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Chlorophyll-a (Chl-a) and its correlation with different parameters are one of the major indicators to understand marine ecosystems.
This study was conducted to explore the seasonal and spatial variability of Chl-a at three different stations (onshore, midshore, and
offshore) across the maritime boundary of Bangladesh in the northern BoB with its response to the surface current speed and
recent ENSO (El Niño/La Niña-Southern Oscillation) events by using satellite data. Moderate resolution imaging
spectroradiometer (MODIS) aqua satellite level-3 data of Chl-a was used in this study. Ocean currents datasets were obtained from
the Asia-Pacific Data Research Center (APDRC) live access service, LAS8.6.13 of NOAA (National Oceanic and Atmospheric
Administration), whereas the SST anomalies dataset was collected from NOAA Climate Prediction Center. This study revealed that
the onshore region showed the highest (1.121mgm-3) abundance of Chl-a, whereas the offshore region showed the lowest
(0.136mgm-3). The offshore and midshore regions showed a homogenous distribution of Chl-a, whereas the observed trend of
seasonal fluctuation was southwest monsoon > postmonsoon > northeast monsoon > premonsoon. There is a seasonal variation in
the relationship between Chl-a and surface current speed, with moderate correlations during northeast (Dec-Feb) and premonsoon
(Mar-May). The effect of ENSO on Chl-a was observed as insignificant (P > 0:05) in the northern BoB. However, Chl-a variability
in response to ENSO events across the northern region of BoB requires more investigation.

1. Introduction

Chlorophyll–a (Chl-a) is an accessory photosynthetic pig-
ment [1, 2] found in all green plants, cyanobacteria, and
phytoplankton. The presence of Chl-a is considered as a
good indicator of ocean health [3] as well as its distribution,
variability, and correlation pattern with different parame-
ters have been used to understand primary productivity [2,
4, 5], biological and ecosystem response [6], and ecological
variations of the marine environment which are primarily
influenced by Chl-a fluctuation [7, 8]. Investigating the var-
iability of chlorophyll-a (Chl-a) across the oceans has

important implications. It allows us to assess the availability
of fishery resources and promote the development of
marine aquaculture [9]. Furthermore, it provides valuable
insights into the spatial abundance of fish [10], as regions
with high Chl-a abundance serve as fertile feeding grounds
for marine ecosystems [11]. Decision-makers can utilize
the spatial variability of Chl-a to evaluate the health and
productivity of phytoplankton-dependent marine ecosys-
tems. In addition, information on Chl-a concentration is
vital for studying ocean primary production, the biophysical
state of water bodies, and conducting fisheries research. In
fact, understanding the phytoplankton spatial variability at
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a diverse scale is essential for suggesting the growth, disper-
sion, and survival of planktonic species [12, 13] throughout
the oceans.

Several studies have been conducted over the Bay of Ben-
gal (BoB) to investigate Chl-a distribution in response to
various physical and biological parameters [14–16], such as
the annual and seasonal variability of Chl-a in the shelf
region of the northern BoB [17], the bathymetric features
of BoB [18], the validation of Chl-a in this region [19], bio-
logical productivity [20], hydrography, and circulation of
BoB [21], particularly in the southwest and western areas
of BoB [19, 22–26]. In addition, a few studies [27, 28] inves-
tigated the phytoplankton distribution in the Arabian Sea,
which is close to the BoB. However, the seasonal and spatial
variability of Chl-a is yet to be explored particularly across
the maritime boundary of Bangladesh in the northern BoB
at different depths and distances from the coast. On the
other hand, the BoB experiences significant climatic events
such as the Indian Ocean Dipole (IOD), the El Niño-
Southern Oscillation (ENSO), and the Madden-Julian Oscilla-
tion (MJO), [29–31] prompting investigations into their
potential impacts on the BoB. Studies have examined the rela-
tionship between El Niño and IOD [32], the variability of sea
surface temperature during ENSO and IOD events [33], and
conducted time-series analysis of chlorophyll-a (Chl-a) with
respect to IOD events [34]. Additionally, researchers have
explored the influence of ENSO on Chl-a variability in the
Maluku Sea [35] and the South China Sea [36]. However,
the specific impact of ENSO on Chl-a variability in the mari-
time boundary of Bangladesh remains unexplored.

