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Due to its potential applications in image restoration and deep convolutional neural networks, the study of irregular frames has
interested some researchers.Tis paper addresses irregular wavelet systems (IWSs) and irregular Gabor systems (IGSs) in Sobolev
space Hs(R). We obtain the sufcient and necessary conditions for IWS and IGS to be frames. By applying these conditions, we
also derive the characterizations of IWS and IGS to be frames. Finally, we discuss the perturbation theorem of irregular wavelet
frames (IWFs) and irregular Gabor frames (IGFs). We also provided some examples to support our results.

1. Introduction

An at most countable sequence ei i∈I in a separable Hilbert
space H is called a Bessel sequence in H if there exists C> 0
such that


i∈I

| f, ei  |
2 ≤C‖f‖

2 forf ∈H, (1)

where C is called a Bessel bound; it is called a frame forH if
there exists 0<C1 ≤C2 <∞ such that

C1‖f‖
2 ≤ 

i∈I
| f, ei  |

2 ≤C2‖f‖
2 forf ∈H, (2)

where C1 and C2 are called frame bounds. Te concept of
frame was frst proposed by Dufn and Schaefer when
studying the nonharmonic Fourier series in [1]. However, it
did not attract people’s attention at that time. Until 1986,
Daubechies et al. in [2] noticed that frames can represent the
functions in L2(R) in terms of series expansion. Tis ex-
pansion is very similar to the orthonormal basis expansion,
but is more fexible than the orthonormal basis. Many
scholars are beginning to realize the potential application of

frame theory and frame theory is rapidly developing. So far,
the frame theory is widely used in signal and image pro-
cessing, biomedicine, applied mathematics, physical science,
earth science, DCNNs, and many other felds. More details
can be found in [2–18] and references therein.

Now the research on frame theory mainly focuses on
regular wavelet frame (RWF) and regular Gabor frame
(RGF) in L2(R) and Sobolev space Hs(R). We recall that for
a> 1, b> 0 and ψ, g ∈ L2(R), two sequences aj/2ψ(ajx

− kb): j, k ∈ Z} and e2πimbxg(x − na): j, k ∈ Z  are called
RWS and RGS, if they form frames for L2(R), and we say
that they are RWF and RGF for L2(R), respectively. For
s ∈ R, we denote by Hs(R) the Sobolev space consisting of
all tempered distributions f such that

‖f‖
2
s � 

R
1 + η2 

s f(η)



2
dη<∞. (3)

It is easy to check that Hs(R) is a Hilbert space under the
inner product

〈f, g〉s � 
R

1 + η2 
s f(η)g(η)dη, f, g ∈ H

s
(R). (4)
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In particular, H0(R) � L2(R) by Plancherel theorem.
Let S(R) denote the Schwartz space and by [19], S(R)

satisfes the following property: a function f ∈ S

(R) if and only if f∈ S(R).
We frst have an overview of RWF and RGF.

(i) RWF and RGF for L2(R) and its subspaces.
A core problem of wavelet/Gabor frame theory is
what conditions we need to impose on the generator
tomake the wavelet/Gabor systems to be frames and
dual frames. For relevant results about this, in-
cluding the sufcient and necessary conditions for
wavelet/Gabor systems to be frames and the char-
acterizations of dual wavelet/Gabor frames, one can
refer to [4, 20–23]. Li and Tian in [24] proposed the
concept of partial Gabor systems (PGSs) and
studied the conditions for PGS from Gabor frames.
Tey also characterized the dual partial Gabor
frames. For the latest research on wavelet/Gabor
frame, see [25–28].

(ii) RWF for Sobolev spaces.
Ehler in [29] presented a method of constructing
a pair of dual wavelet frames from any pair of
multivariate refnable functions in a pair of Sobolev
spaces. Han and Shen in [30] extended the mixed
extension principle in L2(Rd) to Sobolev Spaces.
Tey in [31] also gave the characterization of the
Sobolev spaces by using nonstationary tight wavelet
frames for L2(R). Li and Zhang in [32] charac-
terized the nonhomogeneous dual wavelet frames in

Sobolev space and derived the mixed oblique ex-
tension principle. Li and Jia in [33] investigated the
properties of weak nonhomogeneous wavelet bi-
frames (WNWBF) in the reducing subspaces of
a pair of dual Sobolev spaces and constructed the
WNWBF. All the compactly supported m th-order
derivative-orthogonal Riesz wavelets in Sobolev
space are completely depicted by Han and Michelle
in [34]. For other studies on frames in Sobolev
spaces, one can refer to [35–37].

(iii) Te perturbation of RWF and RGF.
Zhang in [38] presented the conditions for a suitable
perturbation of a wavelet/Gabor frame which is still
a wavelet/Gabor frame. Christensen in [39] studied
the stability frames and applied them to the per-
turbations of a Gabor frame. Sun and Zhou in [40]
also obtained some results about the stability of
Gabor frames. Bownik and Christensen in [41]
characterized the Gabor frames with rational pa-
rameters, and as an application, they obtained re-
sults concerning the stability of Gabor frames under
perturbation of the generators.

