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In this work, we investigate the partial exact controllability of fractional semilinear control systems in the sense of conformable
derivatives. Initially, we establish the existence and uniqueness of the mild solution for this type of fractional control systems.
Ten, by employing a contraction mapping principle, we obtain sufcient conditions for the conformable fractional semilinear
system to be partially exactly controllable, assuming that its associated linear part is partially exactly controllable. To demonstrate
the efcacy of the theoretical fndings, a typical example is provided at the end.

1. Introduction

Controllability concepts have been essential in a variety of
disciplines, such as engineering, control theory, and applied
mathematics. For instance, controllability is essential for the
design of feedback controllers, which are used to regulate and
control the behavior of systems. Following Kalman [1]’s
defnition, controllability is characterized by the capability to
transition a control system’s solution from a given initial state
to a desirable state at a fnal time. Later, controllability has
been split into two concepts: exact and approximate con-
trollability. Exact controllability aligns with Kalman’s def-
nition, where the system can be directed from any initial state
to any desired state within a fnite time. On the other hand,
approximate controllability implies that the system can be
moved from any starting state to any desired state arbitrarily
closely in a fnite time. Te distinction between these two
concepts is crucial because some dynamical systems exhibit
approximate controllability without achieving exact con-
trollability (see Fattorini [2]). Several researchers have de-
veloped suitable controllability conditions for deterministic
and stochastic control systems. For example, see [3–10].

Fractional diferential equation (FDE) has emerged as an
important attractive area of applied mathematics because of
its powerful uses in the felds of engineering and physical

sciences [11–13]. Te utilization of FDEs has been show-
cased as a highly efective method for enhancing the
modeling of various real-world problems and phenomena,
such as heat transfer processes and dielectric polarization
[14]. Tey provide a more accurate model of physical sys-
tems than traditional diferential equations, enabling the
resolution of problems that prove challenging under tra-
ditional modeling. Notably, in the domain of electrical
circuits, fractional-order models have proven valuable for
simulating electrical components and circuits, including
resistors, domino ladders, capacitors, tree structures, and
inductors [15].

In electrical circuit, there are some dissipative efects
stemming from electrical resistance, ohmic friction, or
temperature that standard theoretical calculations fail to
consider. Te ordinary derivative is insufcient to take into
account these nonconservative features. Consequently, in
order to place these dissipation efects on to a relevant
theoretical basis, the fractional calculus emerges as a valuable
mathematical tool in addressing this kind of electrical
problems. For instance, the fractional derivatives allow
capturing the nonlocal and hereditary properties neglected
in integer-order models [16].

Tis novel type of calculus has attracted the attention of
mathematicians, who have been working to develop new
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results and extend existing concepts to these fractional
systems [17–19]. Researchers in this feld have focused ef-
forts on fndings new theoretical results and expanding
controllability notions to apply to fractional control systems.
For example, Mahmudov [20] derived a collection of ap-
proximate controllability conditions for Sobolev-type
equations with fractional derivatives. Sakthivel et al. [21]
applied a fxed point theorem to obtain controllability
conditions for nonlinear systems with fractional order. Jneid
[22] used a compact semigroup operator and Schauder fxed
point technique to derive a set of sufcient conditions for the
approximate controllability of integrodiferential control
systems of non-integer order. Dineshkumar et al. [23] uti-
lized Bohnenblust-Karlin’s fxed point theorem, cosine and
sine functions of operators to acquire sufcient conditions
for the approximate controllability of fractional stochastic
diferential inclusions with order 1< r< 2. Sivasankar et al.
[24] studied the nonlocal controllability of stochastic control
systems involving Hilfer fractional derivative by using al-
most sectorial operators with the help of the fxed point
technique and measures of noncompactness.

Te majority of previous researches concerning con-
trollability issues of fractional control systems have
employed the Riemann-Liouville, Caputo, and Hilfer frac-
tional derivatives. Nevertheless, there has been limited in-
vestigation into the controllability problems associated with
fractional systems using the conformable fractional de-
rivative [25–28].Tis represents a notable gap in the existing
body of literature, considering that the conformable frac-
tional derivative ofers several advantages compared to the
Riemann-Liouville, Caputo and Hilfer fractional derivatives,
including its greater naturalness and geometric in-
tuitiveness. Motivated by this observation, this current work
focuses on addressing the controllability problems of semi-
linear control systems with conformable fractional de-
rivatives in Hilbert spaces. Furthermore, we introduce and
expand the partial controllability concepts to fractional
diferential systems. Roughly speaking, the study of partial
controllability is an important part of controllability re-
search overall. Tis signifcance arises from the fact that
controllability theorems are often formulated for frst-order
diferential equation systems. Nevertheless, many real-world
systems, such as higher-order fractional diferential equa-
tions and fractional wave equations, can only be written in
frst-order form by enlarging the state space dimension. As
a consequence, the standard controllability conditions for
these systems are too strong since they consider the ex-
panded state space, while controllability notions need to
focus on the original state space. To address this, we in-
troduce an additional projection operator P that maps the
enlarged state space back to the original state space. To il-
lustrate the workings of partial controllability, we provide
two typical examples in Section 2. To our knowledge, the
specifc research problem under study has not been pre-
viously investigated. We carried out a thorough

investigation and literature review and failed to uncover any
studies addressing partial exact controllability of fractional
control systems. Tis underlines a gap in the existing lit-
erature that our research attempts to fll.

