

Research Article

Synthesis and Evaluation of MGB Polyamide-Oligonucleotide Conjugates as Gene Expression Control Compounds

Kazuo Kamaike 🗅, Mutsumi Sano, Daisuke Sakata, Yu Nishihara, Hiroaki Amino, Akihiro Ohtsuki, Yui Okada, Takafumi Miyakawa, Makoto Kogawara, Mai Tsutsumi, Misato Takahashi, Etsuko Kawashima, Koichiro Ota 🕞, and Hiroaki Miyaoka 🖻

School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan

Correspondence should be addressed to Kazuo Kamaike; kamaikek@toyaku.ac.jp

Received 8 October 2022; Revised 6 February 2023; Accepted 18 February 2023; Published 14 March 2023

Academic Editor: Ashis Basu

Copyright © 2023 Kazuo Kamaike et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

MGB polyamide-oligonucleotide conjugates **ON 1-4** with linked MGB polyamides at the 2-exocyclic amino group of a guanine base using aminoalkyl linkers were synthesized and evaluated in terms of binding affinity for complementary DNA containing the MGB polyamide binding sequence using T_m and CD analyses. The MGB polyamides comprised pyrrole polyamides (Py₄and Py₃-), which possess binding affinity for A-T base pairs, and imidazole (Im₃-) and pyrrole- γ -imidazole (Py₃- γ -Im₃-) polyamide hairpin motifs, which possess binding affinity for C-G base pairs. It was found that the stability of modified dsDNA was greatly influenced by the linker length. Py₄- and Py₃-oligonucleotide conjugates (**ON 1** (n = 4) and **ON 2** (n = 4)) containing the 4-aminobutyl linker formed stable dsDNA with complementary DNA. Although Im₃-oligonucleotide conjugate **ON 3** (n = 4) containing the 4-aminobutyl linker formed stable dsDNA with complementary DNA, stabilization of dsDNA by the imidazole amide moiety of **ON 3** (n = 4) was lower compared with the pyrrole amide moiety of **ON 2** (n = 4). The Py₃- γ -Im₃oligonucleotide conjugate **ON 4** (n = 2), which possesses binding affinity for C-G base pairs via a pyrrole/imidazole combination and contains a 2-aminoethyl linker, showed high binding ability for complementary DNA. Furthermore, the DNA sequence recognition of MGB polyamide-oligonucleotide conjugates was investigated using single-base mismatch DNAs, which possess a mismatch base in the MGB polyamide binding sequence. The Py₃- γ -Im₃-oligonucleotide conjugate **ON 4** (n = 2) showed high sequence recognition ability for complementary DNA.

1. Introduction

Numerous nucleic acid analogues have been synthesized and characterized as potential gene therapy agents [1, 2]. We previously designed and synthesized nucleoside (**Hybrid 1**) linked to pyrrole polyamide minor groove binder (MGB) comprising modified distamycin A, which possesses a high affinity for the 5'-d(AATTT)-3'/3'-(TTAAA)-5' sequence of double-stranded DNA (dsDNA) [3–8], as a lead compound for the development of potential gene therapy agents [9–12]. When the MGB polyamide-nucleoside hybrid interacts with dsDNA, it is expected that complex formation would involve high affinity and sequence selectivity. If the hybrid is incorporated into DNA during DNA biosynthesis,

it is expected that DNA replication and transcription would be obstructed through minor groove binding of the hybrid **1** was investigated via melting temperature (T_m) and circular dichroism (CD) analyses (Figure 1) [5, 6]. It was shown that **Hybrid 1** possessed greater binding specificity compared with distamycin A [12]. Then, in an effort to examine the development of potential antisense drugs, we synthesized oligonucleotide **ON 1** (n = 3) conjugated to **Hybrid 2** *in lieu* of **Hybrid 1** containing the formyl group which is unstable under the basic conditions of deprotection during oligonucleotide solid-phase synthesis, and subsequently examined the binding ability of **ON 1** (n = 3) to complementary DNA (Figure 2) [13]. Dervan et al. [14], Zamecnik et al.

FIGURE 1: Structures of distamycin A, hybrids 1, 2, and 3.