In practice, the sampling points may be irregular and it is
desirable to have wavelet and Gabor systems in some
Sobolev space.Tis inspires us to study irregular wavelet and
Gabor systems in Sobolev space. Given L ∈ N and
λp: p � 1, 2, · · ·  ⊂ R+, we assume that Ψ � ψl: 1≤ l≤L 

and G � gl: 1≤ l≤L  are two the subsets in Hs(R). We
defne the IWS and IGS generated by Ψ and G as

X(Ψ) � λ(1/2− s)
p ψl λpx − kb : 1≤ l≤L, p � 1, 2, . . . , k ∈ Z , (5)

G(G) � e
2πiλpx

gl(x − ak): 1≤ l≤ L, p � 1, 2, . . . , k ∈ Z . (6)

So, we have

D � f: f ∈ S(R) and f is compactly supported inR\ 0{ } .

(7)

Ten, D is a dense subset of Hs(R).
For the research of the IWS and IGS in L2(R), Sun and

Zhou in [42] constructed the IWF and IGF and gave the
sufcient conditions for an IWS and IGS to be a frame. Tey
in [43] also studied the density of IWF. Christensen in [44]
gave the diferent sufcient conditions for IWS and IGS to be
frames. For other relevant results, see [45, 46] and the
references therein.

Motivated by the existing results mentioned above, we
naturally raise a few questions: Are there similar necessary
and sufcient conditions for IWS and IGS to be IWF and
IGF in Sobolev spaces? How to provide the perturbation
characterizations of IWF and IGF in Sobolev spaces? Is it
possible to construct some examples to support the relevant

results? In this paper, we will address these issues. It is
nontrivial due to the more fexibility of the dilation and
modulation factor λp and the complexity of Sobolev spaces.

1.1. Plan ofWork. Tis paper addresses the IWF and IGF of
the form (5) and (6) in Hs(R) and the rest of this paper is
organized as follows. Section 2 is devoted to some lemmas
for later use. In Section 3 and Section 4, we focus on the
sufcient and necessary conditions of IWS and IGS to be
frames. Te characterization of IWS and IGS to be frames
under certain restrictions is also obtained. In section 5, we
present the perturbation theorem of IWF and IGF. Relevant
examples are also presented. Finally, conclusions are drawn
in Section 6.

2. Some Auxiliary Lemmas

We give some auxiliary lemmas in this section. Te next
lemma can be found in [4].
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Lemma 1. We assume that fk 
∞
k�1 and gk 

∞
k�1 ⊂H. Ten,

let fk 
∞
k�1 be a frame with bounds A and B. If there is

a constant R<A such that



∞

k�1
f, fk − gk 



2 ≤R‖f‖

2
, ∀f ∈H, (8)

then gk 
∞
k�1 is a frame for H and

A 1 −

��
R

A



 

2

, B 1 +

��
R

B



 

2

, (9)

are the frame bounds.

Lemma 2. Let s ∈ R, b> 0, λp: p � 1, 2, · · ·  ⊂ R+, and
ψ ∈ Hs(R). Ten, we have

I � 
∞

p�1

k∈Z

f(·), λ(1/2− s)
p ψ λp · − kb  

s




2

�
1
b



∞

p�1
λ− 2s

p 
R

1 + η2 
2s f(η)




2

ψ
η
λp

 





2

dη

+
1
b



∞

p�1
λ− 2s

p 
R


0≠k∈Z

1 + η2 
s

1 + η +
λp

b
k 

2
⎛⎝ ⎞⎠

s

f(η)f η +
λp

b
k ψ

η
λp

 ψ
η
λp

+
k

b
 dη,

(10)

for f ∈ D. Proof. For arbitrary f ∈ D, we have

I � 
∞

p�1

k∈Z

f(·), λ(1/2− s)
p ψ λp · − kb  

s




2

� 
∞

p�1
λ− 2s

p 
k∈Z


R

1 + η2 
s f(η)ψ

η
λp

 
1
��
λp

 e
2πi kb/λp( η

dη





2

.

(11)

By the periodic process, we have

I � 
∞

p�1
λ− 2s

p 
k∈Z


m∈Z


λp/b(m+1)

λp/b m
1 + η2 

s f(η)ψ
η
λp

 
1
��
λp

 e
2πi kb/λp( η

dη





2

. (12)

Using variable substitution of η⟶ η − (λp/b)m, we get
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I � 
∞

p�1
λ− 2s

p 
k∈Z


m∈Z


λp/b

0
1 + η +

λp

b
m 

2
⎛⎝ ⎞⎠

s

f η +
λp

b
m ψ

η
λp

+
m

b
 

1
��
λp

 e
2πi kb/λp( η

dη





2

�
1
b



∞

p�1
λ− 2s

p 
k∈Z


λp/b

0


m∈Z
1 + η +

λp

b
m 

2
⎛⎝ ⎞⎠

s

f η +
λp

b
m ψ

η
λp

+
m

b
 

��
b

λp



e
2πi kb/λp( η

dη





2

.

(13)

After a simple calculation, we have


m∈Z

1 + η +
λp

b
m 

2
⎛⎝ ⎞⎠

s

f η +
λp

b
m ψ

η
λp

+
m

b
 , (14)

which belongs to L2[0, (λp/b)], and
������
(b/λp)


e2πi(kb/λp)η 

k∈Z
is an orthonormal basis for L2[0, (λp/b)], and we have

I �
1
b



∞

p�1
λ− 2s

p 
λp/b

0

k∈Z

1 + η +
λp

b
k 

2
⎛⎝ ⎞⎠

s

f η +
λp

b
k ψ

η
λp

+
k

b
 





2

dη

�
1
b



∞

p�1
λ− 2s

p 
λp/b

0
Fp(η) · 

k∈Z
1 + η +

λp

b
k 

2
⎛⎝ ⎞⎠

s

f η +
λp

b
k ψ

η
λp

+
k

b
 ⎛⎝ ⎞⎠dη,

(15)

where Fp(η) � 
k∈Z

(1 + (η + λp/bk)2)s f(η + λp/bk)