Te rest of the paper is organized as follows: In Section 2,
useful notations and defnitions, a mathematical model of
partial controllability notions, and benefcial preliminary
results concerning the partial controllability of linear sys-
tems in conformable fractional sense are obtained. In Sec-
tion 3, we obtain a set of sufcient conditions for the partial
exact controllability of fractional semilinear systems, as-
suming partial exact controllability of its associated linear
systems. In Section 4, we give an illustrative example to
prove the applicability of the theoretical fndings. In Section
5, we provide a brief discussion of the results that are shown
in the illustrative example. Finally, in Section 6, a short
conclusion is given to recap the obtained results.

2. Preliminaries

Troughout this paper, we will utilize the following:

(i) (X, ‖.‖) and (U, ‖.‖) are Hilbert spaces with the
norms generated by convenient inner products as
‖x‖2 � x, x〈 〉.

(ii) Uad � C(0, τ; U), where C(0, τ; U) is defned as the
vector space of all U− valued continuous functions
on [0, τ] endowed with the sup-norm as follows:

‖u‖C(0,τ;U) � sup
0≤t≤τ

‖u(t)‖{ }. (1)

(iii) C(0, τ; X) × Uad is the product space of two
Banach spaces which is also a Banach space
equipped with the following norm:

‖(., .)‖C(0,τ;X)×Uad
� ‖.‖C(0,τ;X) + ‖.‖Uad

, (2)

(iv) L2(a, b) represents the space of square-integrable
functions on (a, b).

(v) A is an infnitesimal generator of C0−semigroup
Θ (t), t≥ 0, on X.

(vi) B is a linear bounded operator from U to X.
(vii) H is a closed subspace of X.
(viii) x(t) and u(t) are denoted as xt ut, respectively.

Now, let us review some important concepts and fnd-
ings about the conformable fractional derivative and the
controllability of linear systems. We also establish the
necessary assumptions, which will be required in the up-
coming sections.

Defnition 1 (see [29]). Te conformable fractional de-
rivative (CFD) of h: [0,∞)⟶ Rm at x> 0 of order
q ∈ (0, 1] is defned by
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C
q
0h(x) � lim

δ⟶0

h1 x + δx
1− q

􏼐 􏼑 − h1(x)

δ
, . . . , lim

δ⟶0

hm x + δx
1− q

􏼐 􏼑 − hm(x)

δ
⎛⎝ ⎞⎠, (3)

on condition that the expression on the right side is exists as
a fnite value.

Consequently,

C
2q
0 h(x) � C

q
0 C

q
0h( 􏼁(x), . . . , and

C
nq
0 h(x) � C

q
0 C

(n−1)q
0 h􏼐 􏼑(x),

(4)

C
nq
0 h(x) is called n−times conformable fractional diferen-

tiable of order nq.

For every constant c and r ∈ R, the following properties
hold.

(a) C
q
0(c) � 0

(b) C
q
0(xr) � rxr− q

(c) C
q
0(exq/q) � exq/q

Defnition 2 (see [29]). Te CF integral of h: [0,∞)⟶ R,
is defned by

I
q
0h(t) � 􏽚

t

0
x

q− 1
h(x)dx, q ∈ (0, 1], (5)

on condition that the improper integral on the right side is
a fnite value.

Defnition 3 (see [30]). Te CF Laplace transform of h is
defned by

T
q
0 h(t){ }(s)&9; � H

q
0(s)

&9; � 􏽚
∞

0
t
q− 1

e
− stq/q

h(t)dt,
(6)

It is easy to show that

T
q
0 C

q
0h(t)􏼈 􏼉(s) � sH

q
0(s) − h(0). (7)

Let the CF− linear system be given as follows:

C
q
0xt � Axt + f(t), 0< t≤ τ,

x0 � ψ ∈ X,

⎧⎨

⎩ (8)

where C
q
0 is the CFD−operator, x ∈ C(0, τ; X),

f ∈ C(0, τ; X), 0< q≤ 1 and A is as defned above. By using
CF Laplace transform, we obtain

X
q
0(s) − ψ � AXq

0(s) + F
q
0(s), (9)

which clearly gives that

X
q
0(s) � (sI − A)

