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Due to its potential applications in image restoration and deep convolutional neural networks, the study of irregular frames has
interested some researchers. This paper addresses irregular wavelet systems (IWSs) and irregular Gabor systems (IGSs) in Sobolev
space H* (R). We obtain the sufficient and necessary conditions for IWS and IGS to be frames. By applying these conditions, we
also derive the characterizations of IWS and IGS to be frames. Finally, we discuss the perturbation theorem of irregular wavelet
frames (IWFs) and irregular Gabor frames (IGFs). We also provided some examples to support our results.

1. Introduction

An at most countable sequence {e;},. ; in a separable Hilbert
space Z is called a Bessel sequence in 7 if there exists C >0
such that

Y 1{fre) I <CIfI for f € 7, W

ies

where C is called a Bessel bound; it is called a frame for #Z if
there exists 0 <C, <C, < co such that

CUfIF< Y I{fre) I’ <CilfI*for f e, ()

ies

where C,; and C, are called frame bounds. The concept of
frame was first proposed by Duffin and Schaeffer when
studying the nonharmonic Fourier series in [1]. However, it
did not attract people’s attention at that time. Until 1986,
Daubechies et al. in [2] noticed that frames can represent the
functions in L?(R) in terms of series expansion. This ex-
pansion is very similar to the orthonormal basis expansion,
but is more flexible than the orthonormal basis. Many
scholars are beginning to realize the potential application of

frame theory and frame theory is rapidly developing. So far,
the frame theory is widely used in signal and image pro-
cessing, biomedicine, applied mathematics, physical science,
earth science, DCNNSs, and many other fields. More details
can be found in [2-18] and references therein.

Now the research on frame theory mainly focuses on
regular wavelet frame (RWF) and regular Gabor frame
(RGF) in L? (R) and Sobolev space H* (R). We recall that for
a>1,b>0 and y,g € L*(R), two sequences {a/*y(a’x
—kb): j,k € Z} and {e*™™*g(x - na): j,k € Z} are called
RWS and RGS, if they form frames for IL*(R), and we say
that they are RWF and RGF for L*(R), respectively. For
s € R, we denote by H* (R) the Sobolev space consisting of
all tempered distributions f such that

||f||§ = JR(l + 112)5'}‘(11)'2(117 < 00. (3)

It is easy to check that H* (R) is a Hilbert space under the
inner product

(frg)s= JR(l +1) Fg(mdy,  f,g e H'(R). (4)
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In particular, H°(R) = L*(R) by Plancherel theorem.
Let S(R) denote the Schwartz space and by [19], S(R)
satisfies the following property: a function f €S
(R)if and onlyif fe S(R).

We first have an overview of RWF and RGF.

(i) RWF and RGF for L?(R) and its subspaces.

A core problem of wavelet/Gabor frame theory is
what conditions we need to impose on the generator
to make the wavelet/Gabor systems to be frames and
dual frames. For relevant results about this, in-
cluding the sufficient and necessary conditions for
wavelet/Gabor systems to be frames and the char-
acterizations of dual wavelet/Gabor frames, one can
refer to [4, 20-23]. Li and Tian in [24] proposed the
concept of partial Gabor systems (PGSs) and
studied the conditions for PGS from Gabor frames.
They also characterized the dual partial Gabor
frames. For the latest research on wavelet/Gabor
frame, see [25-28].

(ii) RWF for Sobolev spaces.

Ehler in [29] presented a method of constructing
a pair of dual wavelet frames from any pair of
multivariate refinable functions in a pair of Sobolev
spaces. Han and Shen in [30] extended the mixed
extension principle in L?(R?) to Sobolev Spaces.
They in [31] also gave the characterization of the
Sobolev spaces by using nonstationary tight wavelet
frames for L?(R). Li and Zhang in [32] charac-
terized the nonhomogeneous dual wavelet frames in
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Sobolev space and derived the mixed oblique ex-
tension principle. Li and Jia in [33] investigated the
properties of weak nonhomogeneous wavelet bi-
frames (WNWBF) in the reducing subspaces of
a pair of dual Sobolev spaces and constructed the
WNWBE. All the compactly supported m th-order
derivative-orthogonal Riesz wavelets in Sobolev
space are completely depicted by Han and Michelle
in [34]. For other studies on frames in Sobolev
spaces, one can refer to [35-37].