This study is aimed at investigating the seasonal and spa-
tial variability of Chl-a at the three different stations repre-
senting onshore, midshore, and offshore, having different
depths across the maritime boundary of Bangladesh in the
northern BoB and its correlation with the ocean current
and significant climatic events like ENSO to comprehend
the ENSO influence on Chl-a abundance across the regions.
Marine Fisheries Research in Bangladesh requires a site-
specific view of seasonal trends of Chl-a distribution to the
extent of primary productivity across the maritime bound-
ary of Bangladesh in the northern BoB, along with the
impact of the major climatic event on it. This study will help
to identify the most productive region in Bangladesh’s mar-
itime boundary with higher fish abundance and healthier
marine ecosystems. This will be accomplished by assessing
the concentration of Chl-a, which is an indicator of phyto-
plankton abundance. Demonstrating the impact of global
climatic phenomena like El Niño and La Niña on the health
of the marine ecosystem across Bangladesh’s maritime
boundary is another significant implication of this research.

2. Materials and Methods

This study was conducted to investigate the comparison of
Chl-a distribution in different depths and its seasonal varia-
tion in the maritime boundary of Bangladesh in the BoB.
The three stations: onshore (depth 100-150m), midshore
(200-1000m), and offshore (1000-2000m) occupied differ-

ent depths and were selected, and each station in the study
area covers 500m2, as depicted in Figure 1.

Level 3 mapped (SMI) with 4 km resolution monthly,
and annual Chl-a data were collected from MODIS-aqua
satellite (https://oceancolor.gsfc.nasa.gov) for estimating sea-
sonal and spatial variability of Chl-a considering our study
areas from July 2002 to June 2020. The MODIS-aqua Chl-
a datasets were processed and analyzed by using SeaDAS
7.5.3, developed by NASA for processing, displaying, analyz-
ing, and quality control of ocean color data [17]. Four sea-
sons were recognized as premonsoon (March, April, and
May), southwest monsoon (June, July, August, and Septem-
ber), postmonsoon (October and November), and northeast
monsoon (December, January, and February) [17, 37] to
investigate the seasonal variability of Chl-a in this study.
Surface and meridional current datasets were retrieved
directly from the Asia-Pacific Data Research Center
(APDRC) live access service, LAS8.6.13 of NOAA (National
Oceanic and Atmospheric Administration) (http://apdrc
.soest.hawaii.edu/). For measuring the relation between
ONI and Chl-a, we used a 3-month running mean of
ERSST.v5 SST anomalies for ten years (2010-2019) of Niño
3.4 area (5° S–5° N, 170–120° W) as ONI (Oceanic Nino
Index). The monthly mean of SST anomalies data was pro-
vided by NOAA, Climate prediction center (https://origin
.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/
ONI_v5.php) based on centered 30-year base periods
updated every five years. ONI value was plotted with a
monthly mean of Chl-a anomalies data set for 19-year
(2002-2019) base periods to project the relation between
them. In an Oceanic Nino Index (ONI) that is above or
below the threshold of +0.5°C or −0.5°C, respectively, El
Niño and La Niña conditions are considered to be in prog-
ress [33]. The SST anomaly threshold is considered as weak
(0.5 to 0.9), moderate (1.0 to 1.4), strong (1.5 to 1.9), and
very strong events (≥2.0). All statistical analysis was con-
ducted using IBM SPSS software (version 25) and Minitab
(Version 17).