ψ(η/λp + k/b). So, we can obtain

I �
1
b



∞

p�1
λ− 2s

p 
R

Fp(η) · 1 + η2 
s f(η)ψ

η
λp

 dη

�
1
b



∞

p�1
λ− 2s

p 
R

1 + η2 
2s f(η)




2

ψ
η
λp

 





2

dη

+
1
b



∞

p�1
λ− 2s

p 
R


0≠k∈Z

1 + η2 
s

1 + η +
λp

b
k 

2
⎛⎝ ⎞⎠

s

f(η)f η +
λp

b
k ψ

η
λp

 ψ
η
λp

+
k

b
 dη.

(16)

Tis fnishes the proof.
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Te proof of the following lemma is similar to Lemma 1
and we omit it. □

Lemma 3. Let s ∈ R, a> 0, λp: p � 1, 2, · · ·  ⊂ R+, and
g ∈ Hs(R). Ten we have

I � 

∞

p�1

k∈Z

f(·), e
2πiλp ·

g(· − ak) 
s




2

�
1
a


R

1 + η2 
2s f(η)




2



∞

p�1
g η − λp 




2
dη

+
1
a


R


0≠k∈Z

1 + η2 
s

1 + η +
k

a
 

2
⎛⎝ ⎞⎠

s

f(η)f η +
k

a
  

∞

p�1
g η − λp g η +

k

a
− λp dη

, (17)

for f ∈ D.

3. The Sufficient Conditions of IWF and IGF

Tis section is devoted to the sufcient conditions of IWS
and IGS to be frames for Hs(R) and some examples are

given. We begin with the sufcient condition of IWS to be
a frame.

Theorem 4. Let s ∈ R, b> 0, λp: p � 1, 2, · · ·  ⊂ R+, and
Ψ ⊂ Hs(R). If

B �
1
b
sup
η∈R

1 + η2 
s


L

l�1


∞

p�1
λ− 2s

p 
k∈Z

ψl

η
λp

 ψl

η
λp

+
k

b
 




<∞, (18)

then X(Ψ) forms a Bessel sequence in Hs(R) with bound B. If
furthermore,

A �
1
b
inf
η∈R

1 + η2 
s



L

l�1


∞

p�1
λ− 2s

p
ψl

η
λp

 





2

− 
L

l�1


∞

p�1
λ− 2s

p 
0≠k∈Z

ψl

η
λp

 ψl

η
λp

+
k

b
 




⎛⎝ ⎞⎠> 0, (19)

then X(Ψ) forms a IWF for Hs(R) with bounds A and B. Proof. By Lemma 2, we have

I � 
L

l�1


∞

p�1

k∈Z

f(·), λ(1/2− s)
p ψl λp · − kb  

s




2

�
1
b



L

l�1


∞

p�1
λ− 2s

p 
R

1 + η2 
2s f(η)




2

ψl

η
λp

 





2

dη

+
1
b



L

l�1


∞

p�1
λ− 2s

p 
R


0≠k∈Z

1 + η2 
s

1 + η +
λp

b
k 

2
⎛⎝ ⎞⎠

s

f(η)f η +
λp

b
k ψl

η
λp

 ψl

η
λp

+
k

b
 dη � I1 + I2.

(20)
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We frst estimate I2 as

I2


≤
1
b



L

l�1


∞

p�1
λ− 2s

p 
0≠k∈Z


R

1 + η2 
s

1 + η +
λp

b
k 

2
⎛⎝ ⎞⎠

s

f(η)f η +
λp

b
k ψl

η
λp

 ψl

η
λp

+
k

b
 




dη. (21)

By Cauchy–Schwartz inequality, we can get

I2


≤
1
b



L

l�1


∞

p�1
λ− 2s

p 
0≠k∈Z


R

1 + η2 
2s f(η)




2

ψl

η
λp

 ψl

η
λp

+
k

b
  | dη 

1/2

× 
R

1 + η +
λp

b
k 

2
⎛⎝ ⎞⎠

2s

f η +
λp

b
k 





2

ψl

η
λp

 ψl

η
λp

+
k

b
 




dη⎛⎝ ⎞⎠

1/2

≤
1
b



L

l�1

j∈Z

λ− 2s
p 

0≠k∈Z

R

1 + η2 
2s f(η)




2

ψl

η
λp

 ψl

η
λp

+
k

b
 




dη⎛⎝ ⎞⎠

1/2

× 
0≠k∈Z


R

1 + η +
λp

b
k 

2
⎛⎝ ⎞⎠

2s

f η +
λp

b
k 





2

ψl

η
λp

 ψl

η
λp

+
k

b
 




dη⎛⎝ ⎞⎠

1/2

�
1
b



L

l�1


∞

p�1
λ− 2s

p (♣)(♠).

(22)

Actually, (♣) � (♠), due to

(♠) � 
0≠k∈Z


R

1 + η2 
2s f(η)




2

ψl

η
λp

 ψl

η
λp

−
k

b
 




dη⎛⎝ ⎞⎠

1/2

� 
0≠k∈Z


R

1 + η2 
2s f(η)




2

ψl

η
λp

 ψl

η
λp

+
k

b
 




dη⎛⎝ ⎞⎠

1/2

� (♣).