(iii) The perturbation of RWF and RGF.

Zhang in [38] presented the conditions for a suitable
perturbation of a wavelet/Gabor frame which is still
a wavelet/Gabor frame. Christensen in [39] studied
the stability frames and applied them to the per-
turbations of a Gabor frame. Sun and Zhou in [40]
also obtained some results about the stability of
Gabor frames. Bownik and Christensen in [41]
characterized the Gabor frames with rational pa-
rameters, and as an application, they obtained re-
sults concerning the stability of Gabor frames under
perturbation of the generators.

In practice, the sampling points may be irregular and it is
desirable to have wavelet and Gabor systems in some
Sobolev space. This inspires us to study irregular wavelet and
Gabor systems in Sobolev space. Given L e N and
{/\P: p= 1,2,---} c R*, we assume that ¥ = {y;: 1<I<L}
and G = {g;: 1<I<L} are two the subsets in H*(R). We
define the IWS and IGS generated by ¥ and G as

X(9) ={\"*yy(Ax —kb): 1<1<Lp=1,2,...,k e Z}, (5)

9(G) ={e™ g (x —ak): 1<1<Lp=1,2,... .k € Z}. (6)

So, we have

D = {f f eS(R) and_? is compactly supported in [R\{O}}.
(7)

Then, D is a dense subset of H*(R).

For the research of the IWS and IGS in L? (R), Sun and
Zhou in [42] constructed the IWF and IGF and gave the
sufficient conditions for an IWS and IGS to be a frame. They
in [43] also studied the density of IWF. Christensen in [44]
gave the different sufficient conditions for IWS and IGS to be
frames. For other relevant results, see [45, 46] and the
references therein.

Motivated by the existing results mentioned above, we
naturally raise a few questions: Are there similar necessary
and sufficient conditions for IWS and IGS to be IWF and
IGF in Sobolev spaces? How to provide the perturbation
characterizations of IWF and IGF in Sobolev spaces? Is it
possible to construct some examples to support the relevant

results? In this paper, we will address these issues. It is
nontrivial due to the more flexibility of the dilation and
modulation factor A, and the complexity of Sobolev spaces.

1.1. Plan of Work. This paper addresses the IWF and IGF of
the form (5) and (6) in H* (R) and the rest of this paper is
organized as follows. Section 2 is devoted to some lemmas
for later use. In Section 3 and Section 4, we focus on the
sufficient and necessary conditions of IWS and IGS to be
frames. The characterization of IWS and IGS to be frames
under certain restrictions is also obtained. In section 5, we
present the perturbation theorem of IWF and IGF. Relevant
examples are also presented. Finally, conclusions are drawn
in Section 6.

2. Some Auxiliary Lemmas

We give some auxiliary lemmas in this section. The next
lemma can be found in [4].



Journal of Mathematics

Lemma 1. We assume that {fihe, and {gihie, < #. Then, R \2 R\
let {fi}iey be a frame with bounds Aand B. If there is Al1- y ,Bl 1+ 3]
a constant R < A such that

are the frame bounds.

i [fo fe— gl <RIfIP, VfeZ, (8)
k=1

Lemma 2. Let s€ R, b>0, {AP: p=12,-

then {gi}ie, is a frame for I and v € H*(R). Then, we have

(8] s 2
-5 T oAy, o)

2
e _2s 25|~ 21l
=E;Ap2 JR(IMZ) |7 ()| M}‘p) dy
1,501 1 o )
W 1 2 F(n+ Lk o L) L+ )dn,
+bPleJRO¢kZ€Z(+n)< n+ )fnf ey ke P, e )
for f € D. Proof. For arbitrary f € 9, we have

Tro4 0, k) [

HM8

2

L+ Y 705 i)i 2mi (kbiA, ) g, |
JR( +ri)f(r1)w()L \/Ee n

P

Mg

)

1 kez

a~]
Il

By the periodic process, we have

2

)L Q2 (kbmp)qdn .