[15], Novopashina et al. and Boutorine et al. [16-21] have reported the synthesis and evaluation of oligonucleotides conjugated with one or two MGB polyamides to either the 5'- or 3'-ends. Sequence-specific stabilization of DNA duplexes and DNA triplexes by MGB polyamides conjugated to one DNA strand was shown. It was expected that oligonucleotides conjugated with the MGB polyamide to the 2-exocyclic amino group of a guanine base, which is positioned above the floor of the minor groove of the DNA duplex, would possess high DNA binding ability. ON 1 (n = 3), which includes a modified guanosine (G) in the 5' direction in the oligonucleotide chain given the preferred orientation of the polyamide in the minor groove of dsDNA (C-(pyrrole polyamide)-N/3'-(TTAAA)-5' of the complementary target DNA) [22-24], was synthesized and evaluated as a model oligonucleotide [13]. From the $T_{\rm m}$ and CD analyses, it was found that **ON 1** (n = 3) formed stable dsDNA with complementary DNA via action of the pyrrole amide moiety. From this result, it is expected that MGB polyamideoligonucleotide conjugates could be effective gene expression control compounds and that MGB polyamide-2'-deoxyguanosine hybrid might be of potential use as a sequencespecific gene therapy agent based on potential obstruction of DNA replication and transcription. The inhibition of mouse mammary carcinoma FM3A cell growth by pyrrole polyamide compounds (Hybrids and distamycin A) has been evaluated (Figure 1) [25]. It was found that hybrids induce dosedependent inhibition of cell growth. In particular, Hybrid 3 bearing a 5'-phosphate group, which is a suitable substrate for biosynthesis, exhibited the highest inhibition.

The binding ability of pyrrole polyamideoligonucleotide conjugates to target DNA, and the inhibition of cell growth by pyrrole polyamide-2'-deoxyguanosine hybrids should be greatly influenced by the chain length of the pyrrole polyamide moiety and the length of the linker between the pyrrole polyamide moiety and the guanine base. Although we previously reported the synthesis of MGB polyamide-oligonucleotide conjugate ON 1 (n = 3), with linked pyrrole amide tetramer (Py₄-) at the 2-exocyclic amino group of a guanine base using 3aminopropyl linker and evaluated the stability of modified dsDNA as described above [13], an examination of the length of the chain or linker connecting the pyrrole polyamide moiety to the guanine base and the DNA sequence recognition ability had not been investigated. In an effort to improve the activity of pyrrole polyamide-oligonucleotide conjugates, we performed the synthesis and evaluation of ON 1 and ON 2 with linked pyrrole polyamides (Py₄- and Py₃-) using various aminoalkyl linkers in terms of binding affinity for complementary DNA (Figure 2).

In addition to pyrrole polyamides, which possess high affinity for A-T base pairs of dsDNA, pyrrole-imidazole polyamides, which possess high affinity for C-G base pairs of dsDNA, were reported by Dervan et al. [14, 22–24, 26–31]. Furthermore, the synthesis and evaluation of MGB polyamide-oligonucleotide conjugates which possess binding affinity for C-G base pairs are an important aspect of the study. We performed the synthesis and evaluation of **ON 3** and **ON 4** with conjugated MGB polyamides (imidazole polyamide (Im₃-) and pyrrole- γ -imidazole

FIGURE 2: MGB polyamide-oligonucleotide conjugates.

polyamide hairpin motif $(Py_3-\gamma-Im_3-))$ at the 2-exocyclic amino group of a guanine base using various aminoalkyl linkers (Figure 2).

Herein, we report on the synthesis and evaluation of MGB polyamide-oligonucleotide conjugates **ON 1-4** using various aminoalkyl linkers.

