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In this study, we introduce an innovative approach to solving stochastic equations in two and three dimensions, leveraging a time-
splitting strategy. Our method combines radial basis function (RBF) spatial discretization with the Crank–Nicolson scheme and
the local one-dimensional (LOD) method for temporal approximation. To navigate the probabilistic space inherent in these
equations, we employ the Monte Carlo method, providing accurate estimates for expectations and variations. We apply our
approach to tackle challenging problems, including two-dimensional convection-difusion and Burgers’ equations, resulting in
reduced computational and memory requirements. Trough rigorous testing against diverse problem sets, our methodology
demonstrates efciency and reliability, underscoring its potential as a valuable tool in solving complex multidimensional sto-
chastic equations. We have validated the method’s stability and showcased its convergence as the number of collocation points
increases. Tese fndings serve as compelling evidence of the suggested method’s convergence properties.

1. Introduction

Te realm of mathematical modeling is often confronted
with the inherent uncertainty introduced by perturbations in
various physical phenomena. To establish dependable
models capable of capturing this uncertainty, the utilization
of stochastic partial diferential equations (SPDEs) becomes
imperative [1–3]. Te emergence of SPDEs as a captivating
research domain in recent years has garnered signifcant
attention from scholars worldwide.

While the literature on SPDEs is extensive, the scarcity of
exact solutions necessitates the use of numerical techniques
for their resolution [4–8]. Researchers such as Yoo [9], Yan
[10], Nouy [11], and Ye [12] have applied diverse numerical
methods, including fnite diference, fnite element, and
kernel-based collocation methods, to address the challenges
posed by stochastic PDEs.

Among the array of numerical techniques available,
mesh-free methods, which have gained substantial popu-
larity, hold promise for tackling these complex equations
[13]. Specifcally, the collocation method based on radial
basis functions (RBFs), belonging to the class of mesh-free

methods, has been widely adopted by researchers for both
deterministic and stochastic PDEs [14–18]. In this study, our
main focus is on solving stochastic difusion equations using
the collocation method based on radial basis functions
(RBFs). Te RBF method has a distinct advantage as it does
not rely on mesh discretization and can be applied to un-
structured node sets. Tis makes it particularly suitable for
solving problems in complex and irregular domains, where
geometric details may be intricate. Table 1 provides def-
nitions for the most widely used RBFs, where the Euclidean
norm is denoted by r, and the shape parameter ϵ controls the
infuence of the RBF.

Te computational cost associated with solving two- or
three-dimensional partial diferential equations (PDEs) is
known to be signifcant. However, this challenge can be
efectively addressed through the utilization of time-splitting
methods.Tesemethods aim to reduce the dimensionality of
the algebraic system involved in the numerical scheme. By
decomposing complex time-dependent problems into
simpler subsets, the numerical methods can be solved in-
dependently and efciently. Ten, the existing numerical
methods can be solved separately and shortly. Notably,
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recent studies have explored the application of time-splitting
approaches for multidimensional equations [19, 20]. In this
particular investigation, we employ the local one-
dimensional (LOD) time-splitting technique to tackle the
two- and three-dimensional versions of stochastic difusion
equations [21]. In the subsequent subsection, a concise
overview of stochastic PDEs will be presented.

1.1. Stochastic Difusion Equations. Consider the stochastic
advection-difusion equation as a popular stochastic prob-
lem. Let (D,F,P) be a probability space, where D is the
space of basic outcomes, F is a σ-algebra related to D, and
P is a measure defned onF. Many phenomena in biology,
chemistry, physics, and population dynamics can be
expressed in the format of a stochastic difusion equation
with the following form:

ztu � zxxu + zxf(u) + σWt(x, t), inΩ,

u(t, x, w) � 0, t ∈ [0, T],

u(0, x, w) � u0(x, w), (x, w) ∈ Ω × D.

⎧⎪⎪⎨

⎪⎪⎩

(1)

where Ω ⊂ Rd, d � 1, 2, · · · , n is a bounded domain and
σ > 0 is a constant. Wt(x, t) is a two-dimensional random
noise related to the Brownian motion W(x, t), which is
assumed that it depends on time and space with zero mean
and spatial covariance function Q given by

E(W(x, t), W(y, s)) � min t, s{ } Q(x, y), t, s> 0 (x, y) ∈ Rd
.

(2)

Equation (1) represents a well-known problem in in-
dustry and mathematics that is a focal point for numerous
researchers who have endeavored to fnd its optimal solu-
tions or have utilized this set of equations as a means to
showcase the efectiveness of their proposed methodologies.
Discussions have already unfolded concerning the existence
and uniqueness of solutions within this class of equations
[22, 23]. To describe the white noise diferent forms can be
used of the covariance function. In this technique, we defne
it in a way that is proportional to the chosen radial basis
function.

Te structure of this paper is outlined as follows:
Section 2 provides a concise overview of the imple-
mentation of the radial basis function (RBF) method, while
Section 3 introduces the local one-dimensional (LOD)
method for addressing time-dependent problems. In Sec-
tion 4, we present the general form of stochastic difusion

equations. To assess the efcacy of the LOD-RBF method,
we employ illustrative examples and analyze its perfor-
mance. Section 5 concludes this paper by summarizing the
key fndings and highlighting the main conclusions derived
from our study.

2. Collocation Method Based on Radial
Basis Functions

In this section, we elucidate the process of approximating
numerical solutions using the radial basis function (RBF)
method for one-dimensional problems. Subsequently, this
procedure can be extended to encompass two-and three-
dimensional problems.

