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In the present paper, we frst show that the existence of the solutions of the operator equation S∗XT � X is related to the similarity
of operators of class C1., and then we give a sufcient condition for the existence of nontrivial hyperinvariant subspaces. Tese
subspaces are the closure of ranφ(T) for some singular inner functions φ. As an application, we prove that every C10-quasinormal
operator and C10-centered operator, under suitable conditions, have nontrivial hyperinvariant subspaces.

1. Introduction

Let H be a separable infnite dimensional complex Hilbert
space and let B(H) be the algebra of all bounded linear
operators acting on H (see [1] for basics and fundamentals).
Te commutant of T, denoted by T{ }, is the algebra of all
operators A ∈ B(H) such that AT � TA. A closed subspace
M⊆H is called a nontrivial hyperinvariant subspace for T if
0≠M≠H and AM⊆M for every A ∈ T{ }. In particular, if
TM⊆M, then the subspace M is called a nontrivial invariant
subspace for T. Te invariant subspace problem asks
whether every operator T ∈ B(H) has a nontrivial invariant
subspace with T(M) ⊂M. In a similar fashion, the
hyperinvariant subspace problem asks whether every
bounded linear operator such that T≠ αI has a nontrivial
hyperinvariant subspace. Tese problems are still un-
resolved, especially for operators T ∈ B(H) such that
‖Tnx‖↛ 0 for every nonzero x in H.

A power-bounded operator T of class C∗0 which com-
mutes with a nonzero quasinilpotent operator has a non-
trivial invariant subspace. In the hyponormality case, it is
well known that in [2], Kubrusly and Levan have shown that
if the strong limit A, defned below, is a projection for every
biquasitriangular contraction T, then every contraction not

in C00 has a nontrivial invariant subspace. We recall the
following standard defnitions: for T ∈ B(H), T is a normal
operator if T∗T � TT∗, T is a quasinormal operator if
TT∗T � T∗TT, T is subnormal if there exist a complex
Hilbert space K ⊃ H and a normal operator N ∈ B(K) such
that H is an invariant subspace for N and T is the restriction
of N to H (i.e., N|H � T). T is hyponormal if T∗T − TT∗ ≥ 0.
Te proper inclusions are well known (see, e.g., [3]).

Normal ⊂ Quasinormal ⊂ Subnormal ⊂ Hyponormal.
(1)

Recall that a unitary operator is singular (resp. absolutely
continuous) if its spectral measure is singular (resp. abso-
lutely continuous) with respect to the Lebesgue measure on
the unit circle. Any contraction T can be decomposed
uniquely as the direct sum T � Us ⊕Ua ⊕T0, where Us and
Ua are singular and absolutely continuous unitary operators,
respectively, and T0 is a completely nonunitary contraction.
T is said to be absolutely continuous if in this decomposition
Us is absent. For this type of decomposition for polynomially
bounded operators, see [2, 4].

It is well known that the equation S∗XS � X, where S is
the unilateral shift of multiplicity one, characterizes the class
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of Toeplitz operators, and that this type of equations for
contraction operators was studied by many authors as in [5]
and the references therein. For the invariant subspace
problem, it is known that it was solved for the class of
subnormal operators but the hyperinvariant subspace
problem is still open for this class (for certain partial results,
readers may wish to look at [6]). In [7], it was shown that if T

is a hyponormal operator with a thin spectrum, then it has
a nontrivial invariant subspace, and in the C10 case, some
partial results were obtained by Kubrusly and Levan in [8],
who have proved that if a hyponormal operator T has no
nontrivial invariant subspace, then T is either a proper
contraction of class C00 or a nonstrict proper contraction of
class C10 for which the strong limit A of (T∗nTn)n≥1 is
a completely nonprojective nonstrict proper contraction.
For more details, see [4, 9–16].

In the present paper, we show that the existence of
nontrivial solutions of the equation S∗XT � X, where S is the
unilateral shift of multiplicity one on the hardy space H2(T)

and T is a polynomially bounded operator on a Hilbert space
H and is related to the similarity of operators of class C1.. In
other words, S∗XT � X has nontrivial solutions X if and
only if the operator matrix

S 1⊗X
∗
z

0 T
􏼢 􏼣, (2)

is similar to S⊕T.
Ten, we study the hyperinvariant subspaces problem

for polynomially bounded operators of class C10, and we give
sufcient conditions for the existence of nontrivial hyper-
invariant subspaces for hyponormal operators of class C10.