2. Materials and Methods

Column chromatography was performed on silica gel (Kanto Chemical Silica gel N60, spherical, natural, 40-50 μ m). Precoated silica gel plates with a fluorescent indicator (Merck 60 F254) were used for analytical TLC. HPLC was performed on a Waters liquid chromatograph (600E system) equipped with a UV-VIS detector (2487 Dual), data module (741 type), and fraction collector. A μ Bondasphare C18 5 μ m 100A (3.9 mm ID × 150 mm L) column with gradients of 5-50% CH₃CN in water (0.01 M TEAA, pH7) was used. ¹H-NMR and ¹³C-NMR spectra were recorded using Bruker DRX 400 and a Bruker Biospin AVANCE III HD 400 instruments. Mass spectra were recorded on a Micromass Q-Tof Ultima API and a Micromass LCT spectrometer with a time-of-flight analyser. Elemental analyses were performed using an Elemental Vavio EL apparatus. Circular Dichroism (CD) spectra were recorded on a JASCO J-720 spectropolarimeter. UV melting curves were measured using a Shimadzu TMSPC-8/UV-1600 apparatus. UV spectra were recorded using a Shimadzu UV-1200 apparatus. DNA oligonucleotides were purchased from Hokkaido System Science Co., Ltd. Compounds 2, 3, 4, 5, 7, 9, and 12 were prepared as previously described [9-13]. The CPG support-bound 2'-deoxynucleoside 16 $(B = C^{Bz})$ and 2'-deoxynucleoside 3'-phosphoramidites 17 $(B = T, C^{Bz}, A^{Bz}, and G^{iBu})$ were purchased from Glen Research Corporation. 2'-Deoxy-2-fluoroinosine 3'-phosphoramidite **17** ($B = I^{F,NPE}$) was prepared from 2'-deoxyguanosine as previously described [32–35]. Ethyl 1methylimidazole-2-carboxylate (**20**) was prepared according to the procedure described by Baird and Dervan. [30].

2.1. Methyl 1-Methyl-4-[1-Methyl-4-(1-Methyl-1H-Pyrrole-2-Carbonyl)Amino-1H-Pyrrole-2-Carbonyl]Amino-1H-Pyrrole -2-Carboxylate (6). Compound 2 [10–13] (2.83 g, 9.06 mmol) and 1-methyl-1H-pyrrole-2-carboxylic acid (5) [13] (1.26 g, 9.97 mmol) were dissolved in dichloromethane (45 mL), and then 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDCI) (2.61 g, 13.6 mmol) and 4-(N,N-dimethylamino)pyridine (DMAP) (1.66 g, 13.6 mmol) were added to the solution. After stirring at room temperature for 14 h, the solution was diluted with chloroform (300 mL) and washed with 2 M HCl aq. (150 mL x 3), H₂O (150 mL x3), 5% NaHCO₃ aq. (150 mL \times 3), and H₂O (150 mL). The organic layer was dried over anhydrous magnesium sulfate and evaporated to dryness. The residue was subjected to chromatographic separation on a column of silica gel using a 0-5% methanol/chloroform solvent system to give 6 (2.79 g, 80% yield) as a slightly brown glass. ¹H-NMR (DMSO- d_6): δ 9.92 (s, 1H, CONH), 9.82 (s, 1H, CONH), 7.46 (d, 1H, J = 1.9 Hz, Py-H), 7.23 (d, 1H, J = 1.8 Hz, Py-H), 7.05 (d, 1H, J = 1.9 Hz, Py-H), 6.94-6.90 (m, 3H, Py – H × 3), 6.06 (dd, 1H, *J* = 2.6, 3.9 Hz, Py-H), 3.88 (s, 3H, NCH₃), 3.85 (s, 3H, NCH₃), 3.84 (s, 3H, NCH₃), 3.74 (s, 3H, OCH₃); ¹³C-NMR (DMSO d_6): δ 160.8, 158.6, 158.5, 128.1, 125.5, 123.0, 122.5, 122.2, 120.7, 118.5, 112.6, 108.4, 106.6, 104.8, 50.9, 36.2, and 36.1, 36.0; HRMS (ESI-TOF) m/z: calcd for $C_{19}H_{22}N_5O_4(M + H)$)⁺ 384.1672, found 384.1667; UV (CH₃OH): λ_{max} 299, 238 nm, λ_{\min} 260, and 222 nm; and ε_{260} 1.8 × 10⁴.

2.2. 2-[(9H-Fluoren-9-yl)Methoxycarbonylamino]Ethanaminium Chloride (8), 4-[(9H-Fluoren-9-yl)Methoxycarbonylamino]Butanaminium Chloride (10), and 5-[(9H-Fluoren-9-yl)Methoxycarbonylamino]Pentanaminium Chloride (11). Compounds 8, 10, and 11 were prepared according to the synthetic procedure of 3-[(9H-fluoren-9-yl)methoxycarbonylamino]propanaminium chloride (9) [10–13].