J»Aplb(rrﬁ-l) (1 2)5?( )A< 1
+ _
Ao T)TIVY, 7

PR

=1 keZ \meZ

h~3

Using variable substitution of 7 — 1 — (1,/b)m, we get

(9)

} c R, and

(10)

(11)

(12)
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A /b 1 2\° 2 ‘
N ”(fﬁp’”) f<'1+P””>fV<n+m),/—l e gy
), b b Y )

2

p=1 keZ
(13)
s _— 2
13,2 r"/b < ( Ap )2> A( Ap )A n m\ b oui(n,)
=— 32 1+ n+-—-m fln+=Sm |yl —+—)\|—e »/dny| .
bp; 4 ké 0 "gz b b A, b )\A,
After a simple calctlatsion, we have which belongs to L[0, (A,/b)], and { (bIk,) ezm(kb/AP)r,}kGZ
Z 1+ ;1+/1_pm ]A( 17+ﬁm 7 £+T (4 is an orthonormal basis for L?[0, (/\p/b)],and we have
meZ b b )LP b
] @ A, /b TR RAY b k 2
ANl Cp Hlo+22k ol L+
I—b};/lp JO ké<l+(n+bk)>f<f1+bk)w(/\p+b> dn
(15)
5 (3 (b TN
=— > F, (n)- 1+ n+-—+k fly+=—k )yl —+-) |dy
b; Po)y TP ké b b A, b
where Fp= 3 (1+(+ A, Ibk)?)* f (1 + A, /bk)
¥ (n/A, + k/b). So, we can obtain
1 -2 ACE N |
I —E;AP IRFP(W) (1+74%) f(’7)1//<)tp>d’1
1 & 2 2| (7 2
_ =25 2\=S| 7 ~
-3 3] eyl (L) o 6
2\ ¢ — N
loofzsj 2\ ( Ap))‘—A Y Nof n\of 1k
+-> A l+7 1+(n+-—k ffln+-=—k )yl — |yl —+-)dy.

This finishes the proof.
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The proof of the following lemma is similar to Lemma 1
and we omit it. O

2
I =

> [ Ore™rg (- aby),
z

1 ke

|2

_1 225
‘aJR(””)

Tl 3 faln-1,)
p=1

dn

Lemma 3. Let se R, a>0, {AP: p= 1,2,---} c R", and
g € H*(R). Then we have

, (17)

Ay o ,72)5<1 +(;1+Z>2>5]‘(q)m§m§(q+2—)tp)dn

R gikez

for f € D.
3. The Sufficient Conditions of IWF and IGF

This section is devoted to the sufficient conditions of IWS
and IGS to be frames for H*(R) and some examples are

gk

_1 28
03

1

then X (V) forms a Bessel sequence in H* (R) with bound B. If

furthermore,

L oo
A=y (£ 80

then X (¥) forms a IWF for H*(R) with bounds A and B.

> Y FOAL (2, - kb)) [

1 p=lkez
=1
1//1<—>
)LP

_1L00 —2s 2\2s
= Y Y[ ()

=1 p=1

1]
M=

2

Fal dn

00 2\°*
nESa), 2 0y (1a(ne )
bi R oikez b

=1 p=1

-2s
/\P
keZ

Sy Sy

p=1
given. We begin with the sufficient condition of IWS to be

a frame.

Theorem 4. Let s€ R, b>0, {/lp: p= 1,2,~--} c R*, and
¥ c H (R). If

< 00, (18)

~(n\~-(n k
i)
\1,/"\1, b

0#keZ

~ - k
w,(%)wl(%+g)‘>>o, (19)

Proof. By Lemma 2, we have

(20)
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We first estimate I, as

L oo 2\ °
RS H RN (1+;12)S<1+<;1+/1Pk)>
bl:lpzl okez 7 R b

- - Ay N\ - k
Fo (koo p )l

By Cauchy-Schwartz inequality, we can get

|I|<liiﬁsz J (1+72)"[F ¢ )” g (L5 a -
Z—b p R 11 | ¥ 2 IAP b n

I=1 p=1 0+keZ p

Lo e Vo B o)

