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Nanostar dendrimers are tree-like nanostructures with a well-defned, symmetrical architecture. Tey are built in a step-by-step,
controlled synthesis process, with each layer or generation building on the previous one. Dendrimers are made up of a central
core, a series of repeating units or branches, and a surface group shell. A weighted graph is a type of graph in which vertices or
edges are assigned weights that represent cost, distance, and a variety of other relative measuring units. Te weighted graphs have
many applications and properties in a mathematical context. Te topological indices are numerical values that represent the
symmetry of a molecular structure.Tey have rich applications in theoretical chemistry. Various topological indices can be used to
investigate a wide range of properties of chemical compounds with a molecular structure. Tey are very important in math-
ematical chemistry, especially in quantitative structure-activity relationship (QSAR) and quantitative structure-property re-
lationship (QSPR) studies. In this paper, we examine the topological properties of the molecular graphs of nanostar dendrimers.
For this purpose, the topological indices, namely, the Wiener index and the Wiener polarity index are computed for a class of
nanostar dendrimers.

1. Introduction and Preliminary Results

1.1. Dendrimers. Dendrimers [1, 2] are hyperbranched
macromolecules that carry branches from generation to
generation with a central part. Dendrimers were frst pro-
posed in the late 1970s by German chemist Fritz Vögtle, who
proposed highly branched macromolecules with well-
defned structures. Vögtle envisioned these synthetic mol-
ecules as mimics of natural polymers such as proteins and
DNA, with controlled architectures and precise properties.
In the early 1980s, American chemist Donald A. Tomalia
made signifcant contributions to the development of
dendrimers. Tomalia created the frst class of dendrimers,
known as polyamidoamine (PAMAM) dendrimers, which is

made of repetitively branched subunits of amide and amine
functionality on his own. He used a divergent growth
method in which he repeatedly reacted on a core molecule
with a monomer, resulting in branching and the formation
of a well-defned three-dimensional structure.

Dendrimers are iteratively synthesised polymers with
unique properties such as polyvalency, electrostatic in-
teraction, self-assembly, monodispersity, stability, and
unimolecular micelles that make them an excellent drug
delivery carrier. Dendrimer plays an important role in the
biomedical feld [3] and in gene delivery systems [4].

Tese nanostar dendrimers were created by fusing two
diferent types of nanoparticles: gold nanostars and den-
drimers. Te high surface area and unique optical properties
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of gold nanostars make them ideal for sensing and imaging
applications. Dendrimers were chosen because of their
ability to transport multiple drug molecules while also
targeting specifc cells or tissues in the body. To make the
nanostar dendrimers, the researchers frst synthesised gold
nanostars using a seed-mediated growth method. Tey then
functionalized the surface of the gold nanostars with
a dendritic molecule called polyamidoamine (PAMAM)
dendrimers, which has a large number of functional groups
on its surface that can be used to attach drug molecules. Te
resulting nanostar dendrimers had a core-shell structure,
with the gold nanostars forming the core and the dendrimers
forming the shell. Te researchers demonstrated that these
hybrid nanoparticles were efective at delivering drug
molecules to cancer cells in vitro and that they could also be
used for imaging applications. Dendrimers have received
a lot of attention in scientifc research and various
applications.

1.2. Topological Indices. In cheminformatics, topological
indices are mathematical descriptors that are used to
measure and characterise molecular structure properties.
Tese indices provide the molecular structure with a nu-
merical depiction by encapsulating details regarding the
connectivity and confguration of atoms inside a molecule.
Topological indices concentrate on characteristics that are
independent of particular spatial arrangements because the
name “topological” refers to the study of properties that
remain unchanged under continuous deformations. Te
topological indices are numerical values that represent the
symmetry of a molecular structure. In this context, atom
distribution and spatial arrangement inside a molecule are
referred to as symmetry. It involves the recurrence of motifs
or patterns. Because it afects several characteristics, in-
cluding stability and reactivity, symmetry is a crucial
component of molecular structure. Tey have rich appli-
cations in theoretical chemistry. Numerous characteristics of
chemical compounds having a molecular structure can be
examined using various kinds of topological indices. Tey
play a very crucial role in mathematical chemistry, partic-
ularly in quantitative structure-activity relationship (QSAR)
and quantitative structure-property relationship- (QSPR-)
related studies. Many of these topological indices were in-
troduced by researchers in Mathematical Chemistry, on the
basis of molecular structure modelling involving graph
structures. Tey sum up some molecular properties in
a single numeric value. Topological indices have been used
extensively in recent years to study the properties of den-
drimers [5–9].

1.3.Wiener andWiener Polarity Index. According to [2], the
Wiener index was the frst and is still the most studied
topological index. It was chemistry’s frst application of
a molecular topological index. It is demonstrated that the
Wiener index number and the boiling points of alkane
molecules are closely connected. Later work on quantitative

structure-activity relationships revealed correlations be-
tween the critical point’s parameters [10], the density,
surface tension, and viscosity of its liquid phase [11], and the
molecule’s van der Waals surface area [5].