Compound 8: (9H-Fluoren-9-yl)methyl phenyl carbonate (7) (0.95 g, 3.0 mmol) was suspended in methanol (12.5 mL), and then ethylenediamine (0.20 mL, 3.0 mmol) was added to the solution. After stirring for 4 h at room temperature, pyridinium hydrochloride (0.75 g, 6.5 mmol) was added, and the solution stirred for 10 min. The solution was concentrated in vacuo, and the residue was subjected to silica gel column chromatography using a methanol/chloroform (1:4 v/v) solvent system to give 8 (0.19 g, 20% yield) as a white powder. ¹H-NMR (CD₃OD): δ 7.80 (d, 2H, J = 7.5 Hz, Ar-H of the Fmoc group), 7.65 (d, 2H, J = 7.5 Hz, Ar-H of the Fmoc group), 7.40 (t, 2H, J = 7.4 Hz, Ar-H of the Fmoc group), 7.31 (t, 2H, J = 7.4 Hz, Ar-H of the Fmoc group), 4.42 (d, 2H, J = 6.6 Hz, CHCH₂ of the Fmoc group), 4.22 (t, 1H, J = 6.6 Hz, CHCH₂ of the Fmoc group), 3.32-3.30 (m, 2H, NCH₂), and 2.92-2.90 (t, 2H, J = 6.0 Hz, NCH₂); ¹³C-NMR (CD₃OD): δ 157.9, 143.8, 141.2, 127.4, 126.8, 124.8, 119.6, 66.7, 47.1, 39.8, and 38.3; HRMS (ESI-

TOF) m/z: calcd for $C_{17}H_{19}N_2O_2(M+H)^+$ 283.1447, found 283.1455

Compound 10: (9H-Fluoren-9-yl)methyl phenyl carbonate (7) (3.16 g, 9.99 mmol) was suspended in methanol (42 mL), and then butane-1,4-diamine (1.0 mL, 9.95 mmol) was added to the solution. After stirring for 4 h at room temperature, pyridinium hydrochloride (2.51 g, 21.7 mmol) was added, and the solution stirred for 10 min. The solution was concentrated in vacuo, and the residue was subjected to silica gel column chromatography using a methanol/chloroform (1:4v/v) solvent system to give 10 (2.11g, 61%) yield) as a white powder. ¹H-NMR (CD₃OD): δ 7.79 (d, 2H, J = 7.5 Hz, Ar-H of the Fmoc group), 7.64 (d, 2H, J = 7.4 Hz, Ar-H of the Fmoc group), 7.39 (t, 2H, J = 7.4 Hz, Ar-H of the Fmoc group), 7.31 (t, 2H, J = 7.3 Hz, Ar-H of the Fmoc group), 4.37 (d, 2H, J = 6.8 Hz, CHCH₂ of the Fmoc group), 4.20 (t, 1H, J = 6.8 Hz, CHCH₂ of the Fmoc group), 3.15 (t, 2H, J = 6.6 Hz, NCH₂), 2.93 (t, 2H, J = 7.4Hz, NCH₂), and 1.66-1.55 (m, 4H, CH \times 2); ¹³C-NMR $(DMSO-\overline{d_6}): \delta$ 156.4, 144.1, 140.9, 127.8, 127.3, 125.4, 120.3, 65.5, 46.9, 39.8, 38.6, 26.46, and 24.39; HRMS (ESI-TOF) m/z: calcd for $C_{19}H_{23}N_2O_2(M+H)^+$ 311.1760, found 311.1752