L > o ~ ~ k 1/2
s% YA < D jR(an)z |f(ﬂ)|2’wz(%)wl(/\1+g>’dq> (22)

2

0+keZ P P
1 5 ZSA 1 ) A ; ) 1/2
(2L () ) B ) o)
1 L oo
PRI
I=1 p=1

Actually, (&) = (M), due to

1/2
_ e Y ALY U
(‘)_<O%ZJR(H" )71 ) “”(a )%(AP b)‘dn>

P
172 (23)
11 n  k
=<O;ZJR L+7°) |f('1)| ‘Wz E (—p+g>‘dﬂ> = ().
Then, we have
SRS N5 PRl (- (1 k
I O

Together with (3.1), (3.3), and (3.4), we have
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T2

Fn dn

1 L oo s s
rsneln)sy Y Y 0| (1o

I=1 p=1 0+keZ (25)
[yl aeny Y Syl L )a(
= (L+77)|fm] -1+7 A7 !7/z<—>17/z<—+—)ldf1
R b I=1 p=1 P&l Ay b
<B|fI}.
In addition, by (19) and (20), we get
1 L oo s 2| 2
I>1, -0, >EZZAP J (1+7 vl 5 )| n
I=1 p=1
1 L _2s 25|~ 2| . ~ k
3 3 [ e Proffa( el
I=1 jez otkez ' R P P (26)
L oo 2 L oo
s|~ _2s ~ ~ k
-J oyt oy (S - 8 (et o
I=1 p=1 p 1=1 p=1 0+keZ p P
> Al fI2.

So, X (¥) forms a IWF for H* (R) with bounds Aand B Corollary 5. Suppose ¥ c H*(R) and supp ; C [c;, d;] with

by (25) and (26). The proof is thus finished. O  d—¢<1/bfor each 1 <I<L, then we get the following.
(i) If
1 s L oo 2 s L oo n 2
B—bsupneR(1+11 ) ZZ ZSA( ) < +oo,A——1nf(l+112) ZZA;ZS IT/Z(A—) >0,a.e., (27)
I=1 p=1 P I=1 p=1 r
then, X (¥) forms a IWF in H*(R) with bounds 1 L o " 2
2\$ -2s|~

AandB. ASE(1+’7 ) ZZAP 1//,<A> <Bae.onR.

(ii) Besides, if X (¥) forms a IWF in H* (R) with bounds =1 p=1 4

Aand B, then we get (28)



Proof. By Theorem 4, the statement (i) is correct. For (ii), we
assume that X (¥) forms a IWF. By (20), we can get
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AIFES Y S Y (F Oy, - kb)) [

I=1 p=1kezZ
(29)
L oo 2
= J (1+;72)5|j7(;7)'2%(1+,12)SZZ)LP (/\l) dn<BIfI2,
R i=1 p=1 P
for all f € H*(R). It follows that

< L oo ’1 2

J 1+’ |f(’7)' ( L+n’) Y ) A" ‘7/1(){—) —A>d’120~ (30)
I=1 p=1 P

If there exists E ¢ R with |E| >0 such that

’1 2
w()
AP

on E, then by taking _?(-) =(1+ 112)_5/2)(5 (+) in (30) and the
reduction to absurdity, we get

(69

L
DWW

I=1 p=1

(31)

o 2
A< (1 +1 ) Z < ) , (32)
a.e. on E. By a standard argument, we get
o 2
A< (1+r]) Z 1//l< ) , (33)

which holds a.e. on R. The other inequality in (28) is
similarly provable. We thus finish the proof. O

Example 1. Suppose s>0,L € N. For each 1<I<L, we as-
sume that N;<|;(§)|<M; almost everywhere with

L ,& o 1( s

S ety 3 S

b p=1 p b I=1 p=1
By a standard argument, if 0<a<1, the series

Z;‘il (aP/p) is convergent, and its sum is —In (1 — «). Then,
we can get

0<N; <M, and supp (¥;) = [¢;,d;] with 0 < ¢; <d;. We take
A, = ((af/p)*,p=1,2,--. Then, if O<a<l and
d; — ¢; < (1/b) for every 1 <I < L, we can get X (V) that forms
an IWF for H* (R).