Te Wiener index, indicated mathematically by the
symbol W(G), is the sum of all distances between each graph
vertex.

Later on, Wiener introduced another descriptor known
as the Wiener polarity index that is known to be related to
the cluster coefcient of networks. Te Wiener polarity
index is denoted by Wp(G) and is defned as the number of
unordered pairs of vertices that are at distance 3 in G. In
organic compounds, say parafn, the Wiener polarity index
is the number of pairs of carbon atoms which are separated
by three carbon-carbon bonds. Based on the Wiener index
and the Wiener polarity index, the formula

tB � xW(G) + yWp(G) + z (1)

was used to calculate the boiling points tB of the parafns,
where x, y, and z are constants for a given isomeric group.
By using the Wiener polarity index, Lukovits and Linert
demonstrated quantitative structure-property relationships
in a series of acyclic and cycle-containing hydrocarbons in
[9]. Hosoya in [11] found a physical-chemical interpretation
of Wp(G). Actually, the Wiener polarity index of many
kinds of graphs is studied, such as trees [12], unicyclic and
bicyclic graphs [13], hexagonal systems, fullerenes, and
polyphenylene chains [6], and lattice networks [14].

1.4.Weighted Graph. Te idea of assigning weights to edges
and vertices in graphs began to emerge in the early 20th
century. Researchers recognized the need to represent re-
lationships with diferent strengths or costs in various ap-
plications. Dénes Ko €n ig, a Hungarianmathematician, made
signifcant contributions to the study of weighted graphs. In
his book “Teory of Graphs and Its Applications” published
in 1936, Ko €n ig discussed concepts such as minimum
spanning trees and network fows, which involved the use of
weights on edges and vertices.

A weighted graph (G; w) is a graph G � (V(G); E(G))

together with the weight function w: V(G)⟶ R+. Te
Wiener index W(G; w) of the weighted graph (G; w) was
introduced in [15] as follows:

W(G) � 􏽘
p,q∈V(G)

w(p)w(q)d(p, q).
(2)

For a graph G, the Djokovic–Winkler’s relation on
E(G) Θ [16] is defned as follows:

If d(α, β) + d(c, σ)≠d(α, σ) + d(β, c), then
e � αc ∈ E(G) is Θ related with f � βσ ∈ E(G). Relation Θ
is refexive and symmetric; its transitive closure Θ∗ is an
equivalence relation. Te partition of E(G) induced by Θ∗
will be called the Θ∗-partition. Assume that
F � Fi: i ∈ [n]􏼈 􏼉 denote the Θ∗-partitions of E(G).

A partitionE � E1, . . . , En􏼈 􏼉 of E(G) is coarser thanF if
each set Ei is the union of one or more Θ∗-classes of G [16].
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Theorem 1 (see [16]). Let G be a connected weighted graph
and E � E1, . . . , En􏼈 􏼉 be partition of E(G) coarser than F.
Ten,

W(G) � 􏽘
n

i�1
W

G

Ei, wi

􏼠 􏼡, (3)

where wi: V (G/Ei⟶ R+ is defned by wi(x) � 􏽐x∈Cw(x)

for all connected components C of G/Ei.

Te technique to construct the quotient graph G/Ei is to
frst remove all the edges of Ei from G and then shrink the
vertices in each component of G − Ei to one point, where
vertex strength is the number of vertices in that component and
edge strength is the number of edges in that component. Tus,
the number of vertices in G/Ei is the number of components of
G − Ei and if there exists an edge between the vertices of two
components in G, then an edge is formed in G/Ei. In this way,
the quotient graph for each partition can be formed.

Te following result gives the Wiener index of the graph
composed of two subgraphs such that both the subgraphs
have one vertex common.

Theorem 2 (see [17]). LetH � H1.H2 be a graph composed
by H1 and H2 graphs such that V(H1.H2) � V

(H1)∪V(H2) and V(H1)∩V(H2) � {s}, where s is a cut
vertex inH. Let |V(H1| � t1 and |V(H2| � t2. If x ∈ V(H1)

and z ∈ V(H2), then d(x, z) � d(x, s) + d(s, z). And

w(H) � w H1( 􏼁 + w H2( 􏼁 + t1 − 1( 􏼁w s,H2( 􏼁

+ t2 − 1( 􏼁w s,H1( 􏼁.
(4)

Tere are many types of nanostar dendrimers. Dendrimers
have received a lot of attention in scientifc research and various
applications. Dendrimers are regarded as one of the most
important, commercially available building blocks in nano-
technology. Dendrimers are used to make nanotubes, nano-
latex, chemical sensors, micro- and macrocapsules, coloured
glass, modifed electrodes, and photon funnels, which are used
to make artifcial antennas. Because of its widespread appli-
cation in a variety of felds, researchers have focused their
eforts on determining the underlying topology of nanostar
dendrimers. Te F-index of nanostar dendrimers has been
calculated by De and Nayeem [18]. In terms of Zagreb indices,
Siddiqui et al. [19] investigated the topological properties of
some nanostar dendrimers. Bokhary and Tabassum studied
diferent graph invariants to explore diferent topological
properties of dendrimers like the energy of some tree den-
drimers [20], domination and power domination of certain
dendrimers [21]. Te readers are directed to [7, 9, 15, 20–26]
for additional discussion in this feld.Te purpose of this report
is to calculate the distance-based topological indices for a class
of nanostar dendrimers. Te frst type of nanostar dendrimer
that we study in this work was introduced byDorosti et al. [25].
In this paper, they computed the Cluj index for two types of
dendrimer nanostructures by analyzing the constitutive

substructures of these dendrimers. In this paper, we extend this
study by computing theWiener andWiener polarity indices of
the frst type of dendrimer mentioned in [25].