Compound 11: (9H-Fluoren-9-yl)methyl phenyl carbonate (7) (3.16 g, 9.99 mmol) was suspended in methanol (42 mL), and then pentane-1,5-diamine (1.17 mL, 10.0 mmol) was added to the solution. After stirring for 4 h at room temperature, pyridinium hydrochloride (2.51 g, 21.7 mmol) was added and the solution stirred for 10 min. The solution was concentrated in vacuo, and the residue was subjected to silica gel column chromatography using a methanol/chloroform $(1:4\nu/\nu)$ solvent system to give 11 (1.64 g, 45% yield) as a white powder. ¹H-NMR (CD_3OD): δ 7.76 (d, 2H, J = 7.5 Hz, Ar-H of the Fmoc group), 7.60 (d, 2H, *J* = 7.4 Hz, Ar-H of the Fmoc group), 7.36 (t, 2H, *J* = 7.4 Hz, Ar-H of the Fmoc group), 7.26 (t, 2H, J = 7.4 Hz, Ar-<u>H</u> of the Fmoc group), 4.33 (d, 2H, J = 6.8 Hz, CHC<u>H</u>₂ of the Fmoc group), 4.17 (t, 1H, J = 6.8 Hz, CHCH₂ of the Fmoc group), 3.08 (t, 2H, J = 6.9 Hz, NCH₂), 2.87 (t, 2H, J = 7.6 Hz, $\dot{N}CH_2$), 1.64-1.60 (m, 2H, CH_2), 1.51-1.47 (m, 2H, CH₂), and 1.38-1.34 (m, 2H, CH₂); ¹³C-NMR (CD₃OD): δ 158.9, 145.3, 142.6, 128.7, 128.1, 126.1, 120.1, 67.5, 48.4, 41.2, 40.6, 30.3, 28.2, and 24.5; HRMS (ESI-TOF) m/z: calcd for $C_{20}H_{25}N_2O_2(M+H)^+$ 325.1916, found 325.1925

2.3. (9H-Fluoren-9-yl)Methyl 4-{1-Methyl-4-[1-Methyl-4-(1-Methyl-4-(1-Methyl-1H-Pyrrole-2-Carbonyl)Amino-1H-Pyrrole-2-Carbonyl)Amino-1H-Pyrrole-2-Carbonyl}Aminobutylcarbamate (13). Compounds 13, 14, and 15 were prepared according to the synthetic procedure of 12 [10–13].

Pyrrole amide tetramer **4** was prepared as previously described [13]. ¹H-NMR (DMSO- d_6): δ 9.96 (s, 1H, and CON<u>H</u>), 9.95 (s, 1H, and CON<u>H</u>), 9.85 (s, 1H, and CON<u>H</u>), 7.48 (d, 1H, J = 1.8 Hz, and Py-<u>H</u>), 7.25-7.24 (m, 2H, and Py-<u>H</u> × 2), 7.08 (d, 1H, J = 1.8 Hz, and Py-<u>H</u>), 7.06 (d, ¹H, J = 1.8 Hz, and Py-<u>H</u>), 6.95-6.91, (m, 3H, and Py-<u>H</u> × 3), 6.06 (dd, ¹H, J = 2.6 Hz, J = 3.8 Hz, and Py-<u>H</u>), 3.88 (s, 3H, and NC<u>H₃</u>), 3.86 (s, 3H, and NC<u>H₃</u>), 3.85 (s, 3H, and

NCH₃), 3.84 (s, 3H, and NCH₃), and 3.74 (s, 3H, and OCH₃); ¹³C-NMR (DMSO- d_6): δ 161.0, 158.8, 158.7, 128.3, 125.6, 123.2, 122.9, 122.7, 122.5, 122.3, 121.0, 118.8, 118.7, 112.9, 108.6, 106.9, 105.0, 104.9, 51.2, 36.44, 36.38, 36.32, and 36.28; HRMS (ESI-TOF) *m*/*z*: calcd for C₂₅H₂₈ N₇O₅(M+H)⁺ 506.2152, found 506.2151; UV (CH₃OH): λ_{max} 306, 238 nm; λ_{min} 262, 223 nm; and ε_{260} 2.6 × 10⁴.