To illustrate, let us consider a stochastic difusion
equation expressed in the following form:

ut + ]ux −
1

Re
uxx � g(u) + f(x, t) + σWt(x, t) (x, t) ∈ Ω,

(3)

u(x, 0) � q(x), x ∈ [a, b],

u(a, t) � u(b, t) � 0 t ∈ [0, T].
(4)

where ] is the difusion coefcient and g(u) is a nonlinear
function. Furthermore, f(x, t), q(x) are given functions,
and Ω ≔ [a, b] × [0, T] is the computational domain.

For time discretization, we apply the Crank-Nicolson
scheme between two consecutive time steps. Let η ≔ T/N be
the time step size

0 � t0 < t1 < · · · , tN−1 < tN � T,

u
n

� u x, tn( 􏼁, n ∈ 0, 1, · · · , N{ }

f
n

� f x, tn( 􏼁 n ∈ 0, 1, · · · , N{ }.

(5)

For n ∈ 0, 1, · · · , N{ }, applying a forward fnite diference
scheme for (3) leads to the following equation:

u
n+1

− u
n

η
+ ]u

n+1/2
x −

1
Re

u
n+1/2
xx � gn+1/2

(u) + f
n+1/2

+ ζx,

(6)

where

δwn ≔ wtn
− wtn−1

, ζx � σδwn. (7)

Here, the random variable ζx, has the following mean
and covariance function:

E ζx􏼂 􏼃 � 0,

E ζx, ζy􏽨 􏽩 � σ2ηQ(x, y), (x, y) ∈ Rd
.

(8)

After time discretization, the Wiener process transforms
into a Gaussian feld. Ten, in order to present a space
discretization for (6), we apply a collocation method based
on the radial basis function at fxed collocation points. We
choose the collocation points

ξ � xi􏼈 􏼉
M

i�0 ⊂ (Ω∪ zΩ), (9)

Table 1: Some well-known functions that generate RBFs.

Name of function Defnition
Multiquadric (MQ) ψ(r) �

������
ϵ2 + r2

√

Inverse multiquadric (IMQ) ψ(r) � 1/
������
ϵ2 + r2

√

Inverse quadric (IQ) ψ(r) � 1/ϵ2 + r2

Gaussian (GA) ψ(r) � exp(−ϵ2r2)

Polyharmonic spline (PHS) ψ(r) �
r
2n− 1

, n ∈ N,

r
2n ln r, n ∈ N

􏼨

Tin plate spline (TPS) ψ(r) � r2 log r

2 Journal of Mathematics



where xi for i � 1, · · · , M belongs to the domain and for i �

0, M belongs to the boundary. Considering ‖·‖ as the Eu-
clidean norm, the RBF method strives to approximate so-
lution un using a linear combination of RBFs ψ(‖.‖) at the the
collocation points. Tus, we defne the following estimate:

u x, tn( 􏼁 � u
n
(x)≃􏽘

M

j�0
λn

jψj(x), n ∈ 0, 1, · · · , N{ }, (10)

where ψ(r): [0,∞]⟶ R is a radial basis function that is
defned by ψj(x) � ψ(‖x − xj‖). Te coefcients λj, are
unknown, and they should be determined at each time step.

Te approximation (10) can be written at points xi as
follows:

u
n

xi( 􏼁≃􏽘

M

j�0
λn

jψj xi( 􏼁, i � 0, · · · , M, n ∈ 0, 1, · · · , N{ }, (11)

which can be written in the following matrix form:

u
n

� Aλn
, n ∈ 0, 1, · · · , N{ }, (12)

where

A � ψj xi( 􏼁􏽨 􏽩
(M+1)×(M+1)

,

λn
� λn

0, · · · , λn
M􏼂 􏼃

T
, n ∈ 0, 1, · · · , N{ }.

(13)

Considering the above notations, for n ∈ 0, 1, · · · , N{ },
the RBF collocation method for the discretization of (6)
reads as: Find λn ∈ RM+1 such that

􏽘
M

j�0
λn+1

j ψj xi( 􏼁 +
]
2
η􏽘

M

j�0
λn+1

j ψj
′ xi( 􏼁 −

η
2Re

􏽘
M

j�0
λn+1

j ψj
″ xi( 􏼁

� 􏽘
M

j�0
λn

jψj xi( 􏼁 −
]
2
η􏽘

M

j�0
λn

jψj
′ xi( 􏼁 +

η
2Re

􏽘
M

j�0
λn

jψj
″ xi( 􏼁

+ ηgn+1/2
􏽘
M

j�0
λn

jψj xi( 􏼁⎛⎝ ⎞⎠ + ηf
n+1/2

xi( 􏼁 + ζxi, i � 1, · · · , M − 1.

(14)

where

ψj
′ xi( 􏼁 �

d

dx
ψj(x)∣x�xi

, (15)

ψj
″ xi( 􏼁 �

d
2

dx
2ψj(x)∣x�xi

. (16)

Moreover, for the boundary conditions we have

􏽘

M

j�0
λn+1

j ψj x0( 􏼁 � 0, (17)

􏽘

M

j�0
λn+1

j ψj xM( 􏼁 � 0. (18)

Te equations result in the following nonlinear system:

Pλn+1
− ηG λn+1

􏼐 􏼑 � P1λ
n

+ ηRn
x, n ∈ 0, 1, · · · , N{ }, (19)

where G is defned as follows:

G λn+1
􏼐 􏼑 ≔

g 􏽐
M
j�0 λ

n
jψj xi( 􏼁􏼐 􏼑􏽨 􏽩

n+1
+ g 􏽐

M
j�0 λ

n
jψj xi( 􏼁􏼐 􏼑􏽨 􏽩

n

2
,

(20)

and the matrices P and P1 and the right-hand side vector R
can be obtained from (14)–(18) as follows:

P � A +
]η
2
A1 −

η
2Re

A2,

P1 � A −
]η
2
A1 +

η
2Re

A2,

A1 � ψj
′ xi( 􏼁 : i � 1, · · · , M − 1, j � 0, · · · , M, and 0 : elsewhere􏽨 􏽩,

A2 � ψj
″ xi( 􏼁 : i � 1, · · · , M − 1, j � 0, · · · , M, and 0 : elsewhere􏽨 􏽩,

Rn
x �

f xi( 􏼁􏼂 􏼃
n+1

+ f xi( 􏼁􏼂 􏼃
n

2
+ ζxi

􏼢 􏼣

M

i�0
,

ζx ∼N(0,Q),Q � σηQ xi, xj􏼐 􏼑􏽨 􏽩
M

i,j�0.

(21)
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In order to solve the nonlinear system (19), we use
a Newton’s method.

3. The Locally One-Dimensional Time-
Splitting Technique

In this study, we employ the local one-dimensional ap-
proach. Specifcally, we examine the difusion equation
presented as follows:

zu

zt
+ Dx

zu

zx
+ Dy

zu

zy
� Vx

z
2
u

zx
2 + Vy

z
2
u

zy
2, 0< t<T. (22)

In the domain 0≤x≤ 1,0≤y≤ 1 and certain boundary
and initial conditions. Dx, Dy are constant fuid velocities
and Vx, Vy are the dispersion coefcients in the x-direction
and y-direction, respectively.

We split the above equation into two one-dimensional
equations as follows:

1
2

zu

zt
+ Dx

zu

zx
� Vx

z
2
u

zx
2,

(23)

1
2

zu

zt
+ Dy

zu

zy
� Vy

z
2
u

zy
2. (24)

Each of the above equations should be solved over half of
the time step to obtain the approximated solution for the 2D
advection-difusion problem. Tese equations are easily
solved using the schemes developed for the 1D ones. In
addition, instead of solving (23) and (24) in each half-time
step, the following equations can be solved over a full-time
step:

zu

zt
+ Dx

zu

zx
� Vx

z
2
u

zx
2,

(25)

zu

zt
+ Dy

zu

zy
� Vy

z
2
u

zy
2. (26)

To solve (25) and (26), we can apply any methods used
for solving the one-dimensional advection-difusion equa-
tion. In the same way, by applying the LOD approach to (3),
we have two one-dimension equations as follows:

A + Lx( 􏼁λn+1/2
� A − Lx( 􏼁λn

+
η
2

G λn+1/2
􏼐 􏼑 + Rn

x􏼐 􏼑 +
1
2
ζx,

(27)

A + Ly􏼐 􏼑λn+1/2
� A − Ly􏼐 􏼑λn

+
η
2

G λn+1/2
􏼐 􏼑 + Rn

x􏼐 􏼑 +
1
2
ζy,

(28)

where

Lx � Ly ≔
]η
2
A1 −

η
2Re

A2. (29)

In order to solve the nonlinear system (27) and(28), we
use a Newton’s method. We wish to emphasize that our
choice for the initial value of the Newton method was de-
rived from a coefcient within the problem’s initial
conditions.

Before delving into the subsequent section, where we will
unveil our numerical fndings, we embark on an analysis of
the method’s convergence. To accomplish this, we turn your
attention to the following theorem.

Theorem 1. Te proposed approach RBF-LOD is stable.

Proof. While maintaining the problem’s generality, we focus
on the homogeneous case, noting that the same procedures
can be readily adapted for the heterogeneous case with only
minor adjustments. Hence, we proceed under the as-
sumption that

f(x, t) � 0. (30)

Also consider

xi − xj

�����

�����
2

2
� 2 − 2 cos θi − θj􏼐 􏼑, (31)

where θ represents the angular part of the points xi. We can
rewrite u(x) in the following form:

u(x) � 􏽘
M

i�1
λiψ 1 − cos θ − θi( 􏼁( 􏼁, (32)

where

ψ1 − cos θ − θi( 􏼁 � ψ xi − xj

�����

�����2
􏼒 􏼓, (33)

and ψ is a radial basis function. We have

u(θ, t) � 􏽘
M

j�1
λj(t)ψ 1 − cos θ − θj􏼐 􏼑􏼐 􏼑. (34)

Now, upon substituting (34) into the modifed homo-
geneous (3), we obtain
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􏽘

M

j�1
λj
′(t)ψ 1 − cos θ − θj􏼐 􏼑􏼐 􏼑 + ]􏽘

M

j�1
λj(t) sin θ − θj􏼐 􏼑ψ′ 1 − cos θ − θj􏼐 􏼑􏼐 􏼑

−
1

Re
􏽘

M

j�1
λj(t) cos θ − θj􏼐 􏼑ψ′ 1 − cos θ − θj􏼐 􏼑􏼐 􏼑 + 􏽘

M

j�1
λj(t)sin2 θ − θj􏼐 􏼑ψ″ 1 − cos θ − θj􏼐 􏼑􏼐 􏼑⎡⎢⎢⎣ ⎤⎥⎥⎦

− g 􏽘
M

j�1
λj(t)ψ 1 − cos θ − θj􏼐 􏼑􏼐 􏼑 − σWt 1 − cos θ − θj􏼐 􏼑􏼐 􏼑⎛⎝ ⎞⎠.

(35)

Let us rephrase (35) for each θi.