(23)

Ten, we have

I2


≤
1
b



L

l�1


∞

p�1
λ− 2s

p 
0≠k∈Z


R

1 + η2 
2s f(η)




2

ψl

η
λp

 ψl

η
λp

+
k

b
 




dη. (24)

Together with (3.1), (3.3), and (3.4), we have
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I≤ I1 + I2


≤
1
b



L

l�1


∞

p�1
λ− 2s

p 
R

1 + η2 
2s f(η)




2

ψl

η
λp

 





2

dη

+
1
b



L

l�1


∞

p�1
λ− 2s

p 
0≠k∈Z


R

1 + η2 
2s f(η)




2

ψl

η
λp

 ψl

η
λp

+
k

b
 




dη

� 
R

1 + η2 
s f(η)



2

·
1
b
1 + η2 

s


L

l�1


∞

p�1
λ− 2s

p 
k∈Z

ψl

η
λp

 ψl

η
λp

+
k

b
 




dη

≤B‖f‖
2
s .

(25)

In addition, by (19) and (20), we get

I≥ I1 − I2


≥
1
b



L

l�1


∞

p�1
λ− 2s

p 
R

1 + η2 
2s f(η)




2

ψl

η
λp

 





2

dη

−
1
b



L

l�1

j∈Z

λ− 2s
p 

0≠k∈Z

R

1 + η2 
2s f(η)




2

ψl

η
λp

 ψl

η
λp

+
k

b
 




dη

� 
R

1 + η2 
s f(η)



2

·
1
b
1 + η2 

s


L

l�1


∞

p�1
λ− 2s

p
ψl

η
λp

 





2

− 
L

l�1


∞

p�1
λ− 2s

p 
0≠k∈Z

ψl

η
λp

 ψl

η
λp

+
k

b
 




⎛⎝ ⎞⎠dη

≥A‖f‖
2
s .

(26)

So, X(Ψ) forms a IWF for Hs(R) with bounds A and B

by (25) and (26). Te proof is thus fnished. □
Corollary  . Suppose Ψ ⊂ Hs(R) and supp ψl ⊂ [cl, dl] with
dl − cl < 1/b for each 1≤ l≤ L, then we get the following.

(i) If

B �
1
b
supη∈R 1 + η2 

s


L

l�1


∞

p�1
λ− 2s

p
ψl

η
λp

 





2

< +∞, A �
1
b
inf
η∈R

1 + η2 
s


L

l�1


∞

p�1
λ− 2s

p
ψl

η
λp

 





2

> 0, a.e., (27)

then, X(Ψ) forms a IWF in Hs(R) with bounds
A andB.

(ii) Besides, if X(Ψ) forms a IWF in Hs(R) with bounds
A andB, then we get

A≤
1
b
1 + η2 

s


L

l�1


∞

p�1
λ− 2s

p
ψl

η
λp

 





2

≤B a.e.onR.

(28)
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Proof. ByTeorem 4, the statement (i) is correct. For (ii), we
assume that X(Ψ) forms a IWF. By (20), we can get

A‖f‖
2
s ≤ 

L

l�1


∞

p�1

k∈Z

f(·), λ(1/2− s)
p ψl λp · − kb  

s




2

� 
R

1 + η2 
s f(η)



21
b
1 + η2 

s


L

l�1


∞

p�1
λ− 2s

p
ψl

η
λp

 





2

dη≤B‖f‖
2
s ,

(29)

for all f ∈ Hs(R). It follows that


R

1 + η2 
s f(η)



2 1

b
1 + η2 

s


L

l�1


∞

p�1
λ− 2s

p
ψl

η
λp

 





2

− A⎛⎝ ⎞⎠dη≥ 0. (30)

If there exists E ⊂ R with E| |> 0 such that

1
b
1 + η2 

s


L

l�1


∞

p�1
λ− 2s

p
ψl

η
λp

 





2

<A, (31)

on E, then by taking f(·) � (1 + η2)− s/2χE(·) in (30) and the
reduction to absurdity, we get

A≤
1
b
1 + η2 

s


L

l�1


∞

p�1
λ− 2s

p
ψl

η
λp

 





2

, (32)

a.e. on E. By a standard argument, we get

A≤
1
b
1 + η2 

s


L

l�1


∞

p�1
λ− 2s

p
ψl

η
λp

 





2

, (33)

which holds a.e. on R. Te other inequality in (28) is
similarly provable. We thus fnish the proof. □

Example 1. Suppose s> 0, L ∈ N. For each 1≤ l≤L, we as-
sume that Nl ≤ ψl(ξ)


≤Ml almost everywhere with

0<Nl ≤Ml and supp (ψl) � [cl, dl] with 0< cl <dl.We take
λp � ((αp/p))2s, p � 1, 2, · · ·. Ten, if 0< α< 1 and
dl − cl < (1/b) for every 1≤ l≤L, we can get X(Ψ) that forms
an IWF for Hs(R).

