwise.􏼨 where NC(a) is the

normal cone to C at a ∈ C, that is
NC(a) � c ∈ H: a − b, c〈 〉≥ 0, for all b ∈ C{ }. Ten S is

maximal monotone. From the properties of projection
mapping, we have

a − bn, bn − cn − κnKcn( 􏼁􏼊 􏼋≥ 0, (46)

which implies

a − bn, bn − cn( 􏼁/κn + Kcn􏼊 􏼋≥ 0. (47)

Let (a, c) ∈ Graph(S). Since c − Ka ∈ NC(a) and bn ∈ C,
we get

a − bn, c − Ka􏼊 􏼋≥ 0

a − bnk
, c􏽄 􏽅≥ a − bnk

, Ka􏽄 􏽅

≥ a − bnk
, Ka􏽄 􏽅 − a − bnk

,
bnk

− cnk
􏼐 􏼑

κn + Kcnk

􏼪 􏼫

� a − bnk
, Ka − Kcnk

−
bnk

− cnk
􏼐 􏼑

κn

􏼪 􏼫

� a − bnk
, Ka − Kbnk

􏽄 􏽅 + a − bnk
, Kbnk

− Kcnk
􏽄 􏽅 − a − bnk

,
bnk

− cnk
􏼐 􏼑

κn

􏼪 􏼫

≥ a − bnk
, Kbnk

− Kcnk
􏽄 􏽅 − a − bnk

,
bnk

− cnk
􏼐 􏼑

κn

􏼪 􏼫.

(48)

Tis implies a − u, c〈 〉≥ 0, as n⟶∞. Since S is max-
imal monotone, we have u ∈ S− 10 and hence u ∈ VI(C, K).

So, we obtain p ∈ F1 � ∩∞n�1Fix(Un)∩ VI(C, K). It follows
that

limsup
n⟶∞

(ρg − G)p, Unbn − p􏼊 􏼋 � lim
k⟶∞

(ρg − G)p, Unk
bnk

− p􏽄 􏽅

� (ρg − G)p, u − p􏼊 􏼋≤ 0.

(49)

Finally, we showan⟶p.
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an+1 − p
����

����
2

� ωnρg an( 􏼁 + I − ωnG( 􏼁Unbn − p
����

����
2

� ωn ρg an( 􏼁 − GP( 􏼁 + I − ωnG( 􏼁 Unbn − p( 􏼁
����

����
2

≤ I − ωnG( 􏼁 Unbn − p( 􏼁
����

����
2

+ ω2
n ρg an( 􏼁 G(p)
����

����
2

+ 2ωn I − ωnG( 􏼁 Unbn − p( 􏼁, ρg an( 􏼁 − G(p)􏼊 􏼋

≤ 1 − ωn
�p􏼐 􏼑

2
bn − p

����
����
2

+ ω2
n ρg an( 􏼁 − G(p)
����

����
2

+ 2ωn Unbn − p, ρg an( 􏼁 − G(p)􏼊 􏼋 − 2ω2
n G Unbn − p( 􏼁, ρg an( 􏼁 − G(p)􏼊 􏼋

≤ 1 − ωn
�p􏼐 􏼑

2
an − p

����
����
2

+ ωnL2􏼒 􏼓 + ω2
n ρg an( 􏼁 − G(p)
����

����
2

+ 2ωn Unbn − p, pg an( 􏼁 − pg(p)􏼊 􏼋 + 2ωn Unbn − p, pg(p) − G(p)􏼊 􏼋

− 2ω2
n G Unbn − p( 􏼁, pg an( 􏼁 − G(p)􏼊 􏼋

≤ 1 − ωn
�p􏼐 􏼑

2
an − p

����
����
2

+ 1 − ωn
�p􏼐 􏼑

2
ωnL2 + ω2

n ρg an( 􏼁 − G(p)
����

����
2

+ 2ωnp Unbn − p
����

���� g an( 􏼁 − g(p)
����

���� + 2ωn Unbn − p, ρg(p) − G(p)􏼊 􏼋

− 2ω2
n G Unbn − p( 􏼁, ρg an( 􏼁 − G(p)􏼊 􏼋

≤ 1 − ωn
�p􏼐 􏼑

2
an − p

����
����
2

+ 1 − ωn
�p􏼐 􏼑

2
ωnL2 + ω2

n ρg an( 􏼁 − G(p)
����

����
2

+ 2ωnpt bn − p
����

���� an − p
����

���� + 2ωn Unbn − p, ρg(p) − G(p)􏼊 􏼋

− 2ω2
n G Unbn − p( 􏼁, ρg an( 􏼁 − G(p)􏼊 􏼋

≤ 1 − ωn
�p􏼐 􏼑

2
an − p

����
����
2

+ 1 − ωn
�p􏼐 􏼑

2
ωnL2 + ω2

n ρg an( 􏼁 − G(p)
����

����
2

+ 2ωnpt an − p
����

���� + ωnL1􏼐 􏼑 an − p
����

���� + 2ωn Unbn − p, ρg(p) − G(p)􏼊 􏼋

− 2ω2
n G Unbn − p( 􏼁, ρg an( 􏼁 − G(p)􏼊 􏼋

≤ 1 − ωn
�p􏼐 􏼑

2
an − p

����
����
2
+ω2

n ρg an( 􏼁 − G(p)
����

����
2

+ 1 − ωn
�p􏼐 􏼑

2
ωnL2

+ 2ωnpt an − p
����

����
2

+ 2ω2
npt L1 an − p

����
���� + 2ωn Unbn − p, ρg(p) − G(p)􏼊 􏼋

− 2ω2
n G Unbn − p( 􏼁, ρg an( 􏼁 − G(p)􏼊 􏼋

≤ 1 − 2(�p − tp)ωn􏼐 􏼑 an − p
����

����
2

+ 2ωn Unbn − p, ρg(p) − G(p)􏼊 􏼋

+ ω2
n ρg an( 􏼁 − G(p)
����

����
2

− 2ω2
n G Unbn − p( 􏼁, ρg an( 􏼁 − G(p)􏼁􏼊 􏼋

+ 2ω2
nptL1 an − p

����
���� + 1 − ωn

�p􏼐 􏼑
2
ωnL2.

(50)

As limsup
n⟶∞

Unbn − p, ρg(p) − Gp􏼊 􏼋≤ 0, then by using

Lemma 5 along with the assumption lim
n⟶∞

ωn � 0, we have

an⟶p. Tis completes our proof. □

Remark 11

(1) Many researchers have calculated projections onto C

followed by projections onto the half-space. In our
Algorithm 1, we calculate only one projection per
iteration with a self-adaptive step size rule and in-
ertial extrapolation step.

(2) Te inertial extrapolation step introduced in our
algorithm is a combination of the previous two
values of the iteration along with the inertia cn

attaining any value greater than zero. Tis speeds up
the convergence of the sequence converging to the
common element.

4. Numerical Examples

In this section, we discuss some numerical examples to
validate our theorem.Te performance of our Algorithm 1 is
compared with other well-established algorithms such as
iVSEGM [21], MSEGM [27] and VSEGM [20]. We denote
the error sequence as En � ‖an − p‖ and study the behavior
of this sequence. Te convergence of En􏼈 􏼉⟶0 implies that
the sequence an􏼈 􏼉⟶p. All the programs are carried out in
MATLAB 2018a on Intel(R) Core(TM) i3-10110U CPU @
2.10GHz computer with RAM 8.00GB.
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We consider ωn � 1/n + 1 in each of the example dis-
cussed. For a fair comparison with the earlier established
algorithms, we consider ] � 0.6, g(a) � 0.5a, c � 0.1 and
εn � 100/(n + 1)2. For MSEGM, we consider αn � 1/n + 1
and τn � n/2n + 1.

Example 1. Consider a nonlinear operator K: R⟶R

defned by

K(a) � a − sin a, (51)

and C � [0, 1] the closed, convex subset of R. Next, we
prove that K is ism. So

‖K(a) − K(b)‖
2

� K(a) − K(b), K(a) − K(b)〈 〉

� a − sin(a) − b + sin(b), a − sin(a) − b + sin(b)〈 〉

� a − b‖
2

+
����

���� sin(a) − sin(b)‖
2

− 2 sin(a) − sin(b), a − b〈 〉.

