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Te classical bond-pricing models, as important fnancial tools, show strong vitality in bond pricing. However, these models also
expose their theoretical defects, which leads to inconsistencies with the actual observation results and usually causes the theoretical
prices of bonds to be lower than the actual market prices in the fnancial market. In order to change this situation, considering that
the price change of the underlying is regarded as a fractal transmission system, the fractal derivative is introduced into the bond-
pricing equation. In order to solve the fractal bond-pricing equation, we frst convert it into an equivalent equation by using
a fractal two-scale transform. Only in this case can we start to study it by means of the Lie symmetry analysis method. Ten the
geometric vector felds, the symmetry reductions, and the exact solution to the equations are obtained. Furthermore, the dynamic
behaviors of the fractal bond-pricing equation are discussed.Te results show that the fractal dimension bond-pricing formula can
better explain price changes in the capital market than the classical one. Tat is to say, the classical bond-pricing equation is only
a special case of the fractal-bond pricing equation, which makes up for the defect that the theoretical bond price given by the
classical bond-pricing equation is often lower than the actual market price. Te results of this paper provide a basis for bond
pricing in the fnancial market in order to seek a more appropriate and real price.

1. Introduction

Sinkala et al. presented the group classifcation of the general
bond-pricing equation as follows:
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where σ, ρ, α, r, and λ are real constants, t is time, S is the
stock (share or equity) price or instantaneous short-term
interest rate at current time t, and V(S, t) is the current value
of the option or bond (see [1–3] and references therein). Te
equation has an interesting characteristic: some corre-
sponding classical fnancial mathematical models can be
presented by taking diferent constants, such as the Vasicek
model, the Longstaf model, and the Cox-Ingersoll-Ross
model [4–6]. If ρ � 1, α � λ � 0, then (1) reduces to the
bond-pricing equation as follows:
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which is rarely studied. Many classical bond-pricing
models have been deeply studied and show a strong role
in bond pricing. However, they still have some un-
satisfactory aspects in theory, which leads to in-
consistencies with the actual observed results, and usually
causes the theoretical price of bonds being lower than the
actual market price of the fnancial market. Ten, how to
improve it? Recently, based on the idea presented in [7] and
the heuristic arguments established in [8, 9], fractional
double barrier option models are investigated when the
price change of the underlying is considered as a fractal
transmission system [10, 11]. In view of this, we introduce
fractal derivatives into equation (2) to study the fractal
bond-pricing equation:
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where σ and r are real constants, T is the terminal time, and
zV/ztβ is the fractal derivative defned as follows [12–14]:
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where β is the fractal dimension, Δt is the smallest scales in
time, and Δt≠ 0.

It is known that the Lie symmetry analysis is a systematic
and powerful method for dealing with symmetries and exact
solutions to nonlinear evolution equations (NLEEs) [15–22].
In recent years, the Lie symmetry method has been extended
to solve (2 + 1)-dimensional and (3 + 1)-dimensional NLEEs
[23, 24]. In the following, we start to study the fractal bond-
pricing equation (3) by means of the lie symmetry analysis
method. Te results show that the fractal dimension bond-
pricing formula can better explain price changes in the
capital market than the classical bond-pricing formula,
which makes up for the defect that the theoretical bond price
given by the classical bond-pricing equation is often lower
than the actual market price.

Te paper is organized as follows. In Section 2, we frst
convert the fractal bond-pricing equation into an equivalent
one by using a fractal two-scale transform and then obtain all
of the geometric vector felds of the equations on the basis of
the arbitrary parameters by using the Lie symmetry analysis
method. Section 3 presents symmetry reductions and gen-
eralized power series solution to the fractal bond-pricing
equation and the proof of convergence of the generalized
power series solutions. In Section 4, we discuss the dynamic
behaviors of the fractal bond-pricing equation under the
infuence of diferent parameters. Te fnal Section 5 gives
the conclusion.

2. Lie Symmetry Analysis for the Fractal Bond-
Pricing Equation (3)

First, in order to facilitate the solution and consider the
fnancial signifcance of equation (3), according to the form
of the fractal two-scale transform T � tα given in references
[12–14], we design an appropriate fractal two-scale
transform:

􏽢t � − (T − t)
β
, (5)

which is adopted to convert the fractal bond-pricing
equation (3) to continuous one
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where σ and r are real constants. Ten, we start to study it by
means of the Lie symmetry analysis method. First, we will
provide a list of all Lie symmetry algebras for the equation
(6). Consider the geometric vector felds of equation (6) are
as follows:

W � ζ(S,􏽢t, V)zS + η(S,􏽢t, V)z 􏽢t + ψ(S,􏽢t, V)zV, (7)

where ζ(S,􏽢t, V), η(S,􏽢t, V), and ψ(S,􏽢t, V) are the coefcient
functions to be determined. Te symmetry group of equa-
tion (6) will be derived from the vector feld (7). Using the
second prolongation pr(2)W of W in equation (6) leads to
the coefcient functions ζ, η, and ψ must meet the following
condition:

pr(2)
W(△) ∣△�0 � 0, (8)

where △ � zV/z􏽢t + 1/2σ2S2z2V/zS2 + rSzV/zS − SV. Ten,
the Lie symmetry group calculation method gives rise to
the following condition on the coefcient functions ζ, η
and ψ:
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where η, 9, and κ are the coefcient functions to be de-
termined. By solving the equations, we get the vector feld of
equation (6) as follows:

W1 � z􏽢t, W2 � VzV, W] � ]z], (10)

where the function ] � ](S,􏽢t) satisfes equation (6). It is easy
to fnd that W1, W2, W]􏼈 􏼉 is a basis of Lie algebra of equation

(6). Furthermore, the one-parameter groups Gi generated by
Wi(i � 1, 2, ]) are proposed as follows:

G1: (S,􏽢t, V)⟶ (S,􏽢t + ϵ, V),

G2: (S,􏽢t, V)⟶ S,􏽢t, e
ϵ
V( 􏼁,

G]: (S,􏽢t, V)⟶ (S,􏽢t, V + ϵ]),

(11)
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where δ � eσ
2ϵ and ] � ](S,􏽢t) is an arbitrary solution to

equation (6).

3. SymmetryReductionsandGeneralizedPower
Series Solution to the Fractal Bond-Pricing
Equation (3)

In Section 2, we presented the symmetry and symmetry
groups of equation (6). Now, let us consider similarity re-
duction of (6), but we fnd, in fact, for this equation, we have
only one nontrivial case: W1 � W1 + cW2(c≠ 0) of (6), then
the corresponding similarity transformation is given in the
following equation:

ζ � S, θ � logV − c􏽢t, (12)

and the similarity solution is θ � f(ζ), that is,

V � exp[f(S) + c􏽢t]. (13)

Substituting (13) into (6), one has the following ODE:
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where f′ � df/ dζ. Tis is a nonlinear second-order ODE;
we will deal with it by the special transformation technique
and generalized power series method.

First, let f′ � y, then equation (14) becomes the fol-
lowing Riccati type of equation:
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We construct a solution of (15) in a generalized power
series of the following form:
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where the parameters a and cn(n � 0, 1, 2, . . .) are constants
to be determined.

Inserting (16) into (15), we have
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Comparing coefcients of (17) gives
1
2
σ2a2

−
1
2
σ2a2

− r􏼒 􏼓a + c � 0, (18)

σ2ac0 + c � 0, (19)

and
1
2
σ2 + σ2a + r􏼒 􏼓c1 +

1
2
σ2c20 � 0. (20)

Generally, for all n≥ 1, n ∈ N, the following recurrence
formula can be obtained by (17):
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Ten, by solving equation (18), we have
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From (19) and (20), one has
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Furthermore, (21) gives rise to
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− σ2c0c1

σ2 + aσ2 + r
,

c3 �
− σ2 2c0c2 + c

2
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Terefore, all the remaining items of the sequence cn􏼈 􏼉
∞
n�2

can be uniquely obtained sequentially by recurrence formula
(21). Tat is to say, for equation (15), there is a generalized
power series solution (16), and its coefcients are uniquely
determined by the expressions (21)–(24). Furthermore, we
can show the convergence of the generalized power series
solution (16) [25, 26].
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Figure 1: Dynamic behaviors of solution (33) with diferent fractal dimensions of β for c0 � c1 � c2 � c3 � − 0.00001, a � 1, c � 0.07, c � − 1
and T � 1. (a) β � 0.4. (b) β � 0.6. (c) β � 0.8. (d) β � 1. (e) τ � 0.5.
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In fact, from (21), we have
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where M � ∣ σ2/2σ2 + 2σ2a + 2r ∣ (a≥ − 1/2, r≥ 0).
Now, we defne a power series
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Ten, it is easy to fnd that
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Tat is to say, the series (26) is a majorant series of (16).
Next, we show that series (26) has a positive radius of
convergence. Indeed, by formal calculation, we have

P(ζ) � p0 + p1ζ + 􏽘
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+ M P
2
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Consider now the following implicit functional equation:

F(ζ, ς) � ς − p0 − p1ζ − M ς − p0( 􏼁
2

� 0. (30)

Because F(ζ , ς) is analytic on the plane
ζ, ς{ }, F(0, p0) � 0, Fς′(0, p0) � 1≠ 0, in terms of the implicit
function theorem, we see that ς � P(ζ) is analytic in

a neighborhood of the point (0, p0) of the plane and with
a positive radius. Tis implies that the power series (16)
converges in a neighborhood of the point (0, p0). Tis
completes the proof.