3. Results and Discussion

3.1. Seasonal and Spatial Variability of Chl-a. The spatial
variability of Chl-a and its seasonal distribution in the
onshore, offshore, and midshore regions for 19 years (July
2002 to June 2020) in the maritime boundary of Bangladesh
are depicted in Figure 2. The highest Chl-a (1.121mg-m-3)
was observed in the onshore region. The lowest Chl-a
(0.136mgm-3) was observed in the offshore region. Chl-a
ranged from 0.280 to 1.121mgm-3, 0.136 to 0.320mgm-3,
and 0.136 to 0.238mgm-3 over the onshore, midshore, and
offshore regions, respectively. The average Chl-a was
observed comparatively lower in midshore
(0:235 ± 0:05mgm−3) and offshore (0:181 ± 0:03mgm−3)
regions than in onshore (0:558 ± 0:30mgm−3) of the north-
ern BoB. Chl-a variability was found to be significantly dif-
ferent (Fð2,645Þ = 47:126, P < 0:001) among the regions
(onshore, midshore, and offshore). Post hoc comparisons
using the Tukey (LSD) test indicated that the Chl-a of the
onshore region was significantly different (P < 0:001) from
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the midshore and offshore regions. In addition, the observed
Chl-a distribution was found almost homogenous in the off-
shore and midshore regions. In the case of seasonal varia-
tion, Chl-a fluctuated widely during southwest monsoon
among the stations, mostly in the onshore region. During
the onset of this season (Jun), the value of Chl-a was
recorded lowest (0.136mgm-3), whereas the highest value
of Chl-a was 1.121mgm-3 at the end of the southwest mon-
soon (Sep). In the premonsoon, variation of Chl-a overall
the regions was observed comparatively lower. Chl-a in the
study area was found significantly different (F = 25:638,
P < :0001) among the seasons. Post hoc comparisons using

the Tukey (LSD) test indicated that the Chl-a of the
southwest monsoon was significantly different (P < :0001)
from the premonsoon, postmonsoon, and northeast
monsoon.

As the Chl-a during southwest monsoon was observed to
be significantly different from the other three seasons, it can
be concluded that Chl-a at Bangladesh maritime boundary
in the northern BoB showed a significant seasonal variability
during the investigation period. Observed seasonal variability
of Chl-a showed a maximum in the onshore region with the
following seasonal trends: southwest monsoon > postmon-
soon > northeast monsoon > premonsoon. In Figure 3,
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Figure 1: The study area in the maritime boundary of Bangladesh in the northern BoB where the three stations, onshore, midshore, and
offshore, are depicted as three quadrangles of different colors.
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monthly chronological Chl-a satellite images showed the
Chl-a variability and its distribution patterns over the
respective regions in the northern BoB for 19 years (July
2002–June 2020).

As with seasonal distribution, the annual trend also
showed the most variability of Chl-a over the onshore region
depicted in Figure 4. In the onshore region, the annual time
series data (2002–2020) showed a complex variability of Chl-
a. The maximum and minimum annual average of Chl-a
was 1.11mgm-3 in 2004 in the onshore region and
0.09mgm-3 in 2002 in the offshore region, respectively.

The northern BoB is a complex and dynamic region,
with spatial variability in Chl-a concentration influenced
by a range of physical, chemical, and biological factors [5,
6, 16, 38, 39] including light availability, nutrient availability,
the presence of other organisms, temperature, currents, and
monsoon-driven upwelling [37, 40–43]. However, the spatial
distribution of Chl-a concentration in the northern BoB is
not uniform [44, 45]. Satellite remote sensing data shows
that the highest Chl-a concentrations are found in the
coastal waters where river discharge and upwelling are
strongest [26, 46, 47]. Chl-a concentration gradually
decreases with increasing distance from the coast and is low-
est in the central BoB, where nutrient availability is limited
[26, 44, 45, 48].

This study has demonstrated that the concentration of
Chl-a at Bangladesh’s maritime boundary in the northern
BoB exhibits significant seasonal and spatial variability.
The highest Chl-a was observed in the onshore region
(depth 100-150m) during the southwest monsoon (June–
September). In this study, the onshore region occupying
the lower distance from the coast in northern BoB is sup-
posed to receive a higher percentage of river discharge than
the midshore and offshore regions during the southwest
monsoon. In this season (Jun-Sep), the major river system
Ganges-Brahmaputra-Meghna (GBM) which is adjacent to
the maritime boundary of Bangladesh experiences a signifi-
cant amount of rainfall which results in the highest amount
of river discharge [18, 21, 45, 49]. In the aftermath, the high-
est Chl-a production has been observed in the onshore