Proof. We suppose that

N � min N1, N2, . . . , NL , M � max M1, M2, . . . , ML ,

(34)

and

c � min c1, c2, . . . , cL , d � max d1, d2, . . . , dL . (35)

Also, supp (ψl) � [cl, dl] ⊂ [c, d], so c≤ (η/λp)≤ d, i.e.,
cλp ≤ η≤dλp, and by λp � ((αp/p))2s, p � 1, 2, · · ·, we can
obtain 0< λp < 1. Ten, we have only 0< cλp ≤ η≤ dλp <d,
where ψl((η/λp)) is not equal to 0, and this implies that
1< (1 + η2)s < (1 + d2)s. It follows that

L

b
N

2


∞

p�1

αp

p
≤
1
b
1 + η2 

s


L

l�1


∞

p�1
λ− 2s

p
ψl

η
λp

 





2

≤
L

b
M

2 1 + d
2

 
s



∞

p�1

αp

p
. (36)

By a standard argument, if 0< α< 1, the series

∞
p�1(α

p/p) is convergent, and its sum is − ln(1 − α). Ten,
we can get
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L

b
N

2
(− ln(1 − α))≤

1
b
1 + η2 

s


L

l�1


∞

p�1
λ− 2s

p
ψl

η
λp

 





2

≤
L

b
M

2 1 + d
2

 
s
(− ln(1 − α)). (37)

Tis implies that X(Ψ) forms an IWF for Hs(R) by
Corollary 5. □

Remark 6. Let 1≤ l≤L and ψl satisfy the conditions in
Example 1. Taking λ− 2s

p as the general term of a convergent
series and λp > 0 being bounded above, we can obtain X(Ψ)

that forms an IWF for Hs(R) by Corollary 5. From this, we
can construct many useful examples.

Ten, we give the sufcient condition of IGF.

Theorem 7. Let s ∈ R, a> 0, λp: p � 1, 2, · · ·  ⊂ R+, and
G ⊂ Hs(R). If

B �
1
a
sup
η∈R

1 + η2 
s


k∈Z



L

l�1


∞

p�1
ĝl η − λp ĝl η +

k

a
− λp 





⎛⎝ ⎞⎠<∞, (38)

then, G(G) is a Bessel sequence with bound B. Besides, if

A �
1
a
inf
η∈R

1 + η2 
s



L

l�1


∞

p�1
gl η − λp 




2

− 
0≠k∈Z



L

l�1


∞

p�1
gl η − λp gl η +

k

a
− λp 





⎛⎝ ⎞⎠> 0, (39)

then, G(G) forms IGF with bounds A and B. Proof. By Lemma 3, ∀f ∈ D, we have

I � 
L

l�1


∞

p�1

k∈Z

f(·), e
2πiλp ·

gl(· − ak) 
s




2

�
1
a


R

1 + η2 
2s f(η)




f(η) f(η)




2



L

l�1


∞

p�1


gl η − λp 







2

dη

+
1
a


R


0≠k∈Z

1 + η2 
s

1 + η +
k

a
 

2
⎛⎝ ⎞⎠

s

f(η)f η +
k

a
  

L

l�1


∞

p�1
gl η − λp gl η +

k

a
− λp dη

� I1 + I2.

(40)

We frst compute I2 as
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I2


≤
1
a


0≠k∈Z


R

1 + η2 
s

1 + η +
k

a
 

2
⎛⎝ ⎞⎠

s



L

l�1


∞

p�1

f(η)f η +
k

a
 gl η − λp gl η +

k

a
− λp 




dη

≤
1
a


0≠k∈Z


R

1 + η2 
2s f(η)




2



L

l�1


∞

p�1
gl η − λp gl η +

k

a
− λp 




dη⎛⎝ ⎞⎠

1/2

× 
R

1 + η +
k

a
 

2
⎛⎝ ⎞⎠

2s

f η +
k

a
 





2



L

l�1


∞

p�1
gl η − λp gl η +

k

a
− λp 




dη⎛⎝ ⎞⎠

1/2

(41)

≤
1
a


0≠k∈Z


R

1 + η2 
2s f(η)




2



L

l�1


∞

p�1
gl η − λp gl η +

k

a
− λp 




dη⎛⎝ ⎞⎠

1/2

× 
0≠k∈Z


R

1 + η +
k

a
 

2
⎛⎝ ⎞⎠

2s

f η +
k

a
 





2



L

l�1


∞

p�1
gl η − λp gl η +

k

a
− λp 




dη⎛⎝ ⎞⎠

1/2 (42)

�
1
a

(∗)(∗∗). (43)

Ten, we prove that (∗) � (∗∗). Actually,

(∗∗) � 
0≠k∈Z


R

1 + η2 
2s f(η)




2



L

l�1


∞

p�1
gl η −

k

a
− λp gl η − λp 




dη⎛⎝ ⎞⎠

1/2

� 
0≠k∈Z


R

1 + η2 
2s f(η)




2



L

l�1


∞

p�1
gl η − λp gl η +

k

a
− λp 




dη⎛⎝ ⎞⎠

1/2

� (∗).

(44)

So, we have

I2


≤
1
a


0≠k∈Z


R

1 + η2 
2s f(η)




2



L

l�1


∞

p�1
gl η − λp gl η +

k

a
− λp 




dη. (45)

By (40), we have

I1 − I2


≤ I � 
L

l�1


∞

p�1

k∈Z

f(·), e
2πiλp ·

gl(· − ak) 
s




2
≤ I1 + I2


. (46)

Tus, together with (45), we can obtain
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R

1 + η2 
s f(η)



2

·
1
a
1 + η2 

s


L

l�1


∞

p�1
gl

 η − λp  |
2

− 
0≠k∈Z



L

l�1

j∈Z

gl η − λp gl η +
k

a
− λp 





⎛⎝ ⎞⎠dη

≤ I≤
R

1 + η2 
s f(η)



21
a
1 + η2 

s

k∈Z



L

l�1


∞

p�1
gl η − λp gl η +

k

a
− λp 





⎛⎝ ⎞⎠dη.