− 1ψ +(sI − A)
− 1

F
q
0(s), (10)

where I is the identity operator.
Now, applying CF inverse Laplace transform and rele-

vant properties from [30], we can derive the mild solution of
the system (8) as follows:

xt � T
q
0( 􏼁

− 1
(sI − A)

− 1ψ +(sI − A)
− 1

F
q
0(s)􏽨 􏽩

� T
q
0( 􏼁

− 1
(sI − A)

− 1ψ􏽨 􏽩 + T
q
0( 􏼁

− 1
(sI − A)

− 1
F

q
0(s)􏽨 􏽩

� Θ
t
q

q
􏼠 􏼡ψ + 􏽚

t

0
r

q− 1Θ
t
q

q
−

r
q

q
􏼠 􏼡f(r)dr,

(11)

where Θ (tq/q) is called CF− semigroup generated by A, and
(sI − A)− 1 is the inverse operator of (sI − A).

Partial controllability is a useful concept for control
systems that can be modeled as frst-order diferential
equations by augmenting the original state space. Tis is
because the partial controllability concepts are more suited
for such systems than the traditional notions of controlla-
bility. Te projection operator P can be used to map the
expanded state space to the original state space, which makes
it easier to analyze and design controllers for the system.
Partial controllability has several advantages, which will be
illustrated in the following examples.

Example 1. Let the n-times conformable fractional difer-
ential system be

C
nq
0 yt � g t, yt, C

q
0yt, . . . , C

(n−1)q
0 yt, ut􏼐 􏼑. (12)

Consider R as the state space for the system (12). By
defnition, controllability concepts for this system revolve
around whether the relevant reachable set is either equal to
or densely spread across the real space R. Expressing this
system in the form of a frst-order diferential equation is
straightforward as follows:

C
q
0xt � Axt + G t, xt, ut( 􏼁, (13)

if

xt �

yt

y
q
t

⋮
y

(n−2)q
t

y
(n−1)q
t

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

A �

0 1 · · · 0 0
0 0 · · · 0 0
⋮ ⋮ ⋱ ⋮ ⋮
0 0 · · · 0 1
0 0 · · · 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

G(t, x, u) �

0
0
⋮
0

g t, yt, y
q
t , . . . , y

(n−1)q
t , ut􏼐 􏼑

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(14)
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Te fractional control system (13) is defned within an n-
dimensional Euclidean space, denoted byRn, and as a result,
its reachable set shall be a subset in Rn. Consequently, the
controllability criteria for the system (13) are more stringent
compared to those of the system (12). Nonetheless, these
criteria can be facilitated through the use of the projection
operator P, which can be defned as follows:

P � 1 0 · · · 0 0􏼂 􏼃 : R
n⟶ R. (15)

Tis operator makes the conditions for partial con-
trollability of system (13) the same as the conditions for
controllability of system (12).

Example 2. Given a time CF-control system of wave
equation as follows:

z
2q
c yt(t, r) �

z
2
y(t, r)

zr
2 + kut + g t, y(t, r), z

q
c yt(t, r), ut( 􏼁,

(16)

where 0< q≤ 1, y is a real valued function defned on
[0,∞) × (0, 1) and zq

c is a partial conformable fractional
operator of order q .Te state space of this system is L2(0, 1).
By enlarging the state space, we can rewrite this system in the
frst-order CF-control system as follows:

C
q
0xt � Axt + But + G t, xt, ut( 􏼁, (17)

if

xt �
x
1

x
2

⎡⎣ ⎤⎦

�
y(t, r)

z
q
c yt(t, r)

􏼢 􏼣,

A �
0 1

d
2/dr

2 0
􏼢 􏼣,

B �
k

0
􏼢 􏼣,

G(t, x, u)

�
0

g t, x
1
, x

2
, u􏼐 􏼑

⎡⎣ ⎤⎦,

(18)

where x ∈ L2(0, 1) × L2(0, 1). Te ordinary controllability
concept for the system (20) are too strong comparable with
the same for the system (17). However, we can reduce this
difculty by defning the projection operator P as

P � I 0􏼂 􏼃 : L
2
(0, 1) × L

2
(0, 1)⟶ L

2
(0, 1), (19)

which makes the studying the partial CF controllability of
the system (20) the same as the studying ordinary CF
controllability of the system (17).

Consider the abstract fractional semilinear system with
conformable derivatives as follows:

C
q
0xt � Axt + But + f t, xt, ut( 􏼁, 0< t≤ τ, 0< q≤ 1,

x0 � ψ,

⎧⎨

⎩

(20)

where x and u are state and control values, respectively.
Now, let impose the following assumptions

(A1) Te continuous map f: [0, τ] × X × U⟶ X

satisfes

(i) ∃L> 0 ‖f(t, x, u)‖≤L∀(t, z, u) ∈ [0, τ] × X × U

(ii) ∀t ∈ [0, τ], u, v ∈ U and y, x ∈ X, ∃N> 0 so that

‖f(t, y, u) − f(t, x, v)‖≤N(‖y − x‖ +‖u − v‖).