region during this season (Jun-Sep). Additionally, factors
including light availability, nutrient availability, the presence
of other organisms, SST, currents, monsoon-driven upwell-
ing, rainfall, and river discharge [5, 6, 16, 38–40, 43, 49] do
not remain constant all year round which eventually results
in seasonal fluctuations of Chl-a in the onshore region.
However, the depth starts to increase sharply after 200
meters where the midshore region starts, eventually reaching
2000 meters near the continental shelf, making the offshore
and midshore areas less productive due to the deepest topog-
raphy [15, 16, 26, 46].

A significant seasonal variation of Chl-a has been
observed throughout the year due to the periodically revers-
ing monsoon system in the BoB which distinguishes it from
all other oceans. [50–52]. In addition, seasonal variations of
Chl-a across the northern BoB is strongly related to the river
runoff, lower SST, and coastal plumes [19, 38–40]. In this
study, the southwest monsoon (June-September) is charac-
terized as the most productive season. During the summer
monsoon (June-September), increased wind-driven upwell-
ing along the eastern coast of India brings nutrient-rich
waters to the surface, leading to increased Chl-a concentra-
tions in the northern BoB region [1, 14, 16, 23]. The season
(Jul-Sep) has higher river discharge [17] enriched with
higher amounts of nutrients like nitrate, silicon, and phos-
phate [34] due to river runoff following monsoonal rainfall
[1] that causes a substantial increase of Chl-a abundance
during this season. [23, 37, 42]. Plenty of nutrients are
deposited along with the sediments to the Bangladesh coast
in the northern BoB from the confluence of two major river
systems: the Ganges and the Brahmaputra system and the
whole Ganga-Brahmaputra-Meghna [23, 37, 41] during the
southwest monsoon [38]. However, a recent study [17] for
the years 2012-2017 at the shelf region in the northern
BoB found a decreasing trend of Chl-a during the premon-
soon due to the lower wind speed and rise in temperature.
The same trend was observed for the year 1999-2000 by
Nagamani et al. [24]. An increase in SST and a decrease in
wind speed were also reported as the reasons behind the
lower abundance of Chl-a in the premonsoon [17, 24].
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Figure 2: Seasonal and spatial trend of Chl-a (July 2002-June 2020) in the maritime boundary of Bangladesh.
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The concentration of Chl-a in the onshore region
showed continuous fluctuations throughout the southeast
and postmonsoon period (Figure 2). Fluctuations in Chl-a
levels primarily result from variations in the system’s ecol-
ogy and the biological response to the physical and chemical
environment [7, 8]. In this study, the Chl-a concentration
began to rise from the onset of the monsoon and reached

its peak in September. However, in August, which is typi-
cally the peak of the monsoon season, the concentration of
Chl-a suddenly dropped in onshore as a consequence of
reduced light availability due to increased cloud cover [23],
and rainfall causes turbidity [38], which can limit photosyn-
thesis in phytoplankton [53], leading to a decrease in Chl-a
production.
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Figure 3: Composite image of monthly average Chl-a for 19 years (July 2002-2020) in the maritime boundary of Bangladesh in the northern BoB.
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The seasonal and annual time series showed analogous
spatial variability in Chl-a concentration across the study
areas. For the annual time series data (2002–2020), the var-
iability of Chl-a fluctuated most in the onshore region with
having a relatively higher concentration than in midshore
and offshore regions (Figure 4). In addition, the Chl-a vari-
ability during (2002–2020) showed almost a homogenous
distribution in the midshore and offshore regions. The
onshore region is more vulnerable to changes in factors
including sea surface temperature (SST), rainfall, river dis-
charge, nutrient availability, and coastal upwelling [53–58].
The combined influence of these factors can significantly
impact the growth of phytoplankton over the years. Conse-
quently, the onshore region experiences significant fluctua-
tions in Chl-a concentration compared to the midshore
and offshore regions during the period from 2002 to 2020.
Furthermore, the annual average of Chl-a from 2002 to
2020 shows a decline of Chl-a concentration (Figure 4).
There has been an observed declining trend of the annual
average of Chl-a in the BoB over the past few decades [17,
53, 59–61]. Significant decrease of dissolved inorganic nitro-

gen and phosphorus in the Bay of Bengal [58], as well as ris-
ing SST due to climate change [53, 58, 59], and changes in
precipitation patterns [53] are the reasons that contribute
to this annual decline.