Pyrrole amide tetramer 4 (881 mg, 1.74 mmol) was dissolved in methanol (8.7 mL), and then 2 M NaOH aq. (8.7 mL) was added to the solution. After stirring at 60°C for 3 h, Dowex 50WX8 (H⁺-form) was added. Dowex 50WX8 was removed by filtration and the solution evaporated to give Py₄-carboxylic acid (856 mg, quantitative yield), which was subsequently used without purification. ¹H-NMR (DMSO- d_6): δ 12.12(s, 1H, COOH), 9.95 (s, 1H, and CONH), 9.91 (s, 1H, and CONH), 9.84 (s, 1H, and CONH), 7.43 (d, 1H, J = 1.9 Hz, and Py-H), 7.25-7.24 (m, 2H, and Py-H \times 2), 7.07 (d, 1H, J = 1.8 Hz, and Py-H), 7.05 (d, 1H, J = 1.8 Hz, and Py-<u>H</u>), 6.95 (d, 1H, J = 2.2 Hz, and Py-<u>H</u>), 6.93-6.91 (m, 1H, and Py-H), 6.85 (d, 1H, J = 1.9 Hz, and Py-H), 6.06 (dd, 1H, *J* = 2.6 Hz, *J* = 3.8 Hz, and Py-H), 3.88 (s, 3H, and NCH₃), 3.86 (s, 3H, and NCH₃), 3.85 (s, 3H, and NCH₃), and 3.82 (s, 3H, and NCH₃); ¹³C-NMR $(DMSO-d_6): \delta$ 162.0, 158.6, 158.51, 158.47, 128.5, 125.5, 122.77, 122.71, 122.6, 122.3, 122.1, 120.3, 119.5, 118.5, 112.7, 108.4, 106.7, 104.77, 104.72, 36.24, 36.14, 36.12, and 36.08; HRMS (ESI-TOF) m/z: calculated for $C_{24}H_{26}$ $N_7O_5(M + H)^+$ 492.1995, found 492.1993.

 Py_4 -carboxylic acid (492 mg, 1.00 mmol), 10 (520 mg, 1.50 mmol), and 1-hydroxybenzotriazole (HOBt) (270 mg, 2.00 mmol) were dissolved in DMF (5 mL), and then N,N-dicyclohexylcarbodiimide (DCC) (310 mg, 1.50 mmol) and *N*-ethyldiisopropylamine (*N*,*N*-diisopropylethylamine: DIEA) $(240\,\mu\text{L}, 1.38\,\text{mmol})$ were added to the solution. After stirring for 16h, the precipitate was removed by filtration. The filtrate was diluted with chloroform (200 mL) and washed with 2 M HCl aq. (100 mL \times 3), H_2O (100 mL), 5% NaHCO3 aq. (100 mL \times 3), and H₂O (75 mL). The organic layer was dried over anhydrous magnesium sulfate and evaporated to dryness. The residue was subjected to chromatographic separation on a column of silica gel using a 0-5% methanol/chloroform solvent system to give **13** (555 mg, 71% yield) as a slightly brown glass. ¹H-NMR (DMSO- d_6): δ 9.93 (s, 1H, CONH), 9.88 (s, 1H, and CONH), 9.82 (s, 1H, and CONH), 8.00-7.97 (m, 1H, and CONH), 7.88 (d, 2H, J = 7.4 Hz, and Ar-H of the Fmoc group), 7.69 (d, 2H, J = 7.4 Hz, and Ar-H of the Fmoc group), 7.40 (t, 2H, J = 7.4 Hz, and Ar-H of the Fmoc group), 7.32 (t, 2H, J = 7.4 Hz, and Ar-H of the Fmoc group), 7.30-7.23 (m, 3H, CON<u>H</u>CH₂, and Py-<u>H</u> \times 2), 7.18 (d, 1H, J = 1.8 Hz, and Py-H), 7.06-7.04 (m, 2H, and Py-H x 2), 6.95-6.95 (m, 1H, and Py-H), 6.93-6.92 (m, 1H, and Py-H), 6.88-6.87 (m, 1H, and Py-H), 6.06 (dd, 1H, *J* = 2.5 Hz, *J*=3.9 Hz, and Py-H), 4.29 (d, 2H, J = 6.9 Hz, and CHCH₂ of the Fmoc group), 4.22-4.19 (t, 1H, J = 6.9 Hz, and CHCH₂ of the Fmoc group), 3.89 (s, 3H, and NCH₃), 3.86 (s, 3H, and NCH₃), 3.85 (s, 3H, and NCH₃), 3.80 (s, 3H, and NCH₃), 3.19-3.14 (m, 2H, and NHCH₂), 3.03-2.98 (m, 2H, and NHCH₂), and 1.52-1.39 (m, 4H, and CH₂ × 2); 13 C-NMR (DMSO- $\overline{d_6}$): δ 161.2, 158.6, 158.50, 158.46, 156.1, 143.9, 140.7, 128.1, 127.5, 127.0, 125.5,

125.1, 123.0, 122.8, 122.2, 122.11, 122.09, 120.1, 118.4, 117.7, 112.6, 106.6, 104.72, 104,69, 104.2, 65.2, 46.8, 38.1, 36.2, 36.1, 35.9, 27.0, and 26.7; HRMS (ESI-TOF) m/z: calculated for $C_{43}H_{46}N_9O_6(M + H)^+$ 784.3571, found 784.3578.