􏽘

M

j�1
λj
′(t)ψ 1 − cos θi − θj􏼐 􏼑􏼐 􏼑 + ]􏽘

M

j�1
λj(t) sin θi − θj􏼐 􏼑ψ′ 1 − cos θi − θj􏼐 􏼑􏼐 􏼑

−
1

Re
􏽘

M

j�1
λj(t) cos θi − θj􏼐 􏼑ψ′ 1 − cos θi − θj􏼐 􏼑􏼐 􏼑 + 􏽘

M

j�1
λj(t)sin2 θi − θj􏼐 􏼑ψ″ 1 − cos θi − θj􏼐 􏼑􏼐 􏼑⎡⎢⎢⎣ ⎤⎥⎥⎦

− g 􏽘
M

j�1
λj(t)ψ 1 − cos θi − θj􏼐 􏼑􏼐 􏼑 − σWt 1 − cos θi − θj􏼐 􏼑􏼐 􏼑⎛⎝ ⎞⎠.

(36)

Te resulting system can be represented in matrix form
as follows:

Aλ′(t) + Bλ(t) − Cλ(t) − g(Aλ(t)) − W � 0, (37)

where

A � aij􏽨 􏽩 � ψ 1 − cos θi − θj􏼐 􏼑􏼐 􏼑􏽨 􏽩,

B � bij􏽨 􏽩 � ] sin θi − θj􏼐 􏼑 −
1

Re
cos θi − θj􏼐 􏼑􏼒 􏼓ψ′ 1 − cos θi − θj􏼐 􏼑􏼐 􏼑􏼔 􏼕,

C � cij􏽨 􏽩 �
1

Re
sin2 θi − θj􏼐 􏼑ψ″ 1 − cos θi − θj􏼐 􏼑􏼐 􏼑􏽨 􏽩,

W � wij􏽨 􏽩 � N(0, Q), Q � σηQ θi, θj􏼐 􏼑􏽨 􏽩,

λ(t) � λ1(t), λ2(t), · · · , λM(t)( 􏼁
T
.

(38)

Under the assumption of the following, we will obtain:

u(t) � u1(t), u2(t), · · · , uM(t)( 􏼁. (39)

Equation (37) can be expressed as follows:

Aλ′(t) � (−B + C)λ(t) + g(Aλ(t)) + W. (40)

Since A is a positive defnite matrix, it is invertible,
enabling us to express:

u tn+1( 􏼁 � (−B + C)A
− 1

u tn( 􏼁 + g u tn+1/2( 􏼁 + WA
− 1

􏼐 􏼑.

(41)

Given that the term WA− 1 represents a coefcient
matrix with a condition number in each iteration that does
not exceed a certain value, denoted as α, we can state the
following:

u
n+1

� E1u
n

+ g u
n+1/2

􏼐 􏼑 + E2. (42)

Now, employing an iterative numerical method, denoted
as F, we can decompose the equation above into discrete
time steps n as follows:

u
n+1

� F
(k)

(E)u
n
, (43)
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where k denotes the number of iterations in the numerical
method. In (43), the matrix E is infuenced by the matrix
E1 � (−B + C)A− 1.Te relationship described in (43) is Lax-
stable if

F
(k)

(E)
n

�����

�����≤ l, ∀n ≥ 0. (44)

If E is a normal matrix, establishing the stability of the
method requires demonstrating that the eigenvalues of E fall
within the stability domain of the method F(k). □

Lemma  . A, B, and C are commutative matrices.

Proof. For proof refer to [24] □

Lemma 3. BA− 1 and CA− 1 are skew-adjoint.

Proof. From (38), A and B are skew-adjoint. Furthermore,
since A and B commute by Lemma 2, so too do A− 1 and B.
Hence,

BA
− 1

􏼐 􏼑
∗

� −A
− 1

B � −BA
− 1

, (45)

where (∗) denotes the complex conjugate transpose. Using
the samemethodology, the proposition is also proven for the
matrix product CA− 1. □

Lemma 4. BA− 1 and CA− 1 are Hermitian matrices, and
consequently, they are Normal matrices.

Proof. For proof refer to [24] □

Theorem 5. Te relation (43) is Lax-stable.

Proof. Matrix E is skew-adjoint so it is a Hermitian matrix.
As stipulated in Lemma 4, due to the Hermitian nature of
matrix E, it also qualifes as a normal matrix, ensuring that
its eigenvalues are real. Terefore, for equation (43) to be
Lax-stable, it sufces for the eigenvalues of matrix E to reside
within the stability domain of method F(k). By making
a judicious choice of method F, such as the Crank–Nicolson
method, which boasts unconditional stability with a domain
encompassing all real numbers, we can confdently assert
that equation (43) indeed is Lax-stable.

In light of the preceding explanation, we can confdently
assert that the proposed method is stable. □

4. Numerical Results

In this section, we showcase the numerical results obtained
through the utilization of the LOD-RBF method. Our pri-
mary objective is to obtain accurate numerical solutions for

stochastic difusion problems. We demonstrate the efec-
tiveness of the proposed method by solving various sto-
chastic difusion equations in both two- and three-
dimensional space. We employ a Monte Carlo simulation
for the solution samples u(l)

n for l � 1, · · · , S, and estimate the
expectation of the solution 􏽢un at the fnal time T by

E 􏽢un􏼂 􏼃 �
1
S

􏽘

S

l�1
u

(l)
n , (46)

that is called the mean value. Also, we compute the variance
and the standard deviation for all test problems presented
that are defned as follows:

Dev 􏽢un( 􏼁 �

�������������������

1
S

􏽘

S

l�1
􏽢u

(l)
n − 􏽘

S

p�1
􏽢u

(p)
n

⎛⎝ ⎞⎠

2
􏽶
􏽴

,

Var 􏽢un( 􏼁 � Dev 􏽢un( 􏼁( 􏼁
2
,

(47)

knowing them as are two next of the statistical moments is
momentous. To assess the accuracy of the obtained nu-
merical solutions, we utilize two commonly employed
error measures: the root-mean-square error (RMSE) and
the maximum error (e∞). Tese metrics provide valuable
insights into the quality and precision of the numerical
results. To defne these errors, frst, we introduce ei

n as the
expected error function at time tn in the following
formulate:

e
i
n � E u

i
n􏼐 􏼑 − u tn, xi( 􏼁

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, (48)

where u(tn, xi) and E(ui
n) are the exact and expectation of

numerical solutions at the collocation point xi and time tn,
respectively. Te discrete errors are defned as follows:

e∞ � max
1≤i≤S

ei

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌,

RMSE �

��������

1
S

􏽘

S

i�1
ei

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

􏽶
􏽴

.

(49)

Example 1. Convection-difusion models play a fundamen-
tal role in describing the transport phenomena encountered
in various physical, chemical, and biological processes [25].
In this study, we focus on the two-dimensional stochastic
convection-difusion equation (2D) with Dirichlet boundary
conditions. Tis equation serves as a key framework for
analyzing the intricate interplay between convection and
difusion processes in diverse felds of study. Consider the
following stochastic convection-difusion equation:
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ut + v1ux + v2uy −
1

Re
uxx + uyy􏼐 􏼑 � σWt(x, y, t), (x, y) ∈ Ω � [a, b]

2
,

u(x, y, 0) � exp −Re(x − 0.5)
2

− Re(y − 0.5)
2

􏼐 􏼑,

u(a, b, t) � 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(50)

where Re is the Reynolds number that depends on the
specifc problem and the fuid fow conditions involved. Te
exact solution of the deterministic type of problem is

u(x, y, t) �
1

1 + 4t
exp −Re

x − v1t − 0.5( 􏼁
2

(1 + 4t)
− Re

y − v2t − 0.5( 􏼁
2

(1 + 4t)
􏼠 􏼡. (51)

Here, we approximate the numerical solutions by using
inverse multiquadric (IMQ) functions. Concerning the
covariance function, due to the IMQ basis function, we
consider it in the following form:

Q(x, y) �
1

‖x − y‖
2

+ 1􏼐 􏼑
2. (52)

Also, our selected optimal shape parameter is ϵ �
��
h

√

which we determined by trial and error. Other required
assumptions and constants are as follows:

h �
b − a

M
, [a, b] � [−2, 4.5],

η �
T

N
, T � 1.25, N � 1000,

Re � 20, σ � 0.2, v1, v2 � 0.8.

(53)

We get all the results by using S � 1000 realizations of
the Monte Carlo method. In Figure 1, the exact solution, the
mean solution, and the error are shown. Furthermore, the
standard deviation and variance are shown in Figure 2.

Te CPU times for implementing this approach in each
example are provided.Te computations were performed on
a computer equipped with a 16-core neural engine and
16GB of memory using MATLAB 2021b. According to the
aforementioned constants, the CPU time for implementing
this approach in the specifed example is 0.71 seconds. In
Table 2, the efcacy of the number of collocation pointsM on
the errors (RMSE and e∞) is investigated. As expected, the
increase of collocation points leads to the decrease of error.

It is evident that employing a smaller time step size leads
to improved accuracy in the obtained results. Tis obser-
vation is substantiated by the data presented in Table 3,
which clearly demonstrates a reduction in errors as the time
step size decreases.

In order to assess the stability of the method, we con-
ducted a study, considering the suggested optimal shape
parameter as the input data. Our aim was to examine
whether the condition number of the matrix, resulting from
solving the system of linear equations, remains relatively
unchanged in near the selected optimal shape parameter.
Te results supporting this proposition are presented in
Table 4. Based on the fndings obtained from these exper-
iments, we conclude that employing ϵ �

��
h

√
ensures both

stability and high accuracy in the numerical solutions.
Furthermore, it can be intuitively demonstrated that the

proposed method for this class of equations is convergent.
To substantiate this claim, we illustrate how the error de-
creases as the number of collocation points M increases.

As vividly illustrated in Figure 3, it is evident that the
error decreases with the increasing number of collocation
points. Consequently, this observation serves as compelling
evidence of the method’s convergence. In this particular
example, we have achieved a convergence of orders 3 and 4.

Example 2. In this experiment, we aim to demonstrate the
efectiveness of the employed method in solving stochastic
nonlinear problems. To this end, we investigate a specifc
type of nonlinear stochastic equations. Specifcally, we apply
our method to address the stochastic nonlinear in-
homogeneous convection-difusion equation (2D) repre-
sented by the following form:

ut + ux + uy �
1
2

uxx + uyy􏼐 􏼑 + exp(−t) sin(x + y) + sin(u) + σWt(x, y, t), (x, y) ∈ Ω � [a, b]
2
,

u(x, y, 0) � sin(x) sin(y),

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(54)
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with zero boundary conditions. Te exact solution for the
deterministic type of this test is given by

u(x, y, t) � exp(−t). sin(x). sin(y). (55)

In this study, we obtain numerical results by employing
two diferent types of radial basis functions (RBFs) and
corresponding covariance functions. In addition to the
functions considered in the frst example, we also utilize the
Gaussian basis function and its appropriate covariance
function. By comparing the results presented in the provided

tables, we can observe the infuence of the selected radial
basis and covariance functions on the accuracy of the nu-
merical results. For each test, we consider the following
assumptions:

ψ � exp −ϵ2r2􏼐 􏼑, Q � exp r
2

􏼐 􏼑,

[a, b] � [0, π], T � 2, N � 1000,

ϵ �
M

10
, σ � 0.2.