3.2. Relation between Chl-a and Ocean Current Speed in
Bangladesh Maritime Boundary. This study used a monthly
average dataset of Chl-a and the current speed dataset with
the timeline of July 2002–June 2020 to determine the rela-
tion between them in the study area. While conducting the
investigation, the Chl-a dataset was used from the entire
maritime boundary of Bangladesh.

A weak positive correlation (b = 0:42, R2 = 0:0006, r =
0:03) was found between seasonal Chl-a and current speed
in the maritime boundary of Bangladesh in the northern
BoB (Figure 5). The P value (>0.05) indicates a nonsignifi-
cant relationship between Chl-a and the current speed.
The regression model was found as Chl − a = 1:124 +
0:420∗current speed. The analysis suggests that there is a
weak relationship between Chl-a and current surface current
speed when considering all seasons combined.
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The relationship between the seasonal Chl-a and the sur-
face current speed of different seasons was determined by
the same linear regression (Figure 6). The results indicate
that the relationship between Chl-a and surface current
speed varies depending on the season. A nonsignificant
(P > 0:05) but a weak positive correlation was found between
Chl-a and the current speed for the southwest monsoon
(June-September) and postmonsoon (October-November).
However, a moderate positive correlation was found
between the seasonal Chl-a and the surface current speed
during the northeast (Dec-Feb) season (Figure 6) which is
statistically significant (r = 0:38, b = 3:40, P < 0:05). During
premonsoon (Mar-May), the relationship was also observed
as significant (P < 0:05) and moderately positive (r = 0:42,
b = 9:21). Overall, these results suggest that there is a moder-
ate positive relationship between Chl-a and surface current
speed in the maritime boundary of Bangladesh in the north-
ern BoB where seasonal variation is salient.

Table 1 suggests that the relationship between Chl-a and
the surface current speed is not constant throughout the
year. This is likely due to the variation of different factors
throughout the year (such as temperature, stratification,
winds, upwelling, and vertical mixing), exerting greater or
lesser influences on Chl-a concentrations at different times
[62–67]. In this study, the correlation between Chl-a and
surface current speed is moderately positive during the
northeast and premonsoon season which typically occurs
between February and May in the Indian Ocean region.
During premonsoon, the surface currents are dominated
by the northeast monsoon winds, coastal boundary currents,

and offshore Ekman transport [61], creating upwelling that
brings nutrient-rich deep water to the surface [64, 68] which
enhances the growth of phytoplankton, leading to higher
Chl-a concentrations [62, 65, 68]. In contrast, the correlation
between Chl-a concentration and the surface current speed
is comparatively weaker during the southwest monsoon sea-
son (June to September) due to the increased mixing of the
water column resulting from monsoon winds and associated
rainfall. This increased mixing can reduce the concentration
of nutrients in surface waters, thereby limiting the growth of
phytoplankton during southwest monsoon [64, 69].

3.3. ENSO Effect over Chl-a Distribution in the Northern
BoB. Intensity and trend of El Niño and La Niña events from
2010 to 2019 following the ONI time series index (SSTA) are
depicted in Figure 7. The high value of ONI (≥2.5°C) was
observed from November 2015 to February 2016, as seen
in Figure 7, and can be considered as one of the most potent
El Niño since 1990 and is considered one of the most signif-
icant El Niño events after 1950 [33].