2.4. (9H-Fluoren-9-yl)Methyl 5-{1-Methyl-4-[1-Methyl-4-(1-Methyl-4-(1-Methyl-1H-Pyrrole-2-Carbonyl)Amino-1H-Pyrrole-2-Carbonyl)Amino-1H-Pyrrole-2-Carbonyl-Amino-1H-Pyrrole-2-Carbonyl]Aminopentylcarbamate (14). Py₄-carboxylic acid (390 mg, 0.79 mmol), 11 (430 mg, 1.19 mmol), and 1-hydroxybenzotriazole (161 g, 1.19 mmol) were dissolved in DMF (4 mL), and then DCC (246 mg, 1.19 mmol) and Nethyldiisopropylamine (190 μ L, 1.09 mmol) were added. After stirring for 18 h, the precipitate was removed by filtration. The filtrate was diluted with chloroform (200 mL) and washed with 2 M HCl aq. (100 mL × 3), H₂O (100 mL), 5% NaHCO₃ aq. $(100 \text{ mL} \times 3)$, and H₂O (75 mL). The organic layer was dried over anhydrous magnesium sulfate and evaporated to dryness. The residue was subjected to chromatographic separation on a column of silica gel using a 0-5% methanol/chloroform solvent system to give 14 (530 mg, 84% yield) as a slightly brown glass. ¹H-NMR (DMSO- d_6): δ 9.93 (s, 1H, and CONH), 9.88 (s, 1H, and CONH), 9.82 (s, 1H, and CONH), 7.98-7.95 (m, 1H, and CONH), 7.88 (d, 2H, J = 7.5 Hz, and Ar-H of the Fmoc group), 7.68 (d, 2H, J = 7.5 Hz, and Ar-H of the Fmoc group), 7.41 (t, 2H, J = 7.4 Hz, and Ar-H of the Fmoc group), 7.32 (t, 2H, J = 7.4 Hz, and Ar-H of the Fmoc group), 7.30-7.24 (m, 3H, CONH, and Py-H×2), 7.18 (s, 1H, and Py-H), 7.05-7.04 (m, 2H, and Py-H × 2), 6.95-6.94 (m, 1H, and Py-<u>H</u>), 6.93-6.91 (m, 1H, and Py-<u>H</u>), 6.87 (s, 1H, and Py-<u>H</u>), 6.06 (dd, 1H, J = 2.6 Hz, J = 3.9 Hz, and Py-<u>H</u>), 4.29 (d, 2H, J = 6.9 Hz, and CHCH₂ of the Fmoc group), 4.21 (t, 1H, J =6.9 Hz, and $\underline{\rm CHCH}_2$ of the Fmoc group), 3.89 (s, 3H, and NCH₃), 3.86 (s, 3H, and NCH₃), 3.85 (s, 3H, and NCH₃), 3.80 (s, 3H, and NCH₃), 3.18-3.13 (m, 2H, and NHCH₂), 3.01-2.96 (m, 2H, and NHCH₂), 1.52-1.39 (m, 4H, and CH₂) \times 2), and 1.31-1.24 (m, 2H, and CH₂); ¹³C-NMR (DMSO*d*₆): δ 161.2, 158.6, 158.50, 158.46, 156.1, 143.9, 140.7, 128.9, 128.1, 127.6, 127.3, 127.0, 125.5, 125.1, 123.1, 122.8, 122.2, 122.1, 121.4, 120.1, 118.4, 117.7, 112.6, 106.6, 104.72, 104.68, 104.1, 65.1, 46.8, 38.3, 36.2, 36.1, 35.9, 29.11, 29.05, and 23.7; HRMS (ESI-TOF) m/z: calculated for $C_{44}H_{48}N_9O_6(M$ + H)⁺ 798.3728, found 798.3733.