(56)

In Figure 4, the exact solution, mean solution, and error
are shown.

Standard deviation and variance are presented as two
next statistical moments in Figure 5.

In Tables 5 and 6 the results of increasing the number of
the collocation pointsM and the time discretization points N
are provided.

According to these outcomes, rational improvement can
be seen in the error rate. Finally, in Table 7, the stability of
our method around the chosen optimal shape parameter ϵ ���

h
√

is checked numerically. Moreover, we can observe ϵ ���
h

√
leads to the lowest error.
We present new numerical results for the given example

by altering several factors, including the radial basis func-
tions (RBFs), covariance functions, and shape parameter. By
comparing the obtained errors, we can easily observe the
impact of these factors on the results. For the new experi-
ment, we utilize the Inverse multiquadric (IMQ) function as
the RBF and select a diferent covariance function tailored to
the Inverse multiquadric basis function. Te revised as-
sumptions for this experiment are as follows:

ψ(r) �
1

������
r
2

+ ϵ2
􏽰 ,

Q �
1

�����
r
2

+ 1
􏽰 ,

ϵ �
1
��
h

√ .

(57)

In Figure 6, the exact and mean solutions and the
corresponding error are shown. Furthermore, we provide
Table 8 that includes the estimated errors when increasing
the collocation point M.

By substituting the Gaussian radial basis function (RBF)
and its corresponding covariance function, we have achieved
signifcant improvements in the obtained results. As pre-
viously emphasized, the developed RBF-LOD method ofers
notable computational advantages. To validate its efec-
tiveness, we conducted a comparative analysis with the fnite
element method (FEM). For this purpose, we employed P1
FEM, utilizing frst-order polynomials and the same dis-
cretization points. Te comparison between the two
methods was based on CPU time, which serves as a fair
metric to evaluate their performance.

Table 9 displays the elapsed time for a singleMonte Carlo
simulation, clearly demonstrating that the RBF-LOD

Table 2: Results for the various number of collocation points M.

M e∞ RMSE

10 1.49e− 1 1.62e− 2
20 1.38e− 2 1.42e− 3
40 1.41e− 4 6.20e− 5
80 2.71e− 5 7.90e− 6

Table 3: Results for the various number of time discretization
points N.

N e∞ RMSE

10 1.14e− 2 5.52e− 3
100 1.63e− 3 5.20e− 4
200 1.91e− 4 8.28e− 5
400 8.20e− 5 1.47e− 5

Table 4: Results for diferent shape parameters around our sug-
gested optimal shape parameter.

ϵ RMSE Cond (M)
��
h

√
− 0.3 1.51e− 2 1.013��

h
√

− 0.2 1.11e− 3 1.012��
h

√
− 0.1 1.60e− 4 1.012��

h
√

4.14e− 5 1.011��
h

√
+ 0.1 9.12e− 5 1.012��

h
√

+ 0.2 1.02e− 4 1.012
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method surpasses the FEM in terms of efciency. Tis result
highlights the superior computational efciency of the
RBF-LOD method compared to the FEM.

To further corroborate the method’s convergence in this
particular example, we present Figure 7. Te depicted graph
distinctly showcases the trend: As the number of collocation
points increases, the associated error consistently di-
minishes, providing strong evidence of the method’s con-
vergence. Notably, in this example, the method exhibits
convergence of both third and fourth order. Tese fndings
frmly establish the method’s efectiveness and reliability in
the context of our investigation.

Example 3. One of the key advantages of our proposed
method is its ability to be easily implemented for high-
dimensional models. With this in mind, we conducted
a specifc experiment to showcase the efectiveness of our
method in the context of three-dimensional (3D) models. To
accomplish this, we investigate the behavior of our method
when applied to a three-dimensional stochastic difusion
equation. Te following equation represents the three-
dimensional stochastic difusion equation under
consideration:

ut + p.∇u −
1

Re
Δu � σWt(x, y, z, t), (x, y, z) ∈ Ω � [a, b]

3
,

u(x, y, z, 0) � exp −Re X − X0( 􏼁
T

X − X0( 􏼁􏼐 􏼑􏼐 􏼑.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(58)

Te exact solution when σ � 0 is

u(x, y, z, t) �
1

(1 + 4t)
3/2 exp −

Re

4t + 1
X − pt − X0( 􏼁

T
X − pt − X0( 􏼁􏼐 􏼑􏼒 􏼓, (59)

which is centered at X0 � (0.5,0.5,0.5) in this experiment.
Considering the following assumptions, we give some nu-
merical results

[a, b] � [−0.5,1.5], T � 0.5, N � 1000,

Re � 2, σ � 0.2.
(60)

Similar to the previous examples, we present the results
obtained from our proposed method to demonstrate its
efectiveness in tackling higher-dimensional problems. To
evaluate its performance, we provide estimated errors for
diferent confgurations of collocation points (M) and time
discretization points (N). Te corresponding results are
organized in Tables 10 and 11, respectively.Tese tables ofer
valuable insights into the competence of our approach and
its ability to accurately handle problems in higher
dimensions.

Also, the presented results in Table 12 show that the
method is stable and optimum for the selected shape pa-
rameter ϵ �

��
h

√
.