A nonsignificant negative relation (r = −0:07, P = >0:05)
was found between SST anomalies (yearly average of 3
months running mean) and Chl-a in the northern BoB
(Figure 8). This analysis reveals that the 10-year (2019-
2010) ONI (Oceanic Nino Index) of the Nino 3.4 region
has a very negligible influence on yearly Chl-a distribution
in the maritime boundary of Bangladesh. While investigat-
ing the seasonal effect (Figure 9), a negative correlation
was also found in the seasonal distribution of Chl-a
(Figure 9) in the study area, whereas the P value (>0.05)
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Figure 6: Relationship between Chl-a and current speed in (a) premonsoon, (b) southwest monsoon (c) postmonsoon, and (d) northeast
monsoon seasons.
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indicates a nonsignificant relation between SST anomalies
(monthly average) and seasonal Chl-a variation. The BoB
undergoes significant global climatic events like El Niño
[70–72]. The high value of ONI (>2.5°C), which was
observed from November 2015 to February 2016, represents
one of the most potent El Niño since 1990 and is considered
one of the most significant El Niño events after 1950 [33].
This study reveals that the ENSO event in the 2015-2016
(strong El Niño in 2016) session has a negligible influence

on Chl-a seasonal variation pattern also in the following
years 2017 (La Nina period) in the maritime boundary of
Bangladesh in the northern BoB as it has brought no signif-
icant change on Chl-a distribution in this area. The magni-
tude of Chl-a anomalies has changed but not significantly
even after the El Nino period (2015-2016).

So, this study reveals that the ENSO event in 2015-16 did
not alter the seasonal variability and annual trend of Chl-a
in the maritime boundary of Bangladesh. ENSO effects are
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Table 1: Statistical analysis between Chl-a and surface current speed following seasonal monthly average data.

Time series Intercept Coefficient (b) R2 Sig (P value) Correlation coefficient r

Southwest monsoon (Jun-Sep) 1.038 0.97 0.002 0.68 0.05

Postmonsoon (Oct-Nov) 1.168 4.32 0.04 0.20 0.05

Northeast (Dec-Feb) 0.939 3.40 0.14 0.003 0.38

Premonsoon (mar-may) 0.365 9.21 0.18 0.001 0.42

All season (2002-2020) 1.13 0.420 0.0006 0.7 0.03
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usually observed on large ocean basins like the Pacific, where
warming or cooling due to the El Niño and La Niña events
are highly associated with the global average surface temper-
ature (NOAA http://climate.gov). The ENSO effect also
brought no change in the seasonal variability of Chl-a in
the Maluku Sea [35] and the South China Sea [36]. The
ENSO has the most considerable impact on the Pacific
Ocean Basin’s tropics [73–75]. The equatorial Pacific Ocean
is the epicenter of ENSO activity [74]. The ENSO influence
has been observed mainly in the tropics and subtropics with
high latitudes surrounding the Pacific regions [73, 74]. The
fluctuation of global marine Chl-a in response to ENSO
events could not be taken into account in a small domain
like Bangladesh maritime boundary. The impact of ENSO
on Chl-a distribution might be understood better in the
large ocean domain [74, 76].

4. Conclusion

This study reveals the seasonal and spatial variability of Chl-
a in three separate regions in the maritime boundary of Ban-
gladesh in the northern BoB and its response to surface cur-
rent and significant climatic events like ENSO. The highest
Chl-a was observed in the onshore region over the maritime
boundary of Bangladesh during the southwest monsoon,
whereas the lowest was in the offshore region. The observed
Chl-a abundance was almost homogenous in the offshore
and midshore regions. Therefore, the onshore region has a
higher level of primary productivity than offshore and mid-
shore regions which is likely to have higher fisheries abun-
dance and diversity. Additionally, observed seasonal
variability of Chl-a showed a maximum fluctuation in the
onshore region with the following seasonal trends: southwest
monsoon > postmonsoon > northeast monsoon > premon-
soon. The relationship between Chl-a and surface current
speed varies by season and is comparatively stronger during
the premonsoon season than other time series throughout
the year, and the weakest correlation is observed when con-

sidering all seasons combined. ENSO event of 2015-2016 did
not change the seasonal variability and annual trend of Chl-
a of this area. The entire study is based on secondary data;
however, in situ-based primary data might yield more accu-
rate findings.
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