2.5. (9H-Fluoren-9-yl)Methyl 4-{1-Methyl-4-[1-Methyl-4-(1-Methyl-1H-Pyrrole-2-Carbonyl)Amino-1H-Pyrrole-2-Carbonyl]Amino-1H-Pyrrole-2-Carbonyl]Aminobutylcarbamate (15). Pyrrole amide trimer **6** (515 mg, 1.34 mmol) was dissolved in methanol (6.7 mL), and then 2 M NaOH aq. (6.7 mL) was added to the solution. After stirring for 3 h at 60°C, Dowex 50WX8 (H⁺-form) was added. Dowex 50WX8 was removed by filtration and the solution evaporated to give the Py₃-carboxylic acid (495 mg, quantitative yield), which was subsequently used without purification. ¹H-NMR (DMSO-*d*₆): δ 12.16 (s, 1H, COO<u>H</u>), 9.93 (s, 1H, and CON<u>H</u>), 9.86 (s, 1H, and CON<u>H</u>), 7.46 (d, 1H, *J* = 1.9 Hz, and Py-<u>H</u>), 7.26 (d, 1H, *J* = 1.8 Hz, and Py-<u>H</u>), 6.92 (dd, 1H, *J* = 1.7, and 3.9 Hz Py-H), 6.85 (d, 1H, *J* = 1.9 Hz, and Py-H), 6.06 (dd, 1H, *J* = 2.5,

and 3.9 Hz Py-<u>H</u>), 3.92 (s, 3H, and NCH₃), 3.89 (s, 3H, and NCH₃), and 3.86 (s, 3H, and NCH₃); ¹³C-NMR (DMSO- d_6): δ 162.4, 159.1, 158.9, 128.6, 125.9, 123.2, 123.1, 122.6, 120.7, 120.0, 119.0, 113.1, 108.9, 107.1, 105.2, 36.7, 36.6, and 36.5; HRMS (ESI-TOF) *m*/*z*: calculated for C₁₈H₂₀N₅O₄(M + H)⁺ 370.1515, found 370.1509.

 Py_3 -carboxylic acid (495 mg, 1.34 mmol), 10 (697 mg, 2.01 mmol), and 1-hydroxybenzotriazole (362 mg, 2.68 mmol) were dissolved in DMF (13.4 mL), and then DCC (553 mg, 2.68 mmol) and N-ethyldiisopropylamine $(300 \,\mu\text{L}, 1.74 \,\text{mmol})$ were added. After stirring for 16 h, the precipitate was removed by filtration. The filtrate was diluted with chloroform (200 mL) and washed with 2 M HCl aq. $(100 \text{ mL} \times 3)$, H₂O (100 mL), 5% NaHCO₃ aq. $(100 \text{ mL} \times 100 \text{ mL})$ 3), and H_2O (100 mL). The organic layer was dried over anhydrous magnesium sulfate and evaporated to dryness. The residue was subjected to chromatographic separation on a column of silica gel using a 0-5% methanol/chloroform solvent system to give 15 (538 mg, 61% yield) as a slightly brown glass. ¹H-NMR (DMSO- d_6): δ 9.87 (s, 1H, and CONH), 9.81 (s, 1H, and CONH), 7.99-7.97 (m, 1H, and CONH), 7.88 (d, 2H, J = 7.4 Hz, and Ar-H of the Fmoc group), 7.68 (d, 2H, J = 7.4 Hz, and Ar-H of the Fmoc group), 7.40 (t, 2H, J = 7.4 Hz, and Ar-H of the Fmoc group), 7.32 (t, 2H, J = 7.4 Hz, and Ar-H of the Fmoc group), 7.30-7.28 (m, 1H, and CONH), 7.23 (d, 1H, J = 1.8 Hz, and Py-H), 7.17 (d, 1H, J = 1.8 Hz, and Py-H), 7.03 (d, 1H, J = 1.8 Hz, and Py-H), 6.95-6.94 (m, 1H, and Py-H), 6.92-6.91 (m, 1H, and Py-H), 6.87 (d, 1H, J = 1.6 Hz, and Py-<u>H</u>), 6.06 (dd, 1H, J = 2.5, 3.8 Hz, and Py-<u>H</u>), 4.29 (d, 2H, $\overline{J} = 6.8$ Hz, and CHCH₂ of the Fmoc group), 4.20 (t, 1H, J = 6.8 Hz, and CHCH₂ of the Fmoc group), 3.88 (s, 3H, and NCH₃), 3.85 (s, 3H, and NCH₃), 3.80 (s, 3H, and NCH₃), 3.19-