(21)

(A2) P is a projection operator from X to H.

Under the above assumptions, the (22) has a unique mild
solution x ∈ C(0, τ; X) for every u ∈ Uad and x0 ∈ X (see,
Jaiswal and Bahuguna [31]), and this solution can be written
as follows:

xt � Θ
t
q

q
􏼠 􏼡ψ + 􏽚

t

0
s

q− 1Θ
t
q

q
−

s
q

q
􏼠 􏼡 Bus + f s, xs, us( 􏼁( 􏼁 ds.

(22)

Defne the set

R(τ,ψ) � h ∈ H : ∃u ∈ Uad so that h � Pxτ􏼈 􏼉, (23)

that stands for the attainable set of control system (22) at
a fnite time τ.

Defnition 4. Te fractional system (22) is said to be partially
exactly controllable on Uad if R(τ,ψ) � H for every ψ ∈ X.

Let the fractional controllability operator with a con-
formable fractional derivative Πt

r be given as:

Πt
r � 􏽚

t

r
s

q− 1 Θ
t
q

q
−

s
q

q
􏼠 􏼡B􏼢 􏼣 Θ

tq

q
−

sq

q
􏼠 􏼡B􏼢 􏼣

∗

ds, 0≤ r≤ t≤ τ.

(24)

where ∗ indicates the adjoint operator.

(A3) Let 􏽥Πt

0 � PΠt
0P
∗. Assume 􏽥Πτ0 is coercive, i.e.,

∃μ> 0 so that 􏽥Πx

0 , x􏽄 􏽅≥ μ‖x‖2, ∀x ∈ H. Ten, ( 􏽥Πτ0)
− 1

exists and ‖( 􏽥Πτ0)
− 1‖≤ 1/μ.

Now, consider the conformable fractional linear control
system

C
q
0xt � Axt + But, 0< t≤ τ,

x0 � ψ ∈ X,

⎧⎨

⎩ (25)

where x, u, X, U, A, and B are as defned above.
Partial controllability of linear control systems is similar

to ordinary controllability in many ways. In particular, if we
replace the controllability operator with its partial version,
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most of the results on ordinary controllability can be applied
to partial controllability as well. Tis is possible by imposing
certain conditions on the partial controllability operator 􏽥ΠT

0 .
In the following theorem, we give necessary and sufcient
conditions for partial controllability of conformable frac-
tional linear systems.

Theorem 5. Under the above assumptions, the following
assertions are equivalent:a

(i) Te linear system (32) is partially exactly controllable
(ii) 􏽥Πτ0 is coercive
(iii) (ϵI, − 􏽥Πτ0)

− 1 is uniformly convergent as ϵ⟶ 0+

(iv) (ϵI, − 􏽥Πτ0)
− 1 is strongly convergent as ϵ⟶ 0+

(v) (ϵI, − 􏽥Πτ0)
− 1 is weakly convergent as ϵ⟶ 0+

(vi) ϵ(ϵI, − 􏽥Πτ0)
− 1⟶ 0 uniformly as ϵ⟶ 0+

Proof. Te proof of this theorem closely follows the proofs
of similar theorems presented in many papers, for example,
see the works of Mahmudov [32] and Jneid [33]. So we are
not going to repeat the proof here. □

3. Partial Exact Controllability

In this section, we provide a sufcient condition set of partial
exact controllability for the semi-linear fractional control
system in conformable sense by using a contractionmapping
principle.

Lemma  . Assume that the assumptions (A1)–(A3) hold
true. Ten, for every 0≤ t≤ τ, the following inequalities valid

Πt
0

����
����≤ Πτ0

����
���� and 􏽥Πt

0

�����

�����≤ 􏽥Πτ0
����

����. (26)

Proof. It is clear that for every 0≤ t≤ τ, 􏽥Πt

0 � ( 􏽥Πt

0)
∗ and

x ∈ X

Πt
0x, x􏽄 􏽅≥ 0. (27)

Hence,

Πt
0

����
���� � sup

‖x‖≤1
Πt

0x, x􏽄 􏽅
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌. (28)

Terefore,

Πτ0x, x􏼊 􏼋 � 􏽚
τ

0
s

q−1 Θ
s

q

q
􏼠 􏼡B􏼢 􏼣 Θ

sq

q
􏼠 􏼡B􏼢 􏼣

∗

ds x, x􏼪 􏼫

� 􏽚
t

0
s

q− 1 Θ
s

q

q
􏼠 􏼡B􏼢 􏼣 Θ

sq

q
􏼠 􏼡B􏼢 􏼣

∗

ds x, x􏼪 􏼫 + 􏽚
τ

t
s

q−1 Θ
s

q

q
􏼠 􏼡B􏼢 􏼣 Θ

sq

q
􏼠 􏼡B􏼢 􏼣

∗

ds x, x􏼪 􏼫

� Πt
0x, x􏽄 􏽅 + 􏽚

τ

t
s

q−1 Θ
s

q

q
􏼠 􏼡B􏼢 􏼣 Θ

sq

q
􏼠 􏼡B􏼢 􏼣

∗

ds x, x􏼪 􏼫,

(29)

where

􏽚
τ

t
s

q− 1 Θ
s

q

q
􏼠 􏼡B􏼢 􏼣 Θ

sq

q
􏼠 􏼡B􏼢 􏼣

∗

ds x, x􏼪 􏼫 � 􏽚
τ

t
s

q− 1 Θ
sq

q
􏼠 􏼡B􏼢 􏼣

∗

x, Θ
sq

q
􏼠 􏼡B􏼢 􏼣

∗

x􏼪 􏼫ds

� 􏽚
τ

t
s

q− 1 Θ
sq

q
􏼠 􏼡B􏼢 􏼣

∗

x

��������

��������
ds≥ 0.

(30)

Ten, Πt
0x, x􏼊 􏼋≤ Πτ0x, x􏼊 􏼋, and consequently

‖Πt
0‖≤ ‖Πτ0‖. For ‖ 􏽥Πt

0‖≤ ‖ 􏽥Πτ0‖ ∀0≤ t≤ τ, it follows directly
from this equality 􏽥Πt

0x, x􏽄 􏽅 � 􏽥Πt

0P
∗x, P∗x􏽄 􏽅. □

Lemma 7. Suppose that (A1)–(A3) hold, and h ∈ H. Ten,
for the operator Q that maps C(0, τ; X) × Uad into itself and
is defned by
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Q(y, v) � (Y, V), (31) where, for every 0≤ t≤ τ,

Y(t) � −Πt
0Θ
∗ τq

q
−

t
q

q
􏼠 􏼡P

∗ 􏽥Πτ0􏽨 􏽩
− 1

P 􏽚
τ

t
s

q− 1Θ
τq

q
−

s
q

q
􏼠 􏼡f s, ys, vs( 􏼁ds + 􏽚

t

0
s

q− 1 Θ
t
q

q
−

s
q

q
􏼠 􏼡f s, ys, vs( 􏼁ds, (32)

V(t) � B
∗ Θ ∗

τq

q
−

t
q

q
􏼠 􏼡P

∗ 􏽥Πτ0􏽨 􏽩
− 1

h − PΘ∗
τq

q
􏼠 􏼡ψ − P 􏽚

τ

t
s

q− 1Θ
τq

q
−

s
q

q
􏼠 􏼡f s, ys, vs( 􏼁ds􏼠 􏼡. (33)

Te following estimate is true:

‖Q(y, v) − Q(x, w)‖≤ Lq(‖y − x‖ +‖v − w‖), (34)

where

Lq �
τq

q
1 +
Πτ0|M

����

μ
+

‖B‖M

μ
􏼠 􏼡MN,

M � sup
0≤t≤τ
Θ

t
q

q
􏼠 􏼡

��������

��������
.

(35)

Proof. Let (y, v), (x, w) ∈ C(0, τ; X) × Uad with Q(y, v) �

(Y, V) and Q(x, w) � (X, W). Ten,

‖Q(y, v) − Q(x, w)‖C(0,τ;X)×Uad
� ‖Y − X‖C(0,τ;X) +‖V − W‖Uad

. (36)

Starting with the frst norm ‖Y − X‖C(0,τ;X), we obtain

‖Y − X‖ � supt∈[0,τ] Π
t
0Θ
∗ τq

q
−

t
q

q
􏼠 􏼡P

∗ 􏽥Πτ0􏽨 􏽩
−1

P 􏽚
τ

0
s

q−1Θ
τq

q
−

s
q

q
􏼠 􏼡 f s, ys, vs( 􏼁 − f s, xs, ws( 􏼁( 􏼁ds

��������

+ 􏽚
t

0
s

q−1Θ
t
q

q
−

s
q

q
􏼠 􏼡 f s, ys, vs( 􏼁 − f s, xs, ws( 􏼁( 􏼁ds

��������
≤ supt∈[0,τ] M + M

2 Πt
0

����
����. 􏽥Πτ0􏽨 􏽩

−1�����

�����􏼒 􏼓

· 􏽚
τ

0
s

q− 1
f s, ys, vs( 􏼁 − f s, xs, ws( 􏼁

����
����ds≤ 1 +

Πτ0
����

����M

μ
􏼠 􏼡MN􏽚

τ

0
s

q− 1
ys − xs

����
���� + vs − ws

����
����􏼐 􏼑

·ds≤
τq

q
1 +
Πτ0

����
����M

μ
􏼠 􏼡MN(‖y − x‖ +‖v − w‖).