2. Main Results

2.1. Construction of the First Type of Nanostar Dendrimer.
Te stages of the frst type of nanostar dendrimers can be
made by connecting the multiple hexagons. Tere are n

stages of nanostar dendrimer. In the frst stage, there are
seven connected hexagons which are attached with the
nucleus of hexagon. Te nucleus of hexagon is made up of
fve connected hexagons. Tus, at the frst stage, there are
a total of twelve hexagons. Te number of vertices at stage
one are 20 + 42 � 62 and number of edges are
24 + 42 + 7 � 75.

In the second stage of nanostar dendrimers, eight more
hexagons are attached to the frst stage. Tus, at the second
stage, there are total twenty hexagons.Te number of vertices
at stage two are 20 + 42 + 48 � 62 + 48 � 110 and the number
of edges are 24 + 42 + 7 + 48 + 8 � 75 + 56 � 129.

Te frst and second growing stages are diferent. But,
from the third stage and onward, 2i hexagons are attached to
the previous stage. Let In be the graph of nanostar dendrimer
after n stages. Tus, for 3≤ j≤ n, Ij is obtained from Ij−1 by
adding 2j hexagons to Ij−1. It is easy to see that, for n≥ 3, the
order and size of the graph In are 62n+1 + 62 and 7.2n+1 − 73,
respectively. Te graph of nanostar dendrimer of dimension
4 is shown in Figure 1.

2.2.ComputationofWiener Indexof In UsingVertexWeighted
Graph. Let Hn be graph having n + 1 stages; in the frst
stage, H1 has one hexagon that is attached to an isolated
vertex; after that, Hi is obtained from Hi−1 by adding 2i− 1

hexagons, for 2≤ i≤ n + 1. For n≥ 1, the order and size of the
graph Hn are 62n+1 − 5 and 7.2n+1 − 7, respectively.

It is easy to see that, the graph Hn for n≥ 1 has 42n+1 −

4 Θ∗-classes, which can be obtained by applying the Djo-
ković–Winkler relation. Te Θ∗-classes for the graph Hn are
shown in Figure 2. Let E1, . . . , En􏼈 􏼉 be the sets coarser than
theΘ∗-classes inHn. With the help of these sets, the quotient
graphs Hn/Ei, for 1≤ i≤ n + 1, are computed. Te quotient
graphs Hn/E1 and Hn/Ei are shown in Figures 3 and 4,
respectively.

In the next theorem, theWiener index of the graph Hn is
computed.

Theorem 3. Let n be the positive integer, then

W Hn( 􏼁 � 432.n − 792 +
360
2n􏼒 􏼓4n

+(252.n + 444)2n
+ 30.

(5)

Proof. Let E1, . . . , En+1􏼈 􏼉 be the partition of E(Hn) coarser
than F. Ten, from Teorem 1,
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W Hn( 􏼁 � 􏽘
n+1

i�1
W

Hn

Ei, wi

􏼠 􏼡, (6)

where wi: V(Hn/Ei)⟶ R+ is defned by wi(x) � 􏽐x∈C
w(x) for all connected components C of Hn/Ei. Tis implies
that, the weights of vertices a1 and f1 are 62n − 5 and 1,
respectively, and are computed by using the quotient graph

Hn/E1. For 2≤ i≤ n + 1, w(ai) and w(fi) in quotient graph
Hn/Ei are (6.2n− i+1 − 5) and (6.2i− 1 − 5), respectively.

Now, by using equation (2), we have

W
Hn

E1
􏼠 􏼡 � 2w a1( 􏼁

2
+ 14w a1( 􏼁

+ 6w f1( 􏼁w a1( 􏼁 + 9w f1( 􏼁 + 11

� 2. 6.2n
− 5( 􏼁

2
+ 20 6.2n

− 5( 􏼁 +20)

� 2. 36.22n
+ 25 − 60.2n

􏼐 􏼑 + 120.2n
− 80

� 72.4n
− 120.2n

+ 120.2n
+ 50 − 80.

(7)

Tus,

W
Hn

E1
􏼠 􏼡 � 72.4n

− 30. (8)

For 2≤ i≤ n + 1 and using equation (2) andTeorem 1, we
have (Hn/Ei) � 2.7w(ai).2i− 1 + 2.w(ai)

2.2i− 1 + 4.6w(ai)
2

2i−1

2
􏼠 􏼡 + 3w(ai)w(fi).2.2i− 1 + 9w(fi).2i− 1 + 11.2i− 1 + w

(ai). 4.21 2i−1

2
􏼠 􏼡 + (13 + 17 + 17 + 25)

2i−1

2
􏼠 􏼡.