In conclusion, the numerical results presented in the
aforementioned tables indicate the satisfactory performance
of our method when applied to three-dimensional models.
As depicted in Figure 8, it is evident that the method per-
forms exceptionally well in this example as well. Te con-
vergence of the method is clearly demonstrated through this
graph. Just like in the previous two examples, when we
employ the proposed method in this scenario, we achieve
convergence of both third and fourth order.Tese consistent
results underscore the method’s reliability and its suitability

for a range of applications. In this example, with the specifed
constants taken into account, the CPU time is recorded at
1.24 seconds.

Example 4. To substantiate the credibility of our results, we
have undertaken a comparative analysis by employing an
alternative approach on a distinct example. In this context,
we have selected one of the examples previously addressed in
reference [26]. Te referenced work presents a novel for-
mulation of Radial Basis Functions (RBFs) rooted in the
pseudospectral (PS) method, tailored specifcally for solving
stochastic advection–difusion equations of the following
form:

du + ]∇.u − c∇2u − f􏼐 􏼑dt � σdW(t),

u(x, 0) � u0, x ∈ D,

u(x, t)|zD � g, t ∈ (0, T).

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(61)

To apply our method, we consider the following
assumptions:

0≤ x, y, z≤ 1, ]1 � ]2 � ]3 � 0.08, T � 1,

σ � 1. Re � 10, η � 0.05.
(62)

In Figure 9, both the exact solution and the mean so-
lution obtained through the proposed method are depicted
simultaneously, along with the corresponding error.

In Tables 13 and 14, we compare the errors generated by
our proposed method with those of the RBF-PS method for
various values of RE.
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As can be readily observed our proposed method yields
superior results. In this example, the execution demanded
approximately 0.89 seconds of CPU time.

Example 5. In this illustrative example, we demonstrate the
versatility of our method by applying it to problems in-
volving a complex domain. Specifcally, we examine an
equation governing a circle. To achieve this objective, we
solve the governing equations in the second example within
the context of a circle having a radius of π. User Te
constants considered in this example are as follows:

[a, b] � [0, 2π], T � 2, N � 1000,

ψ � exp −ϵ2r2􏼐 􏼑, Q � exp r
2

􏼐 􏼑, η � 0.002,

M � 200, ϵ �
M

20
, h �

π
100

, σ � 0.2.

(63)

In Figures 10 and 11, both the exact solution and mean
solution, acquired through the proposed method, are

depicted on a circular domain. Furthermore, Figure 12 il-
lustrates the error arising from the application of this
method.

As evident, the proposed method performs efectively on
this particular problem involving a circular domain. In this
case, the CPU time required was approximately
1.40 seconds. In addition, Table 15 presents the impact of
augmenting the number of collocation points on the
resulting error.

As anticipated, the error exhibits a favorable decrease
with the augmentation of collocation points.

Example 6. In our fnal experimental investigation, we
extend the application of our method to another variant of
the stochastic difusion equation. Specifcally, we focus on
the stochastic Burgers’ equation driven by additive noise.
Te study of such equations holds signifcant importance
due to their relevance in diverse felds, including astro-
physics, statistical physics, cosmology, fuid dynamics, and
engineering applications [27, 28]. Stochastic Burgers’
equations fnd applications in constructive quantum feld
theory [29], kinetic models, continuum theory [30], and
modeling of vortex lines in high-temperature supercon-
ductors [31]. In addition, the numerical solution of the
Burgers’ equation with random noise plays a central role in
addressing nonlinear systems out of equilibrium [32]. In this
study, we consider a two-dimensional stochastic Burgers’
equation, which is represented as follows:

ut + v uux + uuy􏼐 􏼑 �
1

Re
uxx + uyy􏼐 􏼑 + σWt(x, y, t) + f(x, y, t), x, y ∈ [a, b]

2
,

u(a, b, t) � 0,

u(x, y, 0) � sin(x) sin(y).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(64)

Table 5: Results for the various number of collocation points M.

M e∞ RMSE

10 1.30e− 2 6.92e− 3
20 3.06e− 3 1.86e− 3
40 6.47e− 4 2.73e− 4
80 6.35e− 4 6.24e− 5

Table 6: Results for the various number of time discretization points N.

N e∞ RMSE

10 3.10e− 2 1.54e− 2
100 4.27e− 3 2.45e− 3
200 2.02e− 3 1.17e− 3
400 6.83e− 4 3.64e− 4

Table 7: Results for diferent shape parameters around our sug-
gested optimal shape parameter.

ϵ RMSE Cond (M)
��
h

√
− 0.2 1.30e− 1 1.806��

h
√

− 0.1 1.36e− 3 1.784��
h

√
5.39e− 4 1.776��

h
√

2.77e− 3 1.783��
h

√
+ 0.2 3.63e− 3 1.792
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Table 8: Results for the various number of collocation points M using GA radial basis function.

M e∞ RMSE

10 1.46e− 3 8.39e− 4
20 3.74e− 4 2.33e− 4
40 1.25e− 4 7.78e− 5
80 6.08e− 5 3.04e− 5

Table 9: Te CPU time (in seconds) for RBF-LOD and FEM.

Method h � 0.4 h � 0.2 h � 0.1 h � 0.05 h � 0.025
RBF-LOD 0.86 0.9 1.22 1.64 13.9
FEM 0.85 0.91 1.29 1.88 15.1
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Figure 7: RMS-error vs. number of collocation points M.
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Te exact solution for the deterministic type of this
example is

u(x, y, t) � e
− t sinx cosy. (65)

In this test, we consider the required assumptions similar
to Example 3. We show the exact solution, the mean so-
lution, and the error in Figure 13. Subsequently, the standard
deviation and variance are plotted in Figure 14.

Table 10: Results for the various number of collocation points M.