Now, we summarize our main results.
Let T be a polynomially bounded absolutely continuous

operator. If

􏽘
∞

n�0

􏽢1
ϕ

(n)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
‖ T
∗n

x ‖ <∞, (3)

for some nonzero x such that the operator matrix

S 1⊗x

0 T
􏼢 􏼣, (4)

is similar to S⊕T. Ten, T has nontrivial hyperinvariant
subspaces.

Te nontrivial hyperinvariant subspaces obtained are the
closure of ran ϕ(T) where ϕ is a singular inner function. Te
operator ϕ(T) is the function of T obtained using the
H∞-functional calculus defned for absolutely continuous
polynomially bounded operators [2, 4]. As an application,
we prove that if T is a C10-quasinormal operator, then T has
a nontrivial hyperinvariant subspace. In particular if T is
a completely nonnormal quasinormal operator, then the
nontrivial hyperinvariant subspaces of T are the closure of
ranφ(T) where φ is a singular inner function. In the case
where T is a centered operator, we give a refnement of the
result by showing that we may take x ∈ DT ranA.

Next, we provide other conditions sufcient for the
existence of nontrivial hyperinvariant subspaces for T.

2. Preliminaries

2.1. Notations and Defnitions. Troughout this paper, H

denotes an infnite dimensional complex separable Hil-
bert space with inner product 〈·, ·〉 and B(H, K) denotes
the space of all bounded linear operators acting from H to
K. Te kernel and the range of an operator T will be
denoted by kerT and ranT, respectively, and the rank one
operator x⊗y; x, y ∈ H is defned by (x⊗y)h � 〈h, y〉x,
for all h ∈ H. Te closure of a subspace M of H will be
denoted by M. For a contraction T, ‖T‖≤ 1, the operators
DT � (I − T∗T)1/2 and DT∗ � (I − TT∗)1/2 are the defect
operators and [T∗, T] � T∗T − TT∗ is the commutator
of T.

Let A, B be bounded linear operators on the Hilbert
spaces H and K, respectively. Consider the set

I(A, B) � X ∈ B(H, K): XA � BX{ }. (5)

If there is an operator X ∈ I(A, B) with a dense ran-
ge, we set A≺ dB. An operator X ∈ B(H, K) will be said
to be a quasiafnity if it is injective and has a dense range
and the operator A is a quasiafne transform of the op-
erator B and if there exists a quasiafnity X ∈ I(A, B), we
set A≺B.

2.2. Strong Limit for Contraction Operator. If T is a con-
traction, then (T∗nTn)n≥1 is a nonincreasing sequence of
nonnegative contractions so that it converges strongly to an
operator A which satisfes the following properties: 0≤A≤ I,
‖Tnx‖⟶ ‖A1/2x‖ as n⟶∞ for all x ∈ H, T∗nATn � A

for all n≥ 1 and there exists an isometry V on ranA such that
A1/2 ∈ I(T, V).

Furthermore, the subspace kerA � H0 � x: ‖Tnx‖⟶{

0; n⟶∞} is a hyperinvariant subspace. We say that T is of
class C0., that is strongly stable, if H0(T) � H and T is of
class C1. if H0(T) � 0{ }. T is of class C.j: j � 0,1 if T∗ is of
class Cj.; j � 0,1 and T is of class Cij: i, j � 0,1 if
T ∈ Ci. ∩C.j. For more details, see [4, 14].

We denote by D the open unit disc and by T the unit
circle. Let m denote the normalized Lebesgue measure on
the unit circle T (i.e., m � dθ/2π) and let L2 � L2(T) denote
the space of all complex-valued Lebesgue measurable
functions on T such that ‖f‖2 � fT |f(t) | 2dm(t) is fnite.
As such, L2 is a Hilbert space, a simple calculation using the
fact that m(T) � 1 shows that this space has a canonical
orthonormal basis zn: n ∈ Z{ } given by zn(ξ) � ξn, for all
n ∈ Z; Z being the set of integers and z denotes the identity
function, i.e., z(ξ) � ξ; ξ ∈ T and in the sequel, we set
1 ≡ z0.

Te Hardy space H2 � H2(T) is the closed linear span of
zn: n � 0, 1, . . .{ }. Te operators of multiplication by the
identity function z on the spaces H2 and H2

− � L2 ⊖H2 are
the unilateral forward shift S in H2 defned by (Sf)(ξ) :�

ξ.f(ξ) and the unilateral forward shift S− in H2
− defned by

(S− f)(ξ) :� ξ.f(ξ). It is clear that the bilateral forward shift
U on L2 has the following form with respect to the de-
composition L2 � H2 ⊕H2

− :
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U �
S 1⊗ z

− 1

0 S−

⎡⎣ ⎤⎦. (6)

For a Borel set α ⊂ T , we write
L2(α) � L2(α, m), L∞(α) � L∞(α, m) and the operator of
multiplication by the identity function z on the space L2(α)

will be denoted by Uα.

Defnition 1 (See [11]). A dissymmetric weight is a non-
increasing, unbounded function ω: Z⟶ (1,∞) satisfying
the following conditions:

(1) ω(n) � 1, n≥ 0
(2) limsupω(n − 1)/ω(n)<∞
(3) ω(− n)1/n⟶ 1 when n⟶∞

Defnition 2.

(1) An inner function is a bounded analytic function f

on D such that |f(z)| � 1 for almost every z in T ,
where f(z) is the radial limit of f (i.e.,
f(z) � lim

r⟶1−
f(rz)).

(2) Let μ be a positive, fnite singular (with respect to the
Lebesguemeasurem) Borel measure on T . A singular
inner function is an analytic function defned by

ϕμ(z) � exp − 􏽚
ζ + z

ζ − z
dμζ􏼠 􏼡, z ∈ D, (7)

If μ � δ1 denotes the point mass at ζ � 1, then

ϕδ1(z) � exp
z + 1
z − 1

􏼒 􏼓, z ∈ D, (8)

Tis type of inner function is called an (singular)
atomic inner function.

(3) An outer function is an analytic function F on D of
the form

F(z) � expic
􏽚
ζ + z

ζ − z
ϕ(ζ)dμζ􏼠 􏼡, (9)

where c is a real constant and ϕ is a real-valued
function in L1.

Remark 3. It is well known that the only nonconstant in-
vertible inner functions in the Hardy spaces are the outer
functions. For more details, see [17, 18].

Theorem 4 (See [11]). Let ω be a dissymmetric weight. Ten,
there is a singular inner function ϕ such that m(suppμϕ) � 0
and

􏽘

∞

n�0

1
ω2

(− n − 1)

􏽢1
ϕ

(n)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

<∞. (10)

Lemma 5 (See [19]). Let (βn)n≥0 be a sequence of positive
numbers such that βn⟶∞. Ten, there exists a dissymmetric
weight ω such that ω(− n − 1)≤ βn for sufciently large n.

Defnition 6. An operator T ∈ B(H) is said to be poly-
nomially bounded if there exists C> 0 such that
‖P(T)‖≤C‖P‖∞ for every polynomial P, where
‖P‖∞ � sup|z|<1|P(z)|.

We denote by PB(H) for the set of polynomially
bounded operator in B(H). It is well known, by von
Neumann’s inequality, that every contraction operator is
polynomially bounded.

Proposition 7 (See [19]). Let T ∈ PB(H) be an absolutely
continuous operator and let ϕ be a singular inner function. If

􏽘
∞

n�0

􏽢1
ϕ

(n)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
‖ T
∗n

x ‖ <∞, (11)

for some x ∈ H, then

ϕ T
∗

( 􏼁 􏽘

∞

n�0

􏽢1
ϕ

(n)T
∗n

x⎛⎝ ⎞⎠ � x. (12)

Lemma 8 (See [7]). Let T ∈ B(H). If T is a polynomially
bounded operator, then there is a contraction operator A such
that A≺T. Conversely, if T is a contraction operator, then
there is a polynomially bounded operator A such that A≺T.

3. Similarity of Operators

Let R be an operator on K � H2 ⊕H defned for every x ∈ H

by

R � Rx �
S 1⊗x

0 T
􏼢 􏼣. (13)

Set

ZT � x ∈ H: Rx ∈ PB(H)􏼈 􏼉,

BT � x ∈ H: ∃ L ∈ B H,H
2

􏼐 􏼑, 1⊗x � SL − LT􏽮 􏽯.
(14)

Following [20], ZT and BT are called the subspaces of
cocycles and coboundaries, respectively.

Proposition 9 (See [20])

(1) x ∈ ZT if and only if 􏽐
∞
n�0|〈h, T∗nx〉 | 2 <∞, for every

h ∈ H.
(2) x ∈ BT if and only if the operator matrix Rx is similar

to S⊕T.

It is clear that BT ⊆ZT for every T ∈ PB(H) and BT, ZT

are hyperinvariant subspaces (not necessarily closed) for T∗.
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Remark 10. We note here that if T � U is a unitary operator
on L2(α), then BU � ZU � L∞(α). If T � S is a unilateral
shift on H2, then BS � ZS � H∞ (see [20, 21] for further
details).

Let Y be an operator (not necessarily bounded) from H

to H2 defned by

Yh � 􏽘
∞

n�0
h, T
∗n

x􏼊 􏼋z
n
; x ∈ H. (15)

It is easy to check that S∗Y � YT for every bounded
operator T on H.

Lemma 11. Let T ∈ PB(H). Ten, Y is a bounded operator
from H to H2 for all x ∈ ranX∗DR, where X is a quasiafnity
in I(T, R) and R is a contraction operator.

Proof. According to Lemma 8, there exists a contraction
operator R and a quasiafnity X in I(T, R). Let x � DRy.
Ten, for all h ∈ H, we have

‖ Yh ‖
2

� 􏽘
∞

n�0
|〈h, R

∗n
DRy〉 |

2
� 􏽘
∞

n�0
|〈DRR

n
h, y〉 |

2 ≤ ‖ y ‖
2

􏽘

∞

n�0
‖ DRR

n
h ‖

2
. (16)

A simple calculation shows, for all h ∈ H, that

‖ DRR
n
h ‖

2
� R
∗n

D
2
RR

n
h, h􏽄 􏽅 � R

∗n
R

n
h, h􏼊 􏼋 − R

∗n+1
R

n+1
h, h􏽄 􏽅 � ‖ R

n
h ‖

2
− ‖ R

n+1
h ‖

2
. (17)

Hence,

‖ Yh ‖
2 ≤ ‖ y ‖

2
‖ h ‖

2
− ‖ A

1
2h ‖

2⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠;∀h ∈ H,∀y ∈ H,

(18)

where A is the strong limit defned in Section 2 for the
contraction R. Hence, an easy computation shows that the
following operator

Yh � 􏽘
∞

n�0
h, T
∗n

X
∗
DRx􏼊 􏼋z

n
, (19)

is bounded for every x ∈ H. □

Proposition 12. Let T ∈ B(H). Ten, the following condi-
tions are equivalent:

(1) BT ≠ 0{ }

(2) Te equation S∗XT � X has nontrivial solutions
in B(H,H2)

(3) Tere exist nonzero operators X ∈ I(T, U) such that
X∗z− 1 ∈ BT

Proof. (1)⇔ (2): If BT ≠ 0{ }, then there is
L≠ 0{ } ∈ B(H,H2) such that 1⊗ k � SL − LT; k ∈ BT.
Hence, S∗(1⊗ k) � L − S∗LT � 0, and then S∗LT � L.

Conversely, let L be a nonzero solution of the equation
S∗XT � X, then S∗(LT − SL) � 0. So, we either have (i) SL �

LT or (ii) ran(SL − LT)⊆ ker S∗.
(i). If ranL � H2 that is T≺ dS, then by Remark 10, there

exist ϕ ∈ H∞ and L′ ∈ B(H2), L ∈ B(H,H2) such that
1⊗L∗ϕ � SL′L − L′LT. Tus, L∗ϕ ∈ BT. If RanL≠H2, then
ranL is a nontrivial invariant subspace for S. Hence, by

Beurling’s theorem, there exists an inner function θ such that
ranL � θH2 and the restriction S | θH2 is a unilateral shift on
θH2. Tus, T≺ dS | θH2 . So, using the same argument as in (i),
we get BT ≠ 0{ }. (ii). If ran(SL − LT)⊆ ker S∗, then for every
h ∈ H, there is a scalar αh such that (LT − SL)h � αh1. Te
function H⟶ C; h⟼ 〈(LT − SL)h, 1〉 � αh is a bounded
functional. Hence, by Riesz representation’s theorem, there
exists k ∈ H such that 〈h, k〉 � αh for every h ∈ H. Tere-
fore, 〈h, k〉1 � LTh − SLh for every h ∈ H. Tis means that
1⊗ k � LT − SL.

(1)⇔ (3): If BT ≠ 0{ }, then there is L≠ 0{ } ∈ B(H,H2)

such that 1⊗x � SL − LT, k ∈ BT. Set

X �
L

X−

􏼢 􏼣, (20)

where X− h � 􏽐
∞
n�1〈h, T∗n− 1x〉z− n is an operator from H to

H2
− and X∗z− 1 � X∗− z− 1 � x ∈ BT.
By the same argument as in Lemma 11, it is seen that X−

is a bounded operator if x ∈ BT, and therefore, X is
a bounded operator.

An easy computation then shows that XT � UX, and as
the converse is clear, the proof is complete.

In what follows we show that if T is a polynomially
bounded operator of class C1., then BT ≠ 0{ }. □

Corollary 1 . If T is a polynomially bounded operator of
class C1., then BT ≠ 0{ }, and if T is a contraction operator,
then T∗A(RanDT)⊆BT.

Proof. According to Lemma 8, we can suppose that T is
a contraction operator. Ten, by Lemma 11, we can fnd
a certain y (in the range of DT ) such that the operator
Y: Yh � 􏽐

∞
n�0〈h, Tny〉zn is a bounded operator

Since S∗Y � YT∗, by Subsection 2.2, we get
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S
∗
YAT � YT

∗
AT � YA. (21)

Since the strong limit A is an injective positive operator
(T ∈ C1.), YA≠ 0. Hence, the equation S∗LT � L in
B(H,H2) has a nontrivial solution.

L � YA. (22)

Te result now follows from Proposition 12. It follows
from the proof of the previous proposition that the solutions
of the equation S∗LT � L in B(H,H2) have the form
L � YA, where Y ∈ I(T∗, S∗). If x ∈ BT, then there is L � YA

such that 1⊗x � SYA − YAT. An easy computation shows
that x � − T∗Ay for some y ∈ ranDT

.
Now, we recall some well-known facts: an operator T is

said to be binormal if T∗T and TT∗ commute, see [5, 20]. An
operator T is said to be centered if the following sequence

. . . T
3
T
∗3

, T
2
T
∗2

, TT
∗
, T
∗
T, T
∗2

T
2
, T
∗3

T
3

. . . (23)

is commutative. In [4], Morrel and Muhly showed some
properties and obtained a nice structure of centered

operators. We also recall that binormal operators are called
weakly centered operators in [18].Te following result is due
to V. Paulsen, C. Pearcy, and S. Petrovic [18]. □

Theorem 14. Every power bounded centered operator is
similar to a contraction.

It is easy to see that the following results hold true.

Lemma 15. Te class of binormal is self-adjoint and closed
under multiplication by complex numbers, taking inverses
and formation of direct sums.

Proposition 16. If T is a centered contraction operator, then
the asymptotic limit A commutes with D2

T.

Proof. Since A is the strong limit of the sequence T∗nTn,
n≥ 1,

‖ AD
2
T − D

2
TA􏼐 􏼑x ‖ � ‖ AT

∗
T − T

∗
TA( 􏼁x ‖

� ‖ AT
∗
Tx − T

∗n
T

n
T
∗
Tx − T

∗
T Ax − T

∗n
T

n
x( 􏼁+

+T
∗n

T
n
T
∗
Tx − T

∗
TT
∗n

T
n
x ‖ .

(24)

Since T is a centered operator, T∗T commutes with
T∗nTn for all n≥ 1, and therefore,

‖ AD
2
T − D

2
TA􏼐 􏼑x ‖ � ‖ AT

∗
Tx − T

∗n
T

n
T
∗
Tx − T

∗
T Ax − T

∗n
T

n
x( 􏼁 ‖ . (25)

Hence,

‖ AD
2
T − D

2
TA􏼐 􏼑x ‖ ≤ ‖ AT

∗
Tx − T

∗n
T

n
T
∗
Tx ‖ + ‖ T

∗
T ‖ ‖ Ax − T

∗n
T

n
x ‖⟶ n0. (26)

Tis means that AD2
Tx � D2

TAx, for all x ∈ H. Ac-
cordingly, AD2

T � D2
TA, as needed.

As a consequence of Corollary 13 as well as the preceding
proposition, we obtain □

Corollary 17. If T is a centered contraction operator of class
C1., then

DTranA⊆BT. (27)

4. Hyperinvariant Subspaces

First, we recall some well-known facts in complex analysis:
for every analytic function f in D the function 􏽥f defned
onD by 􏽥f(z) � f(z) is analytic inD and 􏽢􏽥f(n) � 􏽢f(n), n≥ 0.

If T is an absolutely continuous (PB)-operator and
f ∈ H∞, then f(T∗)∗ � 􏽥f(T), see [2]. For f ∈ H∞ and for
t ∈ T , we set
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ft(z) � f(tz), for every z ∈ D.
Ten,

􏽥ft � 􏽥f t. (28)

If f is a singular inner function, then it has no zeros inD,
and so the function 1/f is analytic in D, i.e.,
1/f(z) � 􏽐

∞
n�0

􏽣1/f(n)zn, z ∈ D.
From the equality f(z).1/f(z) � 1, we get

􏽢f(0).
􏽢1
f

(0) � 1, 􏽘
k�n

k�0

􏽢f(n − k)
􏽢1
f

(k) � 0, n≥ 1,

􏽢1
ft

(n) �
􏽢1
f

(n)t
n
, n≥ 0.

(29)

Theorem 18. Let T ∈ PB(H) be an absolutely continuous
operator. If

􏽘

∞

n�0

􏽢1
θ
(n)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
‖ T
∗n

x ‖ <∞, (30)

for some nonzero x ∈ BT, then T has nontrivial hyper-
invariant subspaces.

Proof. Let 0≠x ∈ BT. Ten, by Proposition 12, there exists

X �
X+

X−

􏼢 􏼣, (31)

in I(T, U), where X− h � 􏽐
∞
n�0〈h, T∗n− 1x〉z− n is an operator

from H to H2
− and X∗z− 1 � X∗− z− 1 � x. Since

X+ ∈ B(H,H2), X+ may be written as X+h �

􏽐n≥0〈X+h, zn〉zn.
Set X∗+zn � xn, n≥ 0. If f � 􏽐n≥0

􏽢f(n)zn ∈ H2, then

X
∗
+f � 􏽘

n≥0

􏽢f(n)xn. (32)

It then follows from SX+ − X+T � − 1⊗ x, by an easy
computation, that x � T∗x0.

Similarly, we have

X
∗ 􏽥ϕtz

− 1
� X
∗
+, X
∗
−􏼂 􏼃 􏽥ϕtz

− 1
� X
∗
+ψt + X

∗
−

􏽢ϕ(0)z
− 1

� X
∗
+ψt + 􏽢ϕ(0)x, (33)

where 􏽢ψt(n) � 􏽢ϕ(n + 1), n≥ 0.
On the other hand, we have

ϕt T
∗

( 􏼁 X
∗ 􏽥ϕtz

− 1
􏼐 􏼑 � X

∗ϕt U
∗

( 􏼁 􏽥ϕtz
− 1

􏼐 􏼑 � X
∗

z
− 1

􏼐 􏼑 � x.

(34)

By Proposition 7,

ϕt T
∗

( 􏼁 􏽘

∞

n�0

􏽢1
ϕt

(n)T
∗n

x⎛⎝ ⎞⎠ � x, (35)

so that

ϕt T
∗

( 􏼁 􏽘

∞

n�0

􏽢1
ϕt

(n)T
∗n

x − X
∗ 􏽥ϕtz

− 1⎛⎝ ⎞⎠ � 0. (36)

Suppose to the contrary that, for every t ∈ T , ϕt(T∗) has
no nonzero eigenvectors, that is,

∀t ∈ T , X
∗ 􏽥ϕtz

− 1
􏼐 􏼑 � 􏽘

∞

n�0

􏽢1
ϕt

(n)T
∗n

x. (37)

Ten,

∀h ∈ H,∀t ∈ T , X
∗ 􏽥ϕtz

− 1
􏼐 􏼑, h􏽄 􏽅 � 􏽘

∞

n�0

􏽢1
ϕt

(n) T
∗n

x, h􏼊 􏼋.

(38)

Hence, by relations (22), (41), (42), and (43), we get

∀h ∈ H, ∀t ∈ T , 􏽘
n≥0

􏽢ϕ(n + 1) xn, h􏼊 􏼋t
n

+ 􏽢ϕ(0)x � 􏽘
n≥0

􏽢1
ϕ

(n) T
∗n

x, h􏼊 􏼋t
n
. (39)

In particular,

∀h ∈ H, 􏽢ϕ(1) x0, h􏼊 􏼋 �
􏽢1
ϕ

(0) − 􏽢ϕ(0)􏼠 􏼡〈x, h〉. (40)

Since x � T∗x0, it is seen that

∀h ∈ H, 􏽢ϕ(1) x0, h􏼊 􏼋 �
􏽢1
ϕ

(0) − 􏽢ϕ(0)􏼠 􏼡 T
∗
x0, h􏼊 􏼋. (41)

Terefore,

􏽢ϕ(1)x0 �
􏽢1
ϕ

(0) − 􏽢ϕ(0)􏼠 􏼡T
∗
x0, (42)

by (40), we have 􏽣1/ϕ(0)≠ 􏽢ϕ(0), and therefore, λ � 􏽢ϕ(1)/
􏽣1/ϕ(0) − 􏽢ϕ(0) is an eigenvalue for T∗.

So, if the point spectrum of T∗ is empty, then there exists
t ∈ T such that
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X
∗ϕt z

− 1
􏼐 􏼑≠ 􏽘

∞

n�0

􏽢1
ϕt

(n)T
∗n

x. (43)

Tus, by (44), ran 􏽥ϕt(T) are nontrivial hyperinvariant
subspaces for T. □

Corollary 19. Let T ∈ PB(H). If there exists a solution X to
the equation S∗XT � X such that

􏽘

∞

n�0

􏽢1
ϕ

(n)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
‖ T
∗n

X
∗
z

− 1
‖ <∞, (44)

then either the point spectrum of T∗ is not empty or T has
nontrivial hyperinvariant subspaces of the form ranϕ(T∗),
where ϕ is a singular inner function.

Remark 20. Since the operator

R �
S 1⊗x

0 T
􏼢 􏼣, (45)

is of class C10, by Proposition 9 and Corollary 13, there exists
a dense linear manifold BT for T (otherwise it will be
a nontrivial hyperinvariant subspace for T∗) such that the
operator R is similar to S⊕T. Hence,Teorem 18means that

if T ∈ PB(H) is an absolutely continuous operator and there
exists some x ∈ H such that R is similar to S⊕T, and

􏽘

∞

n�0

􏽢1
ϕ

(n)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
‖ T
∗n

x ‖ <∞, (46)

then either the point spectrum of T∗ is not empty or T has
nontrivial hyperinvariant subspaces of the form ranϕ(T∗),
where ϕ is a singular inner function.

In the sequel, we give some applications of the previous
theorem.

Proposition 21. If T is a C.0− contraction quasinormal op-
erator, then for every nonzero h ∈ ranDT, there is an in-
creasing sequence of positive numbers (αn)n≥0: α0 � 0 and
αn⟶∞ such that

􏽘

∞

n�0
αn+1 ‖ T

∗n
h ‖

2 <∞. (47)

Proof. Let h � DT∗x; 0≠x ∈ H. Recall that if T is a quasi-
normal operator, then T∗DT � DTT∗. Hence,

‖ T
∗n

DTx ‖
2

� ‖ DTT
∗n

x ‖
2

� x, T
n
D

2
TT
∗n

x􏽄 􏽅 � ‖ T
∗n

x ‖
2
− ‖ TT

∗n
x ‖

2
. (48)

By the hyponormality of T, we get that
‖T∗nDT∗x‖2 ≤ ‖T∗nx ‖ 2 − ‖T∗n+1x‖2 for every n≥ 0. Since T

is of class C.0, we claim that there is a singular inner function
ϕ such that

􏽘

∞

n�0

􏽢1
ϕ

(n)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

‖ T
∗n

h ‖
2 <∞. (49)

Indeed, by Lemma 5, there exists a dissymmetric weight
ω such that ω(− n − 1)≤ 1/‖T∗nh‖ for sufciently large n. By
Teorem 4, there exists a singular inner function ϕ such that
􏽐
∞
n�01/ω

2(− n − 1)| 􏽣1/ϕ(n)|2 ≤∞. For sufciently large m, we
get

􏽘

∞

n�m

􏽢1
ϕ

(n)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

‖ T
∗n

h ‖
2 ≤ 􏽘
∞

n�m

1
ω2

(− n − 1)

􏽢1
ϕ

(n)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

. (50)

Tat means that 􏽐
∞
n�0|

􏽣1/ϕ(n)|2‖T∗nh‖2 <∞, for every
h ∈ H.

Next, let (αn)n be a sequence defned by α0 � 0;
αn+1 � 􏽐

∞
n�0|

􏽣1/ϕ(n)|2, n≥ 0. It is clear that (αn)n is a positive
increasing sequence. By Remark 3, 1/ϕ ∉ H2. Tat is, (αn)n is
an unbounded sequence (αn⟶∞). An easy computation
shows that

􏽘

n

k�0
αk+1 ‖ T

∗k
h ‖

2 ≤ 􏽘

n

k�0
αk+1 ‖ T

∗k
x ‖

2
− ‖ T
∗k+1

x ‖
2

􏼐 􏼑

� 􏽘
n

k�0
αk+1 − αk( 􏼁 ‖ T

∗k
x ‖

2
− αn+1 ‖ T

∗n
x ‖

2

� 􏽘
n

k�0

􏽢1
ϕ

(k)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

‖ T
∗k

x ‖
2

− αn+1 ‖ T
∗n

x ‖
2
,

(51)

for every n≥ 0.
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Terefore, 􏽐
∞
n�0αk+1‖T∗kh ‖ 2 ≤􏽐

n
k�0|

􏽣1/ϕ(k)|2‖T∗kx ‖ 2,
for every n≥ 0.

Tus, by (45), we get 􏽐
∞
n�0αk+1‖T∗kh‖2 <∞. □

Lemma 22. If T is a contraction quasinormal operator, then
D2

T(BT)⊆BT.

Proof. If x ∈ BT, then there exists L ∈ B(H,H2) such that

1⊗ x � SL − LT. (52)

Multiplying (52) by D2
T and using the quasinormality of

T give.

1⊗D
2
Tx � SLD

2
T − LD

2
TT. (53)

In other words, D2
Tx ∈ BT, for each x ∈ BT. □

Theorem 2 . Let T be a C1.-quasinormal operator, then
either the point spectrum of T∗ is nonempty or T has

nontrivial hyperinvariant subspaces of the form ranϕ(T∗),
where ϕ is a singular inner function.

Proof. According toTeorem 18 and the previous lemma, it
sufces to show that

􏽘

∞

n�0

􏽢1
ϕ

(n)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
‖ T
∗n

D
2
Ty ‖ <∞, y ∈ BT. (54)

Set x � D2
Ty. By Proposition 21, there exists a positive

unbounded sequence (αn)n such that (47) holds.
By Lemma 5, there exists a dissymmetric weight ω such

that

ω(− n − 1)≤ ��
αn

√
, (55)

for sufciently large n. Also, by Teorem 4, there exists
a singular inner function θ satisfying (10). Terefore,

􏽘

∞

n�0

􏽢1
θ
(n)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
‖ T
∗n

x ‖ � 􏽘
∞

n�0

􏽢1
θ
(n)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

1
��αn

√
��
αn

√
‖ T
∗n

x ‖

≤ 􏽘

∞

n�0

􏽢1
θ
(n)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2 1
αn

􏽘

∞

n�0
αn ‖ T

∗n
x ‖

2

≤ 􏽘
∞

n�0

􏽢1
θ
(n)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2 1
ω2

(− n − 1)
􏽘

∞

n�0
αn ‖ T

∗n
x ‖

2

<∞.

(56)

Finally, the result follows from Teorem 18, and this
completes the proof.

As a consequence of Teorem 18 and Corollary 17, we
get the following result that gives a refnement of the
condition cited in Teorem 18 for the centered
C1.-operators. □

Theorem 24. Let T be a C1.-centered operator. If there exists
h ∈ H such that

􏽘

∞

n�0

􏽢1
ϕ

(n)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
‖ T
∗n

DTAh ‖ <∞, (57)

for some singular inner function ϕ, then T has nontrivial
hyperinvariant subspaces of the form ranϕ(T).
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