Figure 1: First type of nanostar dendrimers growing up to four stages.
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� 14.w ai( 􏼁 + 2i
(w ai( 􏼁

2
+
24
2

(w ai( 􏼁
2 22i− 2

− 2i− 1
􏼐 􏼑 +

84
2

(w ai( 􏼁 22i− 2
− 2i− 1

􏼐 􏼑 +
72
2

􏼒 22i− 2
− 2i− 1

􏼐 􏼑

� 7.2i
.w ai( 􏼁 + 2i

w ai( 􏼁
2

+ 12w ai( 􏼁
2

􏼐 􏼑 + 42w ai( 􏼁 + 36􏼐 􏼑 22i− 2
− 2i− 1

􏼐 􏼑 + 3w ai( 􏼁w(f))2i
+ 9w(f).2i− 1

+ 11.2i− 1

� w ai( 􏼁
2 2i

+ 12.22i− 2
− 12.2i− 1

􏼐 􏼑 + w ai( 􏼁 7.2i
+ 42.22i− 2

− 42.2i− 1
􏼐 􏼑

+ 36.22i− 2
− 25.2i− 1

􏼐 􏼑 + 3w ai( 􏼁w(f)).2i
+ +9w(f).2i− 1

+ 11.2i− 1

� w ai( 􏼁
2 2i

+ 3.22i
− 6.2i

􏼐 􏼑 + w ai( 􏼁 7.2i
+ 21.22i− 1

− 21.2i
+ 3w(f)2i

􏼐 􏼑 + 9.22i
− 25.2i− 1

􏼐 􏼑 + 9w(f).2i− 1
.

(9)

Tus, we have

W
Hn

Ei

􏼠 􏼡 � w ai( 􏼁
2 3.4i

− 5.2i
􏼐 􏼑 + w ai( 􏼁 −14.2i

+ 21.22i− 1
+ 3w(f)2i

􏼐 􏼑 + 9.4i
− 25.2i− 1

+ 9w(f).2i− 1
, (10)

where

w ai( 􏼁 � 6.2n− i+1
− 5􏼐 􏼑, w ai( 􏼁

2
� 36.22(n− i+1)

− 60.2n− i+1
+ 25, w fi( 􏼁 � 6.2i− 1

− 5􏼐 􏼑. (11)

Replacing these values in equation (10), we obtain

W
Hn

Ei

􏼠 􏼡 � 36.22n− 2i+2
− 60.2n− i+1

+ 25􏼐 􏼑 3.22i
− 5.2i

􏼐 􏼑 + 6.2n− i+1
− 5􏼐 􏼑 −14.2i

􏼐 + 21.22i− 1

+ 3.2i
. 6.2i− 1

− 5􏼐 􏼑 + 9.22i
− 25.2i− 1

+ 9 6.2i− 1
− 5􏼐 􏼑.2i− 1

� 108.22n+2
− 180.22n− i+2

− 180.2n+i+1
+ 300.2n+1

+ 75.22i
− 125.2i

− 84.2n+1

+ 126.2n+i
+ 108.2n+i

− 90.2n+1
+ 70.2i

− 105.22i− 1
− 90.22i− 1

+ 75.2i
+ 9.22i

− 25.2i− 1
+ 54.22i− 2

− 45.2i− 1

� 432.4n
+(600 − 168 − 180)2n

− 720.22n− i
+(−360 + 126 + 108)2n+i

+ 2i
(−125 + 75 + 70 − 35) + 22i− 1

(−105 − 90 + 27 + 18) + 75.4i
.

(12)

An easy simplifcation implies

W
Hn

Ei

􏼠 􏼡 � 432.4n
+ 252.2n

− 720.22n− i
− 126.2n+i

− 15.2i
.

(13)

By taking summation on i, we obtain

􏽘

n+1

i�2
W

Hn

Ei

􏼠 􏼡 � 432.4n
+ 252n.2n

− 720.4n
􏽘

n+1

i�2

1
2i

􏼠 􏼡 − 126.2n
+ 15( 􏼁 􏽘

n+1

i�2
2i

. (14)
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It is easy to compute that

􏽘

n+1

i�2

1
2i

�
(1/4) 1/2n

( 􏼁 − 1( 􏼁

(−1/2)
� −

1
2

1
2n − 1􏼒 􏼓 �

1
2

−
1

2n+1

􏽘

n+1

i�2
2i

� 4 2n
− 1( 􏼁.

(15)

By putting these values in equation (14), we have

􏽘

n+1

i�2
W

Hn

Ei

􏼠 􏼡 � 432.n.4n
+ 252.n.2n

− 720.4n
.
1
2

−
1

2n+1􏼠 􏼡 − 126.2n
+ 15( 􏼁(4) 2n

− 1( 􏼁

� 432.n.4n
+ 252.n.2n

− 360.4n
+ 360.

4n

2n − 126.2n
+ 15( 􏼁 4.2n

− 4( 􏼁

� 432.n.4n
+ 252.n.2n

− 360.4n
+ 360.