Proof. We suppose that

N =min{N{,N,,...,N; }, M = max{M |, M,, ..., M},
(34)
and
c=min{c;,¢,,...,c }d =max{d,,d,,...,d;}. (35)

Also, supp (¥,) = [¢;d)] € [c,d], so c< (n/A,) <d, ie,
cd,<n<dl,, and by A, = ((a?/p))*, p=1,2,---, we can
obtain 0< 1, <1. Then, we have only 0<cA,<y<di,<d,
where ¥, ((n/)tp)) is not equal to 0, and this implies that
1< (1+#7)°< (1+d*)°. It follows that

M8
R
3

T
|

<M1+ &) (36)

()l
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L, 1 e
N (=In(1- (x))sg(l +1°)

This implies that X (¥) forms an IWF for H*(R) by
Corollary 5. O

Remark 6. Let 1<I<L and vy, satisfy the conditions in
Example 1. Taking A,* as the general term of a convergent

<-M

M (1 d”) (= In(1 - ).

(37)

that forms an IWF for H* (R) by Corollary 5. From this, we
can construct many useful examples.

Then, we give the sufficient condition of IGF.

series and AP > 0 being bounded above, we can obtain X (¥) Theorem 7. Let s € R, a>0, {)Lp: p= 1,2,---} c R*, and
GcH'(R). If
1 - 2 k
B:—sup(1+11) ZZg,(q A)gl 11+——/\P < 00, (38)
@ ner kez|i=1 p=1 a
then, & (G) is a Bessel sequence with bound B. Besides, if
L oo 2 L oo k
A=_inf (L) (X X [a(n=2)[ = X 1> Y aln-A )gz( +;-Ap) >0, (39)
1=1 p=1 0#kez|l=1 p=1
then, & (G) forms IGF with bounds A and B. Proof. By Lemma 3, Vf € 9, we have
L oo a0
1= Y Y Kroe™ra
I=1 p=1kez
1 2 L& ?
=—J 1+ ) |F || F || F e[ Y [ai(n-2,)| dn
alr isip=1 (40)
1 2\ k 2\ R k
+—J Y (t+7’) | 1+ ff 11+ Y Y aln-A,)a| n+=-2, dn
aIR ez a 1=1 p=1 a
=1, +1,.

We first compute I, as
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i i ai(n _Ap)gl<’7 +S_Ap)

(2 () ) )

L.
a

)

Then, we prove that (%) = (*x*). Actually,

o I k 1/2
(**)=< Y I (1) f(n)|2ZZ?/z<f1——M)?:(ﬂ—?tp) d’7>
0¢kez * R a

1~ L oo k 172
=< ) I (1+77) |f(’7)|2ZZ?Z(’?—AP)@(’%L——%) dn) = (%).
otkez ¥ R I=1 p=1 a

So, we have

By (40), we have

L oo .
L-|Ll<1=) Y Y [(f (™ g - —ab) [ <1, +[1].

Thus, together with (45), we can obtain

(41)

(42)

(43)

(44)

(45)

(46)
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Hence, we finish the proof by (3.10), (3.11), and

(3.17). O

M8

1 Sv
B——sup(1+11) Z

a yer =1

]
l‘

then ©€(G) is a IGF for H°(R) with bounds
A andB.

(ii) If €(G) forms a IGF for H*®(R) with bounds
A and B, then we can obtain

|!71('1 - lp)|2 <Bae.onR. (49)

M=
Mg

1, s

Il
Il
—_

1p

1 S|
A <] (1er)

for all f € @. Then, we have

So,

(-2,

M=
M8

1, oy
AS;(1+17)

I
Il
—

Lp

holds a.e. on R by a standard argument. We can similarly
prove another inequality in (49). Thus, the proof is
completed. O

Example 2. Suppose g; € L (R) and supp g; C [¢;, d;] with
d;—¢;<1/a for each 1<I<L, and 0<m<A,<M for arbi-
trary p = 1,2, --. Then we can get & (G) that forms a IGF for
H*(R) after a simple calculation.

k
gl(” _Ap):g\l<7l +; _Ap)

| l( )'2< +oo,A—11nf(1+11)Si

i)

11

-2

0+keZ

Zzgz(ﬂ A )91(’7‘*5—/\ )

1=1 jeZ
>dr].