(47)

Hence, we fnish the proof by (3.10), (3.11), and
(3.17). □

Corollary 8. Suppose G ⊂ Hs(R) and supp gl ⊂ [cl, dl] with
dl − cl < (1/a) for each 1≤ l≤ L, then we can get the following.

(i) If

B �
1
a
sup
η∈R

1 + η2 
s


L

l�1


∞

p�1
gl η − λp 




2
< +∞, A �

1
a
inf
η∈R

1 + η2 
s


L

l�1


∞

p�1
gl η − λp 




2
> 0 a.e., (48)

then G(G) is a IGF for Hs(R) with bounds
A andB.

(ii) If G(G) forms a IGF for Hs(R) with bounds
A andB, then we can obtain

A≤
1
a
1 + η2 

s


L

l�1


∞

p�1
gl η − λp 




2
≤B a.e.onR. (49)

Proof. So, (i) is obviously right by Teorem 7. For (ii), by
(40), we get

A‖f‖
2
s ≤

1
a


R

1 + η2 
2s f(η)




f(η) f(η)




2



L

l�1


∞

p�1


gl η − λp 







2

dη≤B‖f‖
2
s , (50)

for all f ∈ D. Ten, we have


R

1 + η2 
s f(η)



2 1

a
1 + η2 

s


L

l�1


∞

p�1


gl η − λp 



2

− A⎛⎝ ⎞⎠ dη≥ 0. (51)

So,

A≤
1
a
1 + η2 

s


L

l�1


∞

p�1
gl η − λp 




2
, (52)

holds a.e. on R by a standard argument. We can similarly
prove another inequality in (49). Tus, the proof is
completed. □

Example 2. Suppose gl ∈ L∞(R) and supp gl ⊂ [cl, dl] with
dl − cl < 1/a for each 1≤ l≤L, and 0<m≤ λp ≤M for arbi-
trary p � 1, 2, · · ·. Ten we can getG(G) that forms a IGF for
Hs(R) after a simple calculation.

4. The Necessary Condition

We present the necessary conditions of IWF and IGF in
Hs(R). First, we give a necessary condition for X(Ψ) to be
a IWF for Hs(R). By Proposition 19.1.3 in [4], if the IWS
λ1/2p ψ(λpx − kb): p � 1, 2, . . . , k ∈ Z  forms a IWF for

L2(R), then λp: p � 1, 2, · · ·  has to be a fnite union of
logarithmically separated sets. Ten, we get the following
theorem.

Theorem 9. Let s ∈ R, b> 0, λp: p � 1, 2, · · ·  ⊂ R+, and
Ψ ⊂ Hs(R). We assume that X(Ψ) forms an IWF in Hs(R)

and B is the upper frame bound. Ten, we have
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1
b
1 + η2 

s


L

l�1


∞

p�1
λ− 2s

p
ψl

η
λp

 





2

≤B for a.e. η ∈ R. (53)

Proof. We just need to prove that for arbitrary M, N ∈ N+

and M<N,

1
b
1 + η2 

s


L

l�1


N

p�M

λ− 2s
p

ψl

η
λp

 





2

≤B for a.e. η ∈ R. (54)

So, for arbitrary fx f ∈ D, we get

A‖f‖
2
s ≤ 

L

l�1


N

p�M


k∈Z

f(·), λ(1/2− s)
p ψl λp · − kb  

s




2
≤B‖f‖

2
s . (55)

Hence,



L

l�1


N

p�M


k∈Z

f(·), λ(1/2− s)
p ψl λp · − kb  

s




2

� 
L

l�1


N

p�M

λ− 2s
p 

k∈Z


R
1 + η2 

s f(η)ψl

η
λp

 
1
��
λp

 e
2πi kb/λp( η

dη





2

�
1
b



L

l�1


N

p�M

λ− 2s
p 

k∈Z


R
1 + η2 

s f(η)ψl

η
λp

 

��
b

λp



e
2πi kb/λp( η

dη





2

.

(56)

For ∀p ∈ Z,
������
(b/λp)


e2πi(kb/λp)η: k ∈ Z  is an o.n.b for

L2(J), where J ⊂ R is a closed interval with length (λp/b).

Suppose I is a closed interval with I ⊂ (0,∞)∩ J and supp

f ⊂ I. Ten, (1 + η2)s f(η)ψl((η/λj))∈ L2(I). By Plancherel

theorem, we have



L

l�1


N

p�M


k∈Z

f(·), λ(1/2− s)
p ψl λp · − kb  

s




2

�
1
b



L

l�1


N

p�M

λ− 2s
p 

I
1 + η2 

2s f(η)



2

ψl

η
λp

 





2

dη

�
1
b


I
1 + η2 

s f(η)



2
1 + η2 

s


L

l�1


N

p�M

λ− 2s
p

ψl

η
λp

 





2

dη.

(57)

We assume that η0 > 0, and by taking q> 0 such that Iq �

[η0, η0 + q] and Iq ⊂ I. We choose fq ∈ D in (57) such that

fq(η) �
1

1 + η2 
s/2q

− 1/2χIq
, ‖f‖s � 1. (58)

Ten, we have



L

l�1


N

p�M


k∈Z

f(·), λ((1/2)− s)
p ψl λp · − kb  

s




2

�
1
qb


η0+qh

η0
1 + η2 

s


L

l�1


N

p�M

λ− 2s
p

ψl

η
λp

 





2

dη. (59)
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If q⟶ 0, we can get

1
b
1 + η20 

s


L

l�1


N

p�M

λ− 2s
p

ψl

η0
λp

 





2

≤B, (60)

by (55). Ten, we have

1
b
1 + η2 

s


L

l�1


∞

p�1
λ− 2s

p
ψl

η
λp

 





2

≤B, a.e.η> 0, (61)

by N⟶ +∞ and the arbitrariness of η0 > 0. Te case η< 0
can be proved similarly. Te proof is thus completed.

Te next theorem is devoted to the necessary condition
of G(G) that forms IGF in Hs(R). □

Theorem 10. Let s ∈ R, a> 0, λp: p � 1, 2, · · ·  ⊂ R+, and

G ⊂ Hs(R). We assume that G(G) is an IGF for Hs(R) with

bounds A and B. Ten, we can get

A≤
1
a
1 + η2 

s


L

l�1


∞

p�1


gl η − λp 



2

≤B. (62)

Proof. Since G(G) is an IGF for Hs(R) with bounds A and
B. Ten, we can obtain

A‖f‖
2
s ≤ 

L

l�1


∞

p�1

k∈Z

f(x), e
2πiλpx

gl(x − ak) 
s




2
≤B‖f‖

2
s , for∀f ∈ H

s
(R). (63)

Suppose f ∈ D, then we get



L

l�1


∞

p�1

k∈Z

f(x), e
2πiλpx

gl(x − ak) 
s




2

� 
L

l�1


∞

p�1

k∈Z


R

1 + η2 
s f(η)gl η − λp e

2πiakη




2

�
1
a



L

l�1


∞

p�1

k∈Z


R

1 + η2 
s f(η)gl η − λp a

1
2e

2πiakη





2

.

(64)

We suppose that I ⊂ Rwith length (1/a) and supp f ⊂ I.
Since f ∈ D, so for ∀η ∈ I, ∃M> 0 such that (1+|

η2)s f(η)|<M. Ten, we have


I
1 + η2 

2s f(η)



2

gl η − λp 



2
dη≤

I
1 + η2 

2s f(η)



2

1 + η − λp 
2

 
s

gl η − λp 



2
dη≤M

2
‖g‖

2
s , ∀1≤ l≤L.

(65)

So, (1 + η2)s f(η) gl(η − λp) ∈ L2(I) and



L

l�1


∞

p�1

k∈Z

f(x), e
2πiλpx

gl(x − ak) 
s




2

�
1
a



L

l�1


∞

p�1


I
1 + η2 

2s f(η)



2

gl η − λp 



2
dη. (66)

Ten by (63), we get

A‖f‖
2
s ≤

1
a



L

l�1


∞

p�1


I
1 + η2 

2s f(η)



2

gl η − λp 



2
dη≤B‖f‖

2
s . (67)
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So, we get

A≤
1
a
1 + η2 

s


L

l�1


∞

p�1


gl η − λp 



2

≤Ba.e. η ∈ R. (68)

Tis fnishes the proof. □

5. The Perturbation of IWF and IGF

In this section, we give the perturbation theorems of IWF
and IGF.

Theorem 11. Let φ,ψ ∈ Hs(R), λp: p � 1, 2, · · ·  ⊂ R+,

and b> 0 be given. We assume that λ((1/2)− s)
p ψ

(λpx − kb): p � 1, 2, . . . , k ∈ Z} is an IWF with bounds A, B.
If φ and ψ satisfy that

R �
1
b
sup
η∈R

1 + η2 
s



∞

p�1
λ− 2s

p 
k∈Z

(ψ − φ)
η
λp

 (ψ − φ)
η
λp

+
k

b
 




<A, (69)

then λ((1/2)− s)
p φ(λpx − kb): p � 1, 2, . . . , k ∈ Z  forms an

IWF for Hs(R) with frame bounds

A 1 −

��
R

A



 

2

, B 1 +

��
R

A



 

2

. (70)

Proof. Fix f ∈ D, Similar to Lemma 2 proof, we get

I � 
∞

p�1

k∈Z

f(x), λ(1/2− s)
p (ψ − φ) λpx − kb  

s




2

�
1
b



∞

p�1
λ− 2s

p 
R

1 + η2 
s f(η)(ψ − φ)

η
λp

  
k∈Z

1 + η +
λp

b
k 

2
⎛⎝ ⎞⎠

s

f η +
λp

b
k (ψ − φ)

η
λp

+
k

b
 dη.

(71)

Ten, we have

I≤
1
b



∞

p�1
λ− 2s

p 
k∈Z


R

1 + η2 
2s f(η)




2

(ψ − φ)
η
λp

 (ψ − φ)
η
λp

+
k

b
 




dη 

1/2

× 
R

1 + η +
λp

b
k 

2
⎛⎝ ⎞⎠

2s

f η +
λp

b
k 





2

(ψ − φ)
η
λp

 (ψ − φ)
η
λp

+
k

b
 




dη⎛⎝ ⎞⎠

1/2

≤
1
b



∞

p�1
λ− 2s

p 
k∈Z


R

1 + η2 
2s f(η)




2

(ψ − φ)
η
λp

 (ψ − φ)
η
λp

+
k

b
 




dη⎛⎝ ⎞⎠

1/2

× 
∞

p�1
λ− 2s

p 
k∈Z


R

1 + η +
λp

b
k 

2
⎛⎝ ⎞⎠

2s

f η +
λp

b
k 





2

(ψ − φ)
η
λp

 (ψ − φ)
η
λp

+
k

b
 




dη⎛⎝ ⎞⎠

1/2

≤
1
b

(∗ )(∗ ∗ ).

(72)
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Actually, (∗) � (∗∗), due to

(∗∗) � 
∞

p�1
λ− 2s

p 
k∈Z


R

1 + η2 
2s f(η)




2

(ψ − φ)
η
λp

−
k

b
 (ψ − φ)

η
λp

 




dη⎛⎝ ⎞⎠

1/2

� 
∞

p�1
λ− 2s

p 
k∈Z


R

1 + η2 
2s f(η)




2

(ψ − φ)
η
λp

 (ψ − φ)
η
λp

+
k

b
 




dη⎛⎝ ⎞⎠

1/2

� (∗).

(73)

So, by (69), we have

I≤
1
b



∞

p�1
λ− 2s

p 
k∈Z


R

1 + η2 
2s f(η)




2

(ψ − φ)
η
λp

 (ψ − φ)
η
λp

+
k

b
 




dη

� 
R

1 + η2 
s f(η)



2

·
1
b
1 + η2 

s


∞

p�1
λ− 2s

p 
k∈Z

(ψ − φ)
η
λp

 (ψ − φ)
η
λp

+
k

b
 




dη

≤R‖f‖
2
s .

(74)

Tus, we fnish the proof by Lemma 1. □

Example 3. Let s> 0 and suppose ψ ∈ Hs(R) satisfes
N1 ≤ ψ


≤N2 with N1, N2 > 0 and supp ψ ⊂ [c1, d1] with

d1 − c1 < (1/b). Ten, we assume that φ ∈ Hs(R) satisfes
M1 ≤ φ


≤M2 with M1, M2 > 0 and supp φ ⊂ [c2, d2] with

c1 < c2 <d1 and d2 − d1 < (1/b). Taking λp � ((p/3p))2s for
each p ∈ N+, we have λ((1/2)− s)

p φ(λpx − kb): p � 1,

2, . . . , k ∈ Z} which forms a frame for Hs(R) after calcu-
lations similar to Example 1.

Theorem 12. Let g, h ∈ Hs(R), λp: p � 1, 2, · · ·  ⊂ R+,
and a> 0 be given. We assume that e2πiλpx g(x − ak): p �

1, 2, . . . , k ∈ Z} forms an IGF for Hs(R) with bounds
A and B. If

R �
1
a
sup
η∈R

1 + η2 
s


k∈Z



∞

p�1
(g − h) η − λp (g − h) η − λp −

k

a
 




<A, (75)

then e2πiλpxh(x − ak): p � 1, 2, . . . , k ∈ Z  forms a IGF
for Hs(R) with bounds

A 1 −

��
R

A



 

2

, B 1 +

��
R

A



 

2

. (76)

Proof. If fx f ∈ D, then we have



∞

p�1

k∈Z

f(x), e
2πiλpx

(g − h)(x − ak) 
s




2

� 
∞

p�1

k∈Z


R

1 + η2 
s f(η)(g − h) η − λp e

2πiakη
dη





2
.

(77)

By the periodic process, we get
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∞

p�1

k∈Z

f(x), e
2πiλpx

(g − h)(x − ak) 
s




2

� 
∞

p�1

k∈Z


m∈Z


m+1/a

m/a
1 + η2 

s f(η)(g − h) η − λp e
2πiakη

dη




2

� 
∞

p�1

k∈Z


m∈Z


1/a

0
1 + η +

m

a
 

2
 

s

f η +
m

a
 (g − h) η +

m

a
− λp e

2πiakη
dη





2

�
1
a



∞

p�1

k∈Z


1/a

0


m∈Z
1 + η +

m

a
 

2
 

s

f η +
m

a
 (g − h) η +

m

a
− λp a

1/2
e
2πiakη

dη




2

.

(78)

A simple calculation implies that


m∈Z

1 + η +
m

a
 

2
 

s

f η +
m

a
 (g − h) η +

m

a
− λp ∈ L

2
[0, 1/a], (79)

and a1/2e2πiakη k∈Z is an orthonormal basis for L2[0, 1/a]. It
follows that
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k
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s

f η +
k
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 (g − h) η +
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(80)

where

Fp(η) � 
k∈Z

1 + η +
k

a
 

2
⎛⎝ ⎞⎠

s

f η +
k

a
 (g − h) η +

k

a
− λp . (81)

Ten, we can obtain
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(82)

So, we get
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(83)

Hence,



∞

p�1

k∈Z
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Similar to the proof mentioned above and using con-
dition (5.2), the proof is thus completed by Lemma 1. □

Example 4. Suppose g ∈ L∞(R) and supp g ⊂ [c1, d1] with
d1 − c1 < 1/a. We assume 0<m≤ λp ≤M for arbitrary
p ∈ N+. Let c1 < c2 <d1 and d2 − d1 < 1/a.Ten, by taking the
function h ∈ Hs(R) such that h∈ L∞(R) and supp
h ⊂ [c2, d2], we have e2πiλpxh(x − ak): p � 1, 2, . . . , k ∈ Z 

which forms a IGF for Hs(R).

6. Conclusion

In this paper, we introduced the concept of IWS and IGS in
Sobolev space Hs(R). Ten, we provided the necessary and
sufcient conditions for IWS and IGS to be IWF and IGF in
Hs(R). Using these conditions, we also constructed specifc
IWF and IGF. At last, we discussed the perturbation theorem
of IWF and IGF.Te obtained results can provide theoretical
reference for the practical application of frame in image
restoration and DCNNs [47–50]
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