4n

2n − 504.2n
+ 504.2n

− 60.2n
+ 60.

(16)

Hence,

􏽘

n+1

i�2
W

Hn

Ei

􏼠 􏼡 � 4n 432n − 864 +
360
2n􏼒 􏼓 +(252.n + 444)2n

+ 60. (17)

By adding equations (8) and (17) and using Teorem 1,
we obtain

W Hn( 􏼁 � W
Hn

E1
􏼠 􏼡 + 􏽘

n+1

i�2
W

Hn

Ei

􏼠 􏼡

� 72.4n
− 30 + 4n 432n − 864 +

360
2n􏼒 􏼓 +(252.n + 444)2n

+ 60.

(18)

Tis implies that

W Hn( 􏼁 � 30 + 432.n − 792 +
360
2n􏼒 􏼓.4n

+(252.n + 444)2n
.

(19)

Tis completes the proof.
For n≥ 1, the graph In+2 has fve components. One

component is H � I2 − C6 and let the other components be
H1,n, H2,n, H3,n, and H4,n such that H∩Hi,n � si􏼈 􏼉, for
1≤ i≤ 4. Tus, In+2 is obtained by the edge disjoint copies of
H1,n, H2,n, H3,n, H4,n and the graph H. Tis implies that
In+2 � H∪H1,n ∪H2,n ∪H3,n ∪H4,n.

Te partition of the graph In+2 is shown in Figure 5.
Defne, K1 � Hn ∪H, K2 � K1 ∪Hn, K3 � K2 ∪Hn, and

K4 � K3 ∪Hn, where H∩Hn � s1􏼈 􏼉, K1 ∩Hn � s2􏼈 􏼉, K2 ∩
Hn � s3􏼈 􏼉, and K3 ∩Hn � s4􏼈 􏼉.

It is important to note that K4 � In+2, H1,n � H2,n � H3,n

� H4,n � Hn, and w(s1, Hn) � w(s2, Hn) � w(s3, Hn) � w

(s4, Hn).
Further, suppose that |H| � n1, |Hn−2| � n2, |K1| � n3,

|K2| � n4, |K3| � n5, and |K4| � n6.
It is easy to compute that n2 � 12.2n − 5 and n1 + n3 +

n4 + n5 � n1 + 3n2 � 86 + 36.2n − 18 � 362n + 68.
In the following lemmas, w(si, Hn) is computed. □

Lemma  . Let n be the positive integer and 1≤ j≤ 4,

w sj, Hn􏼐 􏼑 � 36n.2n
− 6.2n

+ 21. (20)

Proof. Te construction of the graph shows that the graph
has n + 1 stages, and in each stage, there are 2i− 1 hexagons,
for 1≤ i≤ n + 1. Te hexagons at each stage are connected to
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two hexagons in the next stage through a vertex. Let x be
a vertex connecting hexagon in (i − 1)th stage to the hexagon
at ith stage. Te distance of sj to this vertex x in ith stage is 3i,
where 1≤ i≤ n+. Further, the distance of x to the six vertices
of hexagon is 1 + 2 + 2 + 3 + 3 + 4 � 15. Tis implies that

w sj, Hn􏼐 􏼑 � 􏽘
x∈Hn

d x, si( 􏼁 � 􏽘
n+1

i�1
(3(i − 1)6 + 15)2i− 1

� 􏽘
n+1

i�1
(18i − 3)2i− 1

� 􏽘
n+1

i�1
18i2i− 1

− 3 􏽘
n+1

i�1
2i− 1

� 9 􏽘

n+1

i�1
i2i

− 3 􏽘

n+1

i�1
2i− 1

� 9 2n+2
(n) + 2􏼐 􏼑 − 3 2n+1

− 1􏼐 􏼑

� 36n.2n
− 6.2n

+ 21.

(21)
□

Lemma 5. Let n be the positive integer, then

w s2, K1( 􏼁 � 36n.2n
− 114.2n

+ 1150. (22)

Proof. Since K1 � Hn−2 ∪H, therefore, we have

w s2, K1( 􏼁 � w s2, H( 􏼁 + 􏽘
n

i�1
d s1, Hn−2( 􏼁 + 􏽘

n

i�1
d s2, s1( 􏼁

� w s2, H( 􏼁 + w s1, Hn−2( 􏼁 + 􏽘
n

i�1
d s1, s2( 􏼁

� w s2, H( 􏼁 + w s1, Hn−2( 􏼁 + 10 n2 − 1( 􏼁

� w s1, H( 􏼁 + W s1, Hn−2( 􏼁 + 10 n2 − 1( 􏼁

� 1189 + 36n.2n
− 6.2n

+ 21 + 10 12.2n
− 6( 􏼁

� 36n.2n
− 114.2n

+ 1150.