(37)

In a similar way, for the second norm ‖V − W‖Uad
, one

can obtain:

‖V − W‖ � supt∈[0,τ] B
∗ Θ ∗

τq

q
−

t
q

q
􏼠 􏼡P

∗ 􏽥Πτ0􏽨 􏽩
−1

P 􏽚
τ

0
s

q−1Θ
τq

q
−

s
q

q
􏼠 􏼡 f s, ys, vs( 􏼁 − f s, xs, ws( 􏼁( 􏼁ds

��������

��������

≤ supt∈[0,τ] M
2
‖B‖. 􏽥Πτ0􏽨 􏽩

−1�����

�����􏼒 􏼓 􏽚
τ

0
s

q− 1
f s, ys, vs( 􏼁 − f s, xs, ws( 􏼁

����
����ds≤

1
μ

M
2
‖B‖

· N 􏽚
τ

0
s

q− 1
ys − xs

����
���� + vs − ws

����
����􏼐 􏼑ds≤

τq

q

‖B‖

c
M

2
N(‖y − x‖ +‖v − w‖).

(38)
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By combining the inequalities (25) and (32), the proof
is done. □

Lemma 8. Assume that (A1)–(A3) hold. If the inequality

Lq �
τq

q
1 +
Πτ0

����
����M

μ
+

‖B‖M

μ
􏼠 􏼡MN< 1, (39)

holds, then the non-linear operator Q takes C(0, τ; X) × Uad

into itself and admits a single fxed point
(x, u) ∈ C(0, τ; X) × Uad .

Proof. Due to Lemma 7 and the inequality (40), it is clear
that Q is a contraction mapping on C(0, τ; X) × Uad.
Terefore, Tank to the well-known Banach fxed point
theorem Q admits a single fxed point. □

Theorem 9. Assume (A1)–(A3) and (39) are fulflled. Ten,
the fractional control system (11) is partially exactly
controllable.

Proof. Let h ∈ H. We would prove that there is a control
state u ∈ Uad such that h � Pxτ . To do this, defne u by

ut � B
∗ Θ ∗

τq

q
−

t
q

q
􏼠 􏼡P

∗ 􏽥Πτ0􏽨 􏽩
− 1

P h − PΘ∗
τq

q
􏼠 􏼡ψ − P 􏽚

τ

0
s

q− 1Θ
τq

q
−

s
q

q
􏼠 􏼡f s, xs, us( 􏼁ds􏼠 􏼡. (40)

By inserting (40) into (22), one can obtain:

xt � Θ
τq

q
􏼠 􏼡ψ + 􏽚

τ

0
s

q− 1Θ
t
q

q
−

s
q

q
􏼠 􏼡BB

∗ Θ ∗
t
q

q
−

s
q

q
􏼠 􏼡Θ∗

τq

q
−

t
q

q
􏼠 􏼡

· P
∗ 􏽥Πτ0􏽨 􏽩

− 1
h − PΘ

τq

q
􏼠 􏼡ψ􏼠 􏼡ds − 􏽚

t

0
s

q− 1Θ
t
q

q
−

s
q

q
􏼠 􏼡BB

∗ Θ ∗
t
q

q
−

s
q

q
􏼠 􏼡Θ∗

τq

q
−

t
q

q
􏼠 􏼡P

∗ 􏽥Πτ0􏽨 􏽩
− 1

P

× 􏽚
τ

0
s

q− 1Θ
τq

q
−

r
q

q
􏼠 􏼡f r, xr, ur( 􏼁dr􏼠 􏼡ds + 􏽚

t

0
s

q− 1Θ
t
q

q
−

s
q

q
􏼠 􏼡f s, xs, us( 􏼁ds

� Θ
t
q

q
􏼠 􏼡ψ + Πt

0Θ
∗ τq

q
−

t
q

q
􏼠 􏼡P∗ 􏽥Πτ0􏽨 􏽩

− 1
h − PΘ

τq

q
􏼠 􏼡ψ􏼠 􏼡 + 􏽚

t

0
s

q− 1Θ
t
q

q
−

s
q

q
􏼠 􏼡f s, xs, us( 􏼁ds

− 􏽚
τ

0
􏽚

t

0
s

q− 1Θ
t
q

q
−

s
q

q
􏼠 􏼡BB

∗ Θ ∗
t
q

q
−

s
q

q
􏼠 􏼡Θ∗

τq

q
−

t
q

q
􏼠 􏼡P

∗ 􏽥Πτ0􏽨 􏽩
− 1

PΘ
τq

q
−

r
q

q
􏼠 􏼡f r, xr, ur( 􏼁dsr

q− 1dr

� Θ
t
q

q
􏼠 􏼡ψ + Πt

0Θ
∗ τq

q
−

t
q

q
􏼠 􏼡P

∗ 􏽥Πτ0􏽨 􏽩
− 1

h − PΘ
τq

q
􏼠 􏼡ψ􏼠 􏼡 + 􏽚

t

0
s

q− 1Θ
t
q

q
−

s
q

q
􏼠 􏼡f s, xs, us( 􏼁ds

− 􏽚
τ

0
r

q− 1Πt
0Θ
∗ τq

q
−

t
q

q
􏼠 􏼡P

∗ 􏽥Πτ0􏽨 􏽩
− 1

PΘ
τq

q
−

r
q

q
􏼠 􏼡f r, xr, ur( 􏼁dr

� Θ
t
q

q
􏼠 􏼡ψ + Πt

0Θ
∗ τq

q
−

t
q

q
􏼠 􏼡P

∗ 􏽥Πτ0􏽨 􏽩
− 1

h − PΘ
τq

q
􏼠 􏼡ψ􏼠 􏼡 + 􏽚

t

0
s

q− 1Θ
t
q

q
−

s
q

q
􏼠 􏼡f s, xs, us( 􏼁ds

− Πt
0Θ
∗ τq

q
−

t
q

q
􏼠 􏼡P

∗ 􏽥Πτ0􏽨 􏽩
− 1

P 􏽚
τ

0
r

q− 1Θ
τq

q
−

r
q

q
􏼠 􏼡f r, xr, ur( 􏼁dr.

(41)

Now, setting t � τ in (41), we acquire
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PxT � P Θ
τq

q
􏼠 􏼡ψ + Πτ0P

∗ 􏽥Πτ0􏽨 􏽩
− 1

h − PΘ
τq

q
􏼠 􏼡ψ􏼠 􏼡 + 􏽚

τ

0
s

q− 1Θ
t
q

q
−

s
q

q
􏼠 􏼡f s, xs, us( 􏼁ds − Πτ0P

∗ 􏽥Πτ0􏽨 􏽩
− 1

􏼠

· P 􏽚
τ

0
r

q− 1Θ
τq

q
−

r
q

q
􏼠 􏼡f r, xr, ur( 􏼁dr􏼡

� PΘ
τq

q
􏼠 􏼡ψ + PΠτ0P

∗ 􏽥Πτ0􏽨 􏽩
− 1

h − PΘ
τq

q
􏼠 􏼡ψ􏼠 􏼡 + P 􏽚

τ

0
s

q− 1Θ
t
q

q
−

s
q

q
􏼠 􏼡f s, xs, us( 􏼁ds − PΠτ0P

∗ 􏽥Πτ0􏽨 􏽩
− 1

· P 􏽚
τ

0
r

q− 1Θ
τq

q
−

r
q

q
􏼠 􏼡f r, xr, ur( 􏼁dr􏼡

� h.

(42)

Terefore, we observe that the control u ∈ Uad steers the
control system (20) from ψ at initial time to xτ at terminal
time τ, such that the partial state Pxτ � h is accomplished.
Terefore, the given control system (20) in conformable
sense is partially exactly controllable on Uad for the terminal
time τ. □

4. Illustrative Example

Example 3. Given a control system of fractional equations in
conformable sense

C
q
0yt � zt + ut +

t
2

40 + 3t
2 cos zt + yt + ut( 􏼁, y0 ∈ R,

C
q
0zt �

1
50 + t

2

���������

y
2
t + u

2
t + 7

􏽱

, z0 ∈ R,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(43)

where u ∈ C(0, τ;R), (y, z) ∈ R × R and t ∈ [0, 1]. Te
concept of controllability is explained in R × R as

(y, z) ∈ R2
: ∃u ∈ Uad so that yτ , zτ( 􏼁 � (y, z)􏽮 􏽯 � R

2
,

(44)

While, the concept of partial controllability is un-
derstood in R as

y ∈ R : ∃u ∈ Uad so thatyτ � y􏼈 􏼉 � R. (45)

Te control system (43) can be interpreted in R2 as

C
q
0xt � Axt + But + G t, xt, ut( 􏼁, (46)

where

xt �

yt

zt

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦,

A �

0 1

0 0
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦,

B �

1

0
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦,

G t, xt, ut( 􏼁 �

t
2

40 + 3t
2 cos yt + zt + ut( 􏼁

1
50 + t

2

���������

y
2
t + u

2
t + 7

􏽱

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(47)

Since the operator A is a matrix, the CF− semigroup
Θ (tq/q) can be simply calculated as follows:

Θ
t
q

q
􏼠 􏼡 � e

A tq/q( )

�

1
t
q

q

0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

1 0

0 1
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ +

0
t
q

q

0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(48)

Hence, we can compute M as follows:
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M � sup
0≤t≤1
Θ

t
q

q
􏼠 􏼡

��������

��������

� e
Atq/q

�����

�����

� 1 +
1
q
.