M e∞ RMSE

10 9.79e− 2 4.18e− 3
20 2.80e− 3 1.66e− 4
40 2.33e− 5 2.60e− 6
80 6.01e− 6 1.75e− 7

Table 11: Results for the various number of time discretization points N.

N e∞ RMSE

10 2.21e− 2 1.71e− 3
50 1.09e− 3 2.03e− 4
100 9.26e− 5 5.14e− 5
200 3.61e− 5 9.04e− 6

Table 12: Results for diferent shape parameters around our suggested optimal shape parameter.

ϵ RMSE Cond (M)
��
h

√
− 0.2 6.62e− 3 1.131��

h
√

− 0.1 9.29e− 5 1.105��
h

√
6.21e− 5 1.044��

h
√

+ 0.1 1.02e− 4 1.280��
h

√
+ 0.2 1.45e− 4 1.630
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Table 13: Comparing results RBF-LOD vs. RBF-PS for Re� 10.

h, T RMSE (RBF-LOD) RMSE (RBF-PS)
h � 1/2, T � 1 1.84e− 2 6.01e− 2
h � 1/4, T � 1 9.94e− 3 2.59e− 2
h � 1/8, T � 1 7.73e− 3 1.18e− 2
h � 1/2, T � 2 6.59e− 3 6.71e− 2
h � 1/4, T � 2 3.29e− 3 2.66e− 2
h � 1/8, T � 2 1.78e− 3 1.20e− 2

Table 14: Comparing results RBF-LOD vs. RBF-PS for Re� 20.

h, T RMSE(RBF − LOD) RMSE (RBF-PS)
h � 1/2, T � 1 1.06e− 2 6.61e− 2
h � 1/4, T � 1 4.61e− 3 3.80e− 2
h � 1/8, T � 1 3.17e− 3 2.41e− 2
h � 1/2, T � 2 4.29e− 3 7.71e− 2
h � 1/4, T � 2 2.52e− 3 2.45e− 2
h � 1/8, T � 2 1.09e− 3 2.76e− 2
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Figure 10: Exact solution and mean solution for T � 2. σ � 0.2, ϵ � M/20 and η � 0.0002.
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In this instance, the computational process necessitated
around 0.77 seconds of CPU time. Tables 16 and 17 show the
reduction of the approximated errors when increasing the
number of collocation points M and time discretization
points N.

To assess the stability of our method, we conducted an
investigation on the optimal shape parameter, as docu-
mented in Table 18. Remarkably, the results demonstrate
that the proposed shape parameter ϵ �

��
h

√
, not only yields

the lowest error but also ensures stability. Tese fndings
afrm the efectiveness of our approach in handling a wide
range of stochastic difusion equations. Te numerical re-
sults provide compelling evidence of the method’s perfor-
mance across various classes of such equations.
Furthermore, we present the intuitive convergence diagram
for this example in Figure 15 given below. Notably, the
convergence in this particular example exhibits second- and
third-order characteristics.
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Figure 11: Exact solution and mean solution for T � 2. σ � 0.2, ϵ � M/20 and η � 0.0002.
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Figure 12: RMS-error for T � 2. σ � 0.2, ϵ � M/20 and η � 0.0002.

Table 15: Results for the various number of collocation points M.

M e∞ RMSE

10 6.75e− 2 4.70e− 2
20 1.91e− 2 1.02e− 2
40 7.44e− 3 5.85e− 3
80 3.08e− 3 1.80e− 3
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 . Conclusion

In conclusion, this work centers around the numerical so-
lution of a specifc class of stochastic partial diferential
equations (PDEs). To tackle this problem, we employed the
Radial Basis Function (RBF) and Crank–Nicolson methods
for space and time discretization. In addition, we imple-
mented a time-splitting strategy to enhance the efciency of
our numerical approach, which is particularly advantageous
for solving high-dimensional stochastic PDEs.

Furthermore, the Monte Carlo method is used to achieve
themean solution.We decreased the computational cost and
CPU time of performing the RBF method by using the local

one-dimensional time-splitting approach. Tis advantage
concerning stochastic algorithms that leads to applying the
Monte Carlo method is noteworthy.

Numerical results were provided for four diferent ex-
amples of the stochastic difusion equation, encompassing
both linear and nonlinear equations in two and three di-
mensions. Tese results serve as compelling evidence of the
remarkable efciency of our proposed LOD-RBFmethod for
solving stochastic equations. Moreover, the obtained results
illustrate that the proposed method is stable for the selected
optimal shape parameter ϵ �

��
h

√
.

Overall, our fndings highlight the efcacy of our sug-
gested method for solving stochastic PDEs, underscoring its

Table 16: Results for the various number of collocation points M.

M e∞ RMSE

10 1.62e− 2 1.06e− 2
20 4.99e− 3 3.08e− 3
40 2.56e− 3 1.17e− 3
80 1.83e− 3 8.40e− 4

Table 17: Results for the various number of time discretization points N.

N e∞ RMSE

10 6.23e− 3 2.86e− 3
50 1.90e− 3 1.02e− 3
100 1.85e− 3 8.48e− 4
200 1.72e− 3 8.35e− 4

Table 18: Results for diferent shape parameters around our suggested optimal shape parameter.

ϵ RMSE Cond (M)
��
h

√
− 0.1 1.43e− 3 19.580��

h
√

8.35e− 4 19.291��
h

√
+ 0.1 9.69e− 4 24.758��

h
√

+ 0.2 1.24e− 3 17.758
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Figure 15: RMS-error vs. number of collocation points M.
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potential for a wide range of applications in various disci-
plines. Te combination of the RBF method, time-splitting
strategy, and Monte Carlo approach ofers a robust and
efcient solution framework for addressing stochastic partial
diferential equations.
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