(23)

Hence,

W s2, K1( 􏼁 � 36n.2n
− 114.2n

+ 1150. (24)
□

Lemma 6. Let n be the positive integer, then

w s3, K2( 􏼁 � 72n.2n
+ 732.2n

+ 859. (25)

Proof. Since K2 � Hn−2 ∪K1, therefore, we have

w s3, K2( 􏼁 � 􏽘
x∈K1

d s3, x( 􏼁 + 􏽘
x∈Hn−2

d s3, x( 􏼁 � 􏽘
x∈H

d s3, x( 􏼁 + 􏽘
x∈H1,n−1

d s3, x( 􏼁 + 􏽘 d s3, s2( 􏼁 + d s2, x( 􏼁

� 􏽘
x∈H

d s1, x( 􏼁 + 􏽘
x∈Hn−2

d s3, s1( 􏼁 + d s1, x( 􏼁( 􏼁 + 􏽘 d s3, s2( 􏼁 + d s2, x( 􏼁

� w s1, H( 􏼁 + 31 n2 − 1( 􏼁 + w s1, Hn−2( 􏼁 + 31 n2 − 1( 􏼁 + w s2, Hn−2( 􏼁

� w s1, H( 􏼁 + 62 n2 − 1( 􏼁 + 2w s1, Hn−2( 􏼁

� 1189 + 62 12.2n
− 6( 􏼁 + 72n.2n

− 12.2n
+ 42

� 1189 + 744.2n
− 372 + 72n.2n

− 12.2n
+ 42.

(26)

HH1

H2

s1

s2
s3

s4

H4

H3

Figure 5: Te partition of In into Hn and H.
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Hence, we have

w s3, K2( 􏼁 � 72n.2n
+ 732.2n

+ 859, (27)

this completes the proof. □

Lemma 6. Let n be the positive integer, then

W s4, K3( 􏼁 � 54.n.2n
+ 363.2n

+ 826. (28)

Proof. Since K3 � Hn−2 ∪K2, therefore, we have

W s4, K3( 􏼁 � 􏽘
x∈H3,n−2

d s4, s3( 􏼁 + d s3, x( 􏼁 + 􏽘
x∈H

d s4, x( 􏼁 + 􏽘 d s4, s1( 􏼁 + d s1, x( 􏼁 + 􏽘 d s4, s2( 􏼁 + d s2, x( 􏼁

� 9 n4 − 1( 􏼁 + w s3, H3,n−2􏼐 􏼑 + w s4, H( 􏼁 + 31 n3 − 1( 􏼁 + W s2, H2,n−2􏼐 􏼑 + 31 n2 − 1( 􏼁 + w s1, H( 􏼁

� 71 12.2n
− 6( 􏼁 + 3w s1, Hn−2( 􏼁 + w s1, H( 􏼁

� 852.2n
− 426 + 3. 36n.2n

− 6.2n
+ 21( 􏼁 + 1189

� 852.2n
− 426 + 108.n.2n

− 18.2n
+ 63 + 1189.

(29)

Hence, we have

W s4, K3( 􏼁 � 108.n.2n
+ 834.2n

+ 826. (30)

Tis completes the proof.
An easy computation implies that □

Lemma 7. Te Wiener index of the graph H is W(H) �

21646.

Now, we prove the main result of this section.

Theorem 8. For n≥ 3, W(In) � 2376.n.4n + 1116.4n + 360.

n2n + 22872.2n + 324.2n(2n+1(n − 1)) + 2736(2n+1(n − 1)) +

3946.

Proof. Since K1 � H∪Hn, K2 � K1 ∪Hn, K3 � K2 ∪Hn,
and �In+2 � K4 � K3 ∪Hn, therefore, by using Teorem 2,
we obtain

W K1( 􏼁 � W(H) + W Hn( 􏼁 + n1 − 1( 􏼁w s1, H1( 􏼁 + n2 − 1( 􏼁w s1, H( 􏼁,

W K2( 􏼁 � W Hn( 􏼁 + W K1( 􏼁 + n2 − 1( 􏼁w s2, K1( 􏼁 + n3 − 1( 􏼁w s2, H2( 􏼁,

W K3( 􏼁 � W Hn( 􏼁 + W K2( 􏼁 + n2 − 1( 􏼁w s3, K2( 􏼁 + n4 − 1( 􏼁w s3, H3( 􏼁,

W K4( 􏼁 � W Hn( 􏼁 + W K3( 􏼁 + n2 − 1( 􏼁w s4, K3( 􏼁 + n5 − 1( 􏼁w s4, H4( 􏼁.

(31)

By replacing the values of W(K1), W(K2), and W(K3)

in W(K4) recursively, we obtain

W K4( 􏼁 � W Hn( 􏼁 + W K3( 􏼁 + n2 − 1( 􏼁w s4, K3( 􏼁 + n5 − 1( 􏼁w s4, Hn( 􏼁

� W Hn( 􏼁 + W Hn( 􏼁 + W K2( 􏼁 + n2 − 1( 􏼁w s3, K2( 􏼁 + n4 − 1( 􏼁w s3, Hn( 􏼁 + n2 − 1( 􏼁w s4, K3( 􏼁 + n5 − 1( 􏼁w s4, Hn( 􏼁