Corollary 8. Suppose G ¢ H* (R) and supp g; C [c;, d;] with
d, - ¢; < (1/a) for each 1 <1< L, then we can get the following.

(i) If

Jo

(47)

| l( )'2>0a.e., (48)

M8

a ner

=1

i~
l

Proof. So, (i) is obviously right by Theorem 7. For (ii), by
(40), we get

L oo 2
7] Y Y |ai(n-,)| dn<BIfIZ, (50)
I=1p=1
2
a(n-1,) —A> dn>0. (51)
I=1p=1

4. The Necessary Condition

We present the necessary conditions of IWF and IGF in
H?* (R). First, we give a necessary condition for X (V) to be
a IWF for H* (R). By Proposition 19.1.3 in [4], if the IWS
{/\;/ZV/(APx -kb): p=12,...,ke Z} forms a IWF for
L*(R), then {AP: p= 1,2,---} has to be a finite union of
logarithmically separated sets. Then, we get the following
theorem.

Theorem 9. Let s € R, b>0, {/\p: p=12---t cR*, and
¥ ¢ H*(R). We assume that X (V) forms an IWF in H* (R)
and B is the upper frame bound. Then, we have
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2

Lo e ol Lo, ow e $ gl (1)
E(1+11) ;PZ::IAP 1//,<E> <Bforae. neR. (53) b(1+'1)l;P:lep 7 1, <Bforae. neR. (54)

So, for arbitrary fix f € 9, we get
Proof. We just need to prove that for arbitrary M, N € N
and M <N,

L N
ANFEY S S O 9y,(1, - kb)) [ <BIFI% (55)
I=1 p=M keZ

Hence,

2

M=
v

[(fOA (4, - kb))

keZ I=1 p=M kezZ

Il
—_

I

(56)

2

Yy Y

2\ ve (M) b 2ni(kon,)
[0y T e e

27mi (KbIA ). : ~ - -
Forvp ez, { V (b/Ap) ™0 ke € Z} is an o.n.b for f c L. Then, (1+#%)°f ()¥;((n/A;))€ L* (I). By Plancherel
L*(]), where J ¢ R is a closed interval with length ()Lp/b). theorem. we have
Suppose I is a closed interval with I ¢ (0,00)NJ and supp

L N . 1L N . o~ R 2
> Y TN (k) [ =5 Y Y [ (1) f(n)lzlwl(li) dn
I=1 p=M keZ I=1 p=M P
(57)
1 2\5| % 2 2SLN725A ’72
et ety Y S tu( L)
b 1 1=1 p=M AP
We assume that 7, > 0, and by taking g > 0 such that I, = Then, we have
(19> 110 + ql and I, ¢ I. We choose f, € D in (57) such that
~ 1 _
IACOE mq a1 =1 (58)
L N ((1/2)=9) 2 1 rlo+qh s L N el ]1 2
¥ ¥ S LrOM ) < 5[ ey Y 3 (L) an )
1=1 p=M kez 49 Jn, 171 p=M P
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If g — 0, we can get

1 2\$§ LY N 2
1+ m) A vn(f) <B, (60)
I=1 p=M P
by (55). Then, we have
1 L oo 2
E(l +112)SZ Z)L;)z @,(Al) <B, a.en>0, (61)
I=1 p=1 p

by N — +00 and the arbitrariness of #, > 0. The case # <0
can be proved similarly. The proof is thus completed.