(49)

By carrying out elementary calculations, the
CF− controllability operator (24) of the system(46) can be
computed as follows:

Π10 � 􏽚
1

0
s

q− 1
e

Asq/q
BB
∗
e

A∗sq/qds

� 􏽚
1

0
s

q− 1
1

s
q

q

0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1

0
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ 1 0􏼂 􏼃

1 0

s
q

q
1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
ds

� 􏽚
1

0
s

q− 1
1 0

0 1
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ds

�
1
q

1 0

0 0
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦.

(50)

Clearly, Π10 is not coercive. Terefore, the control system
(43) is not exactly controllable. However, the system (43) can
be exactly controllable under the appropriate conditions of
the function G if we analyze the partial exact controllability
considering only the frst component yt of the state vector
xt. Tis can be done by defning the projector operator P as
P � 1 0􏼂 􏼃. Terefore,

􏽥Π10 � PΠ10P
∗

�
1
q
> 0.

(51)

Tis shows that the corresponding linear part of the
semilinear system (46) is partially exactly controllable.

We now compute the Lipschitz constant N for the
function G � (G1, G2)

T as follows: First, we fnd the Lip-
schitz constant for G1(t, y, z, u) � t2/40 + 3t2 cos
(yt + zt + ut). To fnd the Lipschitz constants in y denoted
by N1

y, in z denoted by N1
z and in u denoted by N1

u, we take
the partial derivatives in terms of y, z and u respectively.
Ten calculate the supremum of the absolute values of the
partial, we obtain N1

y � 1/40 � N1
z � N1

u. We select
N1 � max N1

y, N1
z, N1

u􏽮 􏽯 � 1/40.
Similarly, for N2 the Lipschitz constant of

G2(t, y, z, u) � 1/50 + t2
���������

y2
t + u2

t + 7
􏽱

, following the same
procedure with elementary computation, we can obtain as
follows:N2

y � 1/50 � N2
u, N2

z � 0 and we take
N2 � max N2

y, N2
z, N2

u􏽮 􏽯 � 1/50.

For N, we have

N �

������������

N1( 􏼁
2

+ N2( 􏼁
2

􏽱

�
���������������
0.000625 + 0.0004

√

�
���������
0.0001025

√
≤ 0.0323.

(52)

Now, evaluating the expression Lq, defned previously by
(39) we acquire

Lq � 3 +
1
q

+ q􏼠 􏼡 1 +
1
q

􏼠 􏼡
1
q

N. (53)

Let q � 2/3. Substitute this value into (53), we obtain as
follows:

Lq � 3 +
3
2

+
2
3

􏼒 􏼓 1 +
3
2

􏼒 􏼓
3
2

N

≤ 0.6263< 1,

(54)

which guaranties that the condition (39) holds.
Let q � 5/7. Substitute this value into (53), we obtain as

follows:

Lq � 3 +
7
5

+
5
7

􏼒 􏼓 1 +
7
5

􏼒 􏼓
7
5

N

≤ 0.5552< 1,

(55)

which guaranties that the condition (39) holds.
Let q � 9/10. Substitute this value into (53), we obtain as

follows:

Lq � 3 +
10
9

+
10
9

􏼒 􏼓 1 +
10
9

􏼒 􏼓
10
9

N

≤ (3 + 1.1112 + 0.9)(1 + 1.1112)(1.1112)(0.0323)

≤ 0.3798< 1,

(56)

which guaranties that the condition (39) holds.
Let q � 1. Substitute this value into (53), we obtain as

follows:

Lq � (3 + 1 + 1)(1 + 1)N

≤ 0.323< 1,
(57)

which guaranties that the condition (39) holds.
Hence, regarding the above four values of q, all the

assumptions of Teorem 9 are fulflled. Consequently, the
CF control system described in (43) is partially exactly
controllability over the interval [0, 1]. Given a control
system of fractional equations in conformable sense

5. Discussion

As observed in the variation of the parameter q, it becomes
clear that each choice of the fractional-order q leads to
a distinct fractional control system that can be partially
exactly controllable. Tis emphasizes the idea that fractional
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calculus introduces new opportunities and dimensions to
control theory, while still preserving known fndings from
ordinary calculus when q � 1. Furthermore, the order q

becomes a powerful modeling parameter that can be opti-
mized and precisely calibrated to suit the control re-
quirements. Tis underscores the potential of fractional
calculus to open new unexplored boundaries in control
theory.

6. Conclusion

In this paper, the notion of partial exact controllability for
conformable fractional control systems is introduced and
a sufcient condition set for them is obtained. Tese con-
ditions are obtained for semilinear control system, given that
its associated linear part is also partially exactly controllable.
Te method employed for this type of system closely re-
sembles the one used for nonpartial systems, with a small
adjustment. Te efectiveness of this approach has been
demonstrated through an illustrative example.

Future research studies will focus on the partial con-
trollability of stochastic fractional control systems with
infnite and fnite delay, fractional systems with non-
instantaneous impulses, and partially observable stochastic
control systems with non-integer orders.
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