(52)

Tis implies

2 sin(a) − sin(b), a − b〈 〉 � ‖a − b‖
2

+ sin(a) − sin(b)‖
2

−
����

����K(a) − K(b)
����
2

2 a − a + sin(a) − b + b − sin(b), a − b〈 〉 � ‖a − b‖
2

+ sin(a) − sin(b)‖
2

−
����

����K(a) − K(b)
����
2

2 a − K(a) − b + K(b), a − b〈 〉 � ‖a − b‖
2

+ sin(a) − sin(b)‖
2

−
����

����K(a) − K(b)
����
2

2‖a − b‖
2

− 2 K(a) − K(b), a − b〈 〉≤ ‖a − b‖
2

+ a − b‖
2

−
����

����K(a) − K(b)
����
2
.

(53)

Finally, we get

K(a) − K(b), a − b〈 〉≥
1
2
‖K(a) − K(b)‖

2
. (54)

Terefore, Kis 1/2-ism mapping. Assume that κ1 � 0.4
and let Un􏼈 􏼉 be the family of self mappings on R be

Un(a) �
1
2

(a + sin a). (55)

Observe that the mapping Un is nonexpansive for each n

and satisfes the AKTT-condition. Assume the strongly
positive linear bounded operator G on H to be G(a) � 1/2a,
with constants �ρ and ρ equal to 1/2. Te initial values
considered are a0 � 1 and a1 � 1.1. Since each and every
assumption of Teorem 10 is satisfed, so the sequence an􏼈 􏼉

generated by Algorithm 1 converges to 0 ∈ ∩∞n�1Fix
(Un)∩VI(C, K). Moreover, we also see that the error se-
quence En converges to 0 much faster and more efciently
than the well-known schemes given in the literature (see
Figure 1).

Example 2. Consider a problem in infnite-dimensional
Hilbert space H � L2([0, 1]) equipped with inner product

a, b〈 〉 � 􏽒
1
0 a(t)b(t)dt and norm ‖a‖ � (􏽒

1
0 |a(t)|2)dt)1/2, for

all a, b ∈ H. We defne the feasible set as the unit ball
C � a ∈ H: ‖a‖≤ 1{ }. Now, consider the operator

K(a(t)) � max 0, a(t) − h(a(t)){ }, (56)

where t ∈ [0, 1] and h(a) � sin(a). It can be easily shown
that K is 1/2-ismmapping and the proof is on similar lines as
of Example 1. Te projection on C is explicitly defned as

PC(a) �

a

‖a‖
, if ‖a‖> 1,

a, if ‖a‖≤ 1.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(57)

Let Un􏼈 􏼉 be the family of self mappings on L2([0, 1]) be

Un(a(t)) �
1
2
sin(a(t)). (58)

Assume that τ1 � 0.4, the mapping Un􏼈 􏼉 is nonexpansive
for each n and satisfes the AKTT-condition. Assume the
strongly positive linear bounded operator G on H to be I, the
identity operator with constants �ρ and ρ equal to 1/2. Te
initial values considered are a0 � 1 and a1 � 1. Since each
and every assumption of Teorem 10 is satisfed, so the
sequence an􏼈 􏼉 generated by Algorithm 1 converges to
0 ∈ ∩∞n�1Fix(Un)∩VI(C, K). Moreover, we also see that the
error sequence En converges to 0 much faster and more
efciently than the well-known schemes given in the liter-
ature (see Figure 2).
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Example 3. Consider an operator K: R⟶R defned by

K(a) �

a −
1
2
, if a ∈ (− ∞, 0],

a −
1
4
, if a ∈ (0,∞),

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(59)

and C � [0, 1] the closed, convex subset of R. Now, we
prove that K is ism mapping.

Case 1. When a, b ∈ (− ∞, 0], we have

K(a) − K(b), a − b〈 〉 � a −
1
2

− b +
1
2
, a − b􏼜 􏼝

� a − b, a − b〈 〉

� ‖a − b‖
2

≥ ‖K(a) − K(b)‖
2
.