Tus, the generalized power series solution (16) is the
exact analytic solution, and the exact generalized power
series solution of (14) can be presented as follows:
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Substituting (31) into (13), we have the exact analytic
solution to (3) as follows:
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where c � ec is an arbitrary constant and a and
cn(n � 0, 1, 2, . . .) are shown by (21)–(24), respectively. Te
free parameters in the general solution are then chosen
suitably so that the solution satisfes the auxiliary condition
V(S, T) � 1.

4. Discussion onDynamic Characteristics of the
Fractal Bond-Pricing Equation (3)

It is necessary to illustrate the characteristics of the exact
analytic solution to (3). First, for its practical application, we
consider the following approximate solution formula de-
rived from (32):

V(S, t) � cSaexp c0S +
1
2
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2
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1
3
c2S

3
+
1
4
c3S

4
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β
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Figure 2: Te infuence of the fractal dimension β on solution (32) for S � 20, σ � 0.8, r � 0.70026, c � − 1, c � 153, and T � 1.
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In the following, we focus on analyzing the dynamic
characteristics in terms of (33). In Figure 1, some parameters
are chosen as c0 � c1 � c2 � c3 � − 0.00001, a � 1, c � 0.07,

c � − 1 and T � 1. Figures 1(a)–1(d) depict the dynamic
behaviors of the solution (33) for the fractal bond-pricing
equation (3) with diferent fractal dimensions
β � 0.4, 0.6, 0.8 and 1.0, respectively. It can be seen from
Figure 1(e) that within a certain range of stock price S, the
lower the fractal dimension β, the higher the priceV given by
the corresponding bond equation, which indicates that the
classical bond-pricing equation often underestimates the
bond price. Te fractal dimension bond-pricing formula can
better explain the price changes in the capital market than
the classical bond-pricing formula.

Figure 2 presents the infuence of the fractal dimension β
on the bond price for S � 20, σ � 0.8, r � 0.70026, c � − 1,

c � 153, and T � 1. It can be clearly observed from the
development trend that with the increase of the β value of the
time fractal derivative, the corresponding curve gradually
approaches that of the integer dimension β � 1. Te dy-
namic characteristics of the fractal dimension exact solution
tend to be consistent with those of integer dimension exact
solution as the expiration time approaches.Tat is to say, the
classical bond-pricing equation (2) is a special case of the
fractal bond-pricing equation (3), which shows the ratio-
nality of this paper. On the other hand, as the expiration time
approaches, the smaller β, the higher the corresponding
bond price, which makes up for the defect that the theo-
retical bond price given by the classical bond-pricing
equation(2) is often lower than the actual market price.

It is clear that, as a generalization of the classical bond-
pricing model, the fractal-bond pricing equation provides
a basis for bond pricing in the fnancial market to seek
amore appropriate and real price and will be of great interest
to researchers in further work.

5. Conclusion

Te main task of this work is to study and analyze the exact
solution and dynamic behaviors of the fractal bond-pricing
equation. In recent years, the classical bond-pricing models,
as important fnancial tools, have been deeply studied and
shown strong vitality in bond pricing. However, they still
have theoretical defects, which are inconsistent with the
actual observation results and usually cause the theoretical
price of bonds to be lower than the actual market price in the
fnancial market. In order to change this situation, con-
sidering that the price change of the underlying is regarded
as a fractal transmission system, the fractal derivative is
introduced into the bond-pricing equation to try to achieve
the ideal expectation of market justice. As we all know, the
fractal bond-pricing equation is a fractal partial diferential
equation with variable coefcients. How to obtain its exact
solution is still a challenging problem. In order to overcome
it, we frst convert it into an equivalent equation by using
a fractal two-scale transform. Only in this case can we start to
study it by using the Lie symmetry analysis method.Ten the
geometric vector felds, the symmetry reductions and gen-
eralized power series solution to the fractal bond-pricing

equation and the proof of convergence of the generalized
power series solutions are obtained. Furthermore, the dy-
namic behaviors of the fractal bond-pricing equation are
discussed. Te results show that the fractal dimension bond-
pricing formula can better explain the price changes in the
capital market than the classical bond-pricing formula. Tat
is to say, the classical bond-pricing equation is only a special
case of the fractal-bond pricing equation, which makes up
for the defect that the theoretical bond price given by the
classical bond-pricing equation is often lower than the actual
market price. Te results of this paper provide a basis for
bond pricing in the fnancial market in order to seek a more
appropriate and real price. In the next research, we will
further explore the application of this method in the accurate
estimation of hedging ratios and risk management, so as to
better hedge the price fuctuation and improve the efciency
of risk management.
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