The next theorem is devoted to the necessary condition
of ¥ (G) that forms IGF in H* (R). O

13

Theorem 10. Let s € R, a>0, {AP: p= 1,2,---} c R*, and
G c H*(R). We assume that & (G) is an IGF for H* (R) with
bounds A and B. Then, we can get

1 s 2
<1+ ) XY fai(n-2,)

M=
18

A (62)

1

1p

Proof. Since @ (G) is an IGF for H* (R) with bounds A and
B. Then, we can obtain

L oo
AIFE<Y Y S [(f (o), ™ g (x - ak)>s'2 <B|fI% forVf e H'(R). (63)
I=1 p=1 keZ
Suppose f € D, then we get
L oo — 2 L o 275 7N 2miak 2
Y Y e g x-ak) [ =Y Y Y[ (1) Fonai(n-2,)e
1=1 p=1 kez =1 p=1kez ' R
1 2 (64)
¢ ST N>\ 5 2nia
23S S| (e Fonan -,z
1=1 p=1 keZ
We suppose that I ¢ R withlength (1/a) and supp_? cl. So, (1+ 172)5:)?(11) g:(n —AP) € L>(I) and
Since f €9, so for Vpel, M >0 such that |(1+
)’ f(n)l < M. Then, we have
J e T4, ansf (10 Fof
(1+(1-2)" ) au(n =2, [ dn<piglt, visist
(65)
L oo 1 L oo 1~
SN Y (f e g x-ak) [== Y Y I (1+ )7 [ au(n = A,)| dn. (66)
I=1 p=lkez aa p=1 I
Then by (63), we get
L oo
AlfIP sé ¥y L(l et [F [ g -2,)| dn<BIfIE (67)

—

I=1 p=
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So, we get Theorem 11. Let ¢,y € H*(R), {AP: p= 1,2,---} CcRY,
1 s 2 and b>0 be given. We assume that {)L;,(l/z)_s)l//
AS;(1+'7 ) 1;1; gl(n_AP) <Bae neR.  (68) ()pr—kb): p=12,...,k € Z} is an IWF with bounds A, B.
If ¢ and vy satisfy that
This finishes the proof. O

5. The Perturbation of IWF and IGF

In this section, we give the perturbation theorems of IWF
and IGF.

<A, (69)

N AVPNE N
w—¢)<>(w—<p)(+>
A, A, b

then {A((I/Z go()t x—kb): p=12....ke Z} forms an Proof. Fix f € @, Similar to Lemma 2 proof, we get
IWF for H*(R) with frame bounds

A(l— \E)Z,B<l+ \/§)2 (70)

;sup(l+;1)§ %

neR

i pzl & (£ A (v = ) (e = kb)) [
(71)
1 — Y A W k
52 J (1+'12)f(n)(w—rp)(%)gz<l+(f1+fk> >f(’1+fk)(llf—¢)(%+g)d’1~

Then, we have

1/2
JR(I v nz)zslf(ﬂ)‘zl - ¢><%) (- @)(/\—’1+§>’d;7>
Ap ) ( )2 (11) ( k)l >
2k -9 |G-9-+5 ||
n+ >‘f IIIQDAPI//(pp+ n
1/2
%(zlpzs JR(I+,12)25'}(’1)'2|(17/_¢)<%)(17/—¢)(Al+§>’d17> (72)

<ZJ<< Y (o -0 oo

1/2

1/2
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Actually, (%)= (%), due to

(**) :<ZAI—)25

p=1 kez

| (s :f)zslf(mr‘ - ‘7”(% —%) -
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o)

172
d17>

=<§APZSZ | ()7 (n>|2‘<¢—¢>(§)<w q,)(lp %)'dn)l/:(*).

p=1 keZ

So, by (69), we have

L§ ) Ui n ok
SE;AP kezzj (o) f(’7)|’(w GD)(A >(w <P)<+b>‘d;1

00
=J (1+77) |f(r1)| S(ren’) Y A"
p=1
<RIfI:.
Thus, we finish the proof by Lemma 1. O

Example 3. Let s>0 and suppose y € H®(R) satisfies
N, <|¢|<N, with N|,N,>0 and supp ¥ < [c},d,] with
d, —¢; < (1/b). Then, we assume that ¢ € H*(R) satisfies
M, < |¢| <M, with M, M, >0 and supp ¢ C [c,,d,] with
¢, <¢c,<d, and d, —d, < (1/b). Taking /\P = ((p/3P))25 for
each peN,, we have {)Ll()(llz)_s)go(/lpx— kb): p =

1sup(1+;1) %

a neR

then {eZ”iAP"h(x —ak): p=12,...
for H* (R) with bounds

O B a P

Proof. 1f fix f € &, then we have

ke Z}forms a IGF

S G h-3) @011, <

p P

k 74
L e a s "

keZ

.,k € Z} which forms a frame for H’ (R) after calcu-
lations similar to Example 1.