(60)
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Figure 1: Graphical representation of iterative algorithm converging to 0 in Example 1.
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Figure 2: Graphical representation of iterative algorithm converging to 0 in Example 2.
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Figure 3: Graphical representation of iterative algorithm converging to 0 in Example 3.

Table 1: Numerical results for Example 1 after 200 iterations.

Algorithm CPU time (sec.) En

Algorithm 1 0.67 0.0526
iVSEGM 1.79 0.0810
MSEGM 1.66 0.1155
VSEGM 1.60 0.1584

Table 2: Numerical results for Example 2 after 50 iterations.

Algorithm CPU time (sec.) En

Algorithm 1 2.31 2.74e − 10
iVSEGM 4.12 1.795e − 04
MSEGM 2.88 1.684e − 04
VSEGM 2.33 1.792e − 04

Table 3: Numerical results for Example 3 after 50 iterations.

Algorithm CPU time (sec.) En

Algorithm 1 0.16 0.0020
iVSEGM 0.52 0.0119
MSEGM 0.49 0.0081
VSEGM 0.45 0.0118
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Figure 5: Graphical representation of recovered signal along with the original signal.
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Case 2. When a, b ∈ (0,∞), we have

K(a) − K(b), a − b〈 〉 � a −
1
4

− b +
1
4
, a − b􏼜 􏼝

� ‖a − b‖
2

≥ ‖K(a) − K(b)‖
2
.

(61)

Case 3. When a ∈ (− ∞, 0] and b ∈ (0,∞), we have

K(a) − K(b), a − b〈 〉 � a −
1
2

− b +
1
4
, a − b􏼜 􏼝

� a − b −
1
4

􏼒 􏼓(a − b)

≥ a − b −
1
4

􏼒 􏼓 a − b −
1
4

􏼒 􏼓

� a − b −
1
4

�������

�������

2

� ‖K(a) − K(b)‖
2
.

(62)

Tus, we see that K is 1-ism. Assume that κ1 � 0.4 and let
Un􏼈 􏼉 be the family of self mappings on R be

Un(a) �
1
4

+ sin a −
1
4

􏼒 􏼓. (63)

Observe that the mapping Un is nonexpansive for each n

and satisfes the AKTT-condition. Assume the strongly
positive linear bounded operator G on H to be G(a) � 1/2a

with constants �ρ and ρ equal to 1/2. Te initial values
considered are a0 � 1 and a1 � 2. Since each and every
assumption of Teorem 10 is satisfed, so the sequence an􏼈 􏼉

generated by Algorithm 1 converges to 0 ∈ ∩∞n�1
Fix(Un)∩VI(C, K). Moreover, we also see that the error
sequence En converges to 0 much faster and more efciently
than the well-known schemes given in the literature (see
Figure 3).

Remark 12

(1) We can see from Tables 1–3 that our algorithm
outperforms earlier established algorithms both in
terms of speed and accuracy. Moreover, it is easy to
implement.

(2) Our algorithm performs well in both fnite and
infnite dimensional Hilbert space.

5. Applications

In this section, we give some applications that can be solved
through our main result.

LetH be a real Hilbert space with ·, ·〈 〉, ‖ · ‖ being its inner
product and norm, respectively. Let C be a closed, convex
subset of H and K: H⟶H be a nonlinear mapping.

5.1. Application to Convex Minimization Problems. Let
h: C⟶R be a convex mapping. We consider the following
minimization problem

min
a∈C

h(a). (64)

Suppose that the mapping h is Frechet diferentiable.
Ten our optimization problem (64) has a solution a∗ if and
only if the variational inequality below satisfes:

a
∗ ∈ C, ∇ha

∗
, a − a

∗
􏼊 􏼋≥ 0, for all a ∈ C, (65)

that is, a∗ ∈ VI(C,∇h).
Suppose we take Un � I for each n ∈ N and K � ∇h in

our algorithm. Ten, we have the following theorem.