� W Hn( 􏼁 + W Hn( 􏼁 + W Hn( 􏼁 + W K1( 􏼁 + n2 − 1( 􏼁w s2, K1( 􏼁

+ n3 − 1( 􏼁w s2, Hn( 􏼁 + n2 − 1( 􏼁w s3, K2( 􏼁 + n4 − 1( 􏼁w s3, Hn( 􏼁 + n2 − 1( 􏼁w s4, K3( 􏼁 + n5 − 1( 􏼁w s4, Hn( 􏼁

� W Hn( 􏼁 + W Hn( 􏼁 + W Hn( 􏼁 + W Hn( 􏼁 + W(H) + n2 − 1( 􏼁

· w s1, H( 􏼁 + n1 − 1( 􏼁w s1, Hn( 􏼁 + n2 − 1( 􏼁w s2, K1( 􏼁 + n3 − 1( 􏼁w s2, Hn( 􏼁 + n2 − 1( 􏼁

· w s3, K2( 􏼁 + n4 − 1( 􏼁w s3, Hn( 􏼁 + n2 − 1( 􏼁w s4, K3( 􏼁 + n5 − 1( 􏼁w s4, Hn( 􏼁

� 4W Hn( 􏼁 + W(H) + n2 − 1( 􏼁 w s1, H( 􏼁 + w s2, K1( 􏼁 + w s3, K2( 􏼁 + w s4, K3( 􏼁( 􏼁

+ n5 − 1( 􏼁w s4, Hn( 􏼁 + n4 − 1( 􏼁w s3, Hn( 􏼁 + n3 − 1( 􏼁w s2, Hn( 􏼁 + n1 − 1( 􏼁w s1, Hn( 􏼁.

(32)
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Since w(s1, Hn) � w(s2, Hn) � w(s3, Hn) � w(s4, Hn),
therefore,

W In+2( 􏼁 � 4W Hn( 􏼁 + W(H) + n1 + n3 + n4 + n5 − 4( 􏼁w s1, Hn( 􏼁

+ n2 − 1( 􏼁 w s1, H( 􏼁 + w s2, K1( 􏼁 + w s3, K2( 􏼁 + w s4, K3( 􏼁( 􏼁.
(33)

By putting values of n2 � 12.2n − 5 and n1 + n3 + n4 +

n5 � n1 + 3n2 � 86 + 36.2n − 18 � 362n + 68 and w(s2, K1),

w(s3, K2) and w(s4, K3) from Lemmas 5, 6, and 7 in the
above equation, we obtain

W In( 􏼁 � 4 432.n − 792 +
360
2n􏼒 􏼓4n

+(252.n + 444)2n
+ 30􏼔 􏼕 + 21646

+ 36.2n
+ 68 − 4( 􏼁 9. 2n+1

(n − 1) + 2􏼐 􏼑 − 3.2n
+ 3􏼐 􏼑 + 6.2n

− 6( 􏼁

· 1189 + 18.n.2n
+ 39.2n

+ 1160( 􏼁 + 36.n.2n
+ 330.2n

+ 859( 􏼁 + 54.n.2n
+ 363.2n

− 826( 􏼁( 􏼁

� 4 432.n − 792 +
360
2n􏼒 􏼓4n

+(252.n + 444)2n
+ 30􏼔 􏼕 + 21646 + 36.2n

+ 304( 􏼁

· 9 2n+1
(n − 1) + 2􏼐 􏼑 − 3.2n

+ 3􏼐 􏼑 + 6.2n
− 6( 􏼁 1189 + 108n.2n

+ 732.2n
+ 2845( 􏼁

� 4.432.n.4n
− 4.4n792 + 4.4n 360

2n􏼒 􏼓􏼒 􏼓 + 4.252n.2n
( + 444.4.2n

+ 120􏼔 􏼕 + 21646 + 36.2n
+ 304( 􏼁

· 9 2n+1
(n − 1) + 2􏼐 􏼑 − 3.2n

+ 3􏼐 􏼑􏼑 + 6.2n
− 6( 􏼁 1189 + 108n.2n

+ 732.2n
+ 2845( 􏼁

� 1728n.4n
− 3168.4n

+ 1440.2n
( 􏼁 + 1008.n.2n

+ 1776.2n
+ 120

+ 21646 + 36.2n
+ 304( 􏼁 9 2n+1

(n − 1) + 2􏼐 􏼑 − 3.2n
+ 3􏼐 􏼑

· 6.2n
− 6( 􏼁 1189 + 108n.2n

+ 732.2n
+ 2845( 􏼁.

W In�2( 􏼁 � 1728.n.4n
− 3168.4n

+ 1008n.2n
+ 3216.2n

+ 120 + 21646

+ 36.2n
+ 304( 􏼁 9 2n+1

(n − 1) + 2􏼐 􏼑 − 3.2n
+ 3􏼐 􏼑 + 6.2n

− 6( 􏼁 108.n.2n
+ 732.2n

+ 4034( 􏼁.