Theorem 12. Let g,h € H*(R), {/\P p=12,- }C R*,
and a>0 be given. We assume that {ez’”’\ »* g(x—ak): p=

. keZ} forms an IGF for H°(R) with bounds
AandB. If

<A, (75)

2 (e g -mx-ab) [

-2

kez

-~ —_—= X 2
j (1+ ) T (@~ h)(n~ Ap)ez”’“k”dnl .

(77)

By the periodic process, we get
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> Y F e (g = (x-ak) [

p=1kez
(o] m+l/a N = 2miak 2
=YX ], (e TG,
p=1kez lmez 7 mla
(78)
00 /a m 2\’ - m = m s miak 2
-y j (1+<;1+—) )f<q+—>(§—h)<11+——)tp>em””dn
p=1keZ ImeZ 0 a a a
1 i J~1/a (1 +<’1 . ﬁ)z)s}<’7 N T) G- ﬁ)(ﬂ N m 1 )a”zezmak”d” 2
ap:lke 0 mez a a a ? .
A simple calculation implies that
2\° . ~
mgz (1 +<;7 ; %) ) f(;y N %) G- h)<;1 ; % - )Lp>e 12[0, 1/al, (79)
and {a!/2e?™ak1},  is an orthonormal basis for L2[0, 1/a]. It
follows that
< il ,x 2
> Y (F 0,2 (g h) (x — ak) )
p=1kezZ
| & (la K\ k K\
=- 1 =) ) Fly+=)@G-h -
5 5 (o) o

SHN

1/a k 2 SA k o~ k
JO Fp(n)-kezz 1+(f1+;) f(’7+a)(9—h)<’1+a_’\p>d’7a

N

Jj€

where

NN k. [ k
Fp(n)=kezz<1+<ﬂ+a) >f(f1+a>(g—h)(r1+a—/\p>- (81)

Then, we can obtain
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> L™ (g -~ ak)) [
p=1kez

1 & s~ =<
25 E - (oY TGP .

=% i JR 2. <1 +(’7+§> > }(7’]+§>(§—E)<1’]+§—/{p)-(1 1) F ()@= m)(n=A,)dn.
p=1 keZ

) Z |(f (%), ™ (g = h) (x - ak)>s|2
keZ

S;%IR(1+WZ)S<1+< >2>$|f(f1)||f<f1+ )

W(g h)( +——Ap)

X<JR<1+<W+S>2>R|?<”+ g

“ Ly ),
a

dn

Z G-m(n-2 )(g—ﬁ)(mla{—lp)

12
d11> (83)
12
dl’]>

i m(n-1,)@ - h)(ni—A)

Hence,

Y Y[ e (g =1 (x-an) [
p=1kezZ

o0

SJ L4 n? |f(;1)| S1+n)|Y @G-m(1-1,)@- h)(n+5—/\>

p=1

dn (84)

<RIfI.
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Similar to the proof mentioned above and using con-
dition (5.2), the proof is thus completed by Lemma 1. O

Example 4. Suppose g € L* (R) and supp g C [c,,d,] with
dy—c;<l/a. We assume 0<m<A,<M for arbitrary
p € N,.Letc, <c,<d; andd, — d, < 1/a. Then, by taking the
function h € H'(R) such that he L*°(R) and sup
h c [c;,d,], we have {ez"“?xh(x —ak): p=1,2,...,ke€ Zl;
which forms a IGF for H®(R).

6. Conclusion

In this paper, we introduced the concept of IWS and IGS in
Sobolev space H* (R). Then, we provided the necessary and
sufficient conditions for IWS and IGS to be IWF and IGF in
H?* (R). Using these conditions, we also constructed specific
IWF and IGF. At last, we discussed the perturbation theorem
of IWF and IGF. The obtained results can provide theoretical
reference for the practical application of frame in image
restoration and DCNNs [47-50]
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