Theorem 13. Suppose that h: C⟶R is a convex mapping
such that its gradient ∇h is L-Lipschitz continuous mapping
and g: C⟶C is a t-contraction with constant t ∈ [0, 1).
Also, consider G: H⟶H is a strongly positive linear
bounded operator with coefcient 0< �ρ< 1 such that
0< ‖G‖≤ 1 and 0< ρ< �ρ/t. Assume that εn􏼈 􏼉 is a positive
sequence such that lim

n⟶∞
εn/ωn � 0. where ωn ∈ [0, 1] sat-

isfes lim
n⟶∞

ωn � 0, 􏽐
∞
n�1ωn �∞ and 􏽐

∞
n�1|ωn − ωn+1|<∞.

IfVI(C,∇h)≠ 0, then for any a0, a1 ∈ R, the Algorithm 1
converges to a∗ ∈ VI(C,∇h).

Proof. Put K � ∇h in our main algorithm since ∇h is
L-Lipschitz continuous. Tis means that ∇h is 1/L-inverse
strongly monotone mapping. Observe that Un � I is non-
expansive for each n. Terefore, by Teorem we obtain
a∗ ∈ VI(C,∇g)∩ Fix(I) � VI(C,∇g). Tis means a∗ is
a solution to the variational inequality problem. Hence, the
result. □

5.2. Application to Signal Processing Problems. Since com-
munications in the actual world can experience interference
during transmission, the signal recovery problem deals with
the recovery of the original clean signals from noisy signals.
Te model for signal processing problems is described as

b � Pa + h, (66)

where a ∈ Rn has t non zero elements as the original signal,
b ∈ Rm is our observed noisy signal, P: Rm×n is a linear
operator which is bounded and the noise observation is
h ∈ Rm. Tis model works with the assumption that the
signal a is sparse, which means that the number of non-zero
elements in the signal a is much less compared to the di-
mension of a. Tis model (66) can be solved using the Least
Absolute Shrinkage and Selection Operator(LASSO) model.
Tis model is expressed as:

min
a∈Rn

f(a) �
1
2
‖Pa − b‖

2
2

s.t. ‖a‖1 ≤ l, l> 0.

(67)
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Here ‖ · ‖2 and ‖ · ‖1 represents 2-norm and 1-norm
respectively. (67) is further equivalent to solving a varia-
tional inequality problem of fnding a∗ ∈ C such that

∇f a
∗

( 􏼁
T

a − a
∗

( 􏼁≥ 0, (68)

for all a ∈ C. Te gradient of the function f is known to be
∇f(a) � PT(Pa − b). We set K(a) � PT(Pa − b), C � a ∈{

Rn: ‖a‖1 ≤ l} and Un � I for each n ∈ N in our proposed
algorithm. Notice that K is monotone and ‖PTP‖-Lipschitz
continuous. It is easy to show that f is a convex function.
Tus, we get K to be 1/‖PTP‖-ism. To verify numerically, we
set ωn � 1/n + 1, ] � 0.1, g(a) � 0.5a, c � 0.2, κ1 � 0.02,
�ρ= ρ � 1/2 and εn � 100/(n + 1)2. Assume that the original
signal a ∈ Rn contains t randomly generated ±1 spikes,
which are very less as compared to the dimension of a. Te
matrix P and the noisy observation h is generated by
randn(m, n), 10− 3 randn(m, 1) respectively in the Matlab.
Tus, the observation b is obtained using (63). We apply our
algorithmwhen n � 1000, m � 200, initial points a0 � a1 � 0
and the randomly generated spikes t � 10. Tus, applying
our Algorithm 1 by choosing l � t, we have a sequence that
converges to the point, which minimizes the function f and
thus the noisy observation (see Figures 4 and 5).

6. Conclusion

Tis paper discussed an iterative algorithm based on inertial
term combined with the viscosity type approximation
method, and some numerical computations of the proposed
algorithm both in fnite and infnite dimensional Hilbert
space, are also presented to show the efciency of the
proposed algorithm. We concluded the discussion by giving
applications of the proposed algorithm through the convex
minimization problem and signal processing problem. For
future work, we ask the following question: Is it possible to
modify Algorithm 1 to deal with variational inequality
problems involving much weaker forms than τ-inverse
monotonicity?.
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