(34)

Since

6.2n
− 6( 􏼁 108.n.2n

+ 732.2n
+ 4034( 􏼁 � 6.2n

.108.n.2n
+ 732.2n

.6.2n
+ 4034.6.2n

− 6.108.n.2n
− 6.732.2n

+ 6.4034

� 648.4n
.n + 4392.4n

+ 24202.2n
− 648.n.2n

− 4392.2n
− 24204

� 648n.4n
+ 4392.4n

− 648.n.2n
+ 19812.2n

− 24204.

(35)

Terefore, Wiener index of In+2 reduces to (In+2) �

1728n.4n − 3168.4n + 1008.n.2n + 3216.2n + 21766 + (36.2n +

304)(9(2n+1(n − 1) + 2) − 3.2n + 3) +648.n.4n + 4392.4n −

648n.2n + 19812.2n − 24204 � 2376.n.4n + 1224.4n + 360.n.2n

+ 23028.2n − 24204 + 21766 + (36.2n + 304) ((9(2n+1(n − 1)

+ 2) − 3.2n + 3).
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Te last expression after simplifcation becomes

36.2n
+ 304( 􏼁 9 2n+1

(n − 1) + 2􏼐 􏼑 − 3.2n
+ 3􏼐 􏼑

� 324.2n 2n+1
(n − 1)􏼐 + 2736 2n+1

􏼐 􏼐n − 1) − 108.4n
− 156.2n

+ 6384 36.2n
+ 304( 􏼁 9 2n+1

(n − 1) + 2􏼐 􏼑 − 3.2n
+ 3􏼐 􏼑

� 36.2n
+ 304( 􏼁(9 2n + 1(n − 1) + 9(2) − 3.2n

+ 3( 􏼁 + 36.2n
+ 304( 􏼁(9 2n+1

(n − 1) − 3.2n
+ 21􏼐 􏼑

� 36.2n
(9 2n+1

􏼐 􏼐n − 1) − 36.2n
.3.2n

+ 36.2n
.21 + 304 9 2n+1

(n − 1) − 304.3.2n
+ 304.21􏼐 􏼑􏼐 􏼑

� 36.2n 9 2n+1
(n − 1) − 108.4n

+ 756.2n
􏼐 􏼑􏼐 􏼑 + 2736 2n+1

(n − 1) − 912.2n
+ 6384􏼐 􏼑.

(36)

By replacing this value, Wiener index of In+2 reduces to

W In+2( 􏼁 � 2376n.4n
+ 1224.4n

+ 360.n.2n
+ 23028.2n

− 24204( 􏼁 + 21766 + 324.2n 2n+1
(n − 1)􏼐 􏼑

+ 2736 2n+1
(n − 1)􏼐 − 108.4n

− 156.2n
+ 6384.

(37)

Hence, (In) � 2376.n.4n + 1116.4n + 360.n2n + 22872.2n

+ 324.2n(2n+1(n − 1)) + 2736(2n+1(n − 1)) + 3946. Tis
completes the proof. □

2.3.WienerPolarity IndexofIn. From the construction of the
graph In, it is easy to see that

Wp I2( 􏼁 � 2(2) +(2(2) + 4) +(3(2) + 3)

+ 2(3) + 2(3) +(3 + 2 + 1) +(3 + 2 + 1) +(2 + 1) + 3(13) +(18.3) + 8.2(2) + 8.4 � 205.
(38)

Theorem 9. For n≥ 3,

Wp In( 􏼁 � 3.2n+3
− 112. (39)

Proof. For j≥ 3, the pair of vertices at distance 3 in the
hexagon is 3, and there is no vertex at distance three between
two hexagons at the same stage. Te pair of vertices at
distance 3 between the hexagons of stages j − 1 and j is 18,
and there is no pair of vertices at distance 3 from stages j − 2
to j. Tus,

Wp In( 􏼁 � Wp I2( 􏼁 + 3 23 + · · · + 2n
􏼐 􏼑 + 18 22􏼐 + · · · + 2n− 1

� 205 + 3 2n+1
− 1􏼐 􏼑 − 21 + 18 2n

− 1( 􏼁 − 54 � 205 + 12.2n+1
− 24 − 18 − 54 � 3.2n+3

− 112.
(40)

□

1 2 3 4 5 6 7 8

0

5.0×108

1.0×109

1.5×109

Graph of WI (n) and WP (n)

WI(n)WP(n)

Figure 6: Graphical comparison of Wiener and Wiener polarity indices.
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3. Concluding Remarks

In this article, the Wiener index and Wiener polarity index of
a class of nanostar dendrimers are explored. We have com-
puted the exact values of the Wiener index and the Wiener
polarity index of the nanostar dendrimer In. Figure 6 shows
the graphical comparison of both indices. Tese topological
indices provide a valuable tool to measure dendrimer mo-
lecular structure, allowing for comparisons, forecasts, and
comprehension of the potential efects of various structural
aspects on behaviour and qualities.Te solubility, stability, and
reactivity of dendrimers can be shown by particular topo-
logical indices. By establishing correlations, properties de-
pendent on the topological structure of the dendrimer can be
predicted. Relationships between structure and property can
be established with the help of topological indices. In future,
researchers can determine which features of the dendrimer’s
structure have themost impact on how it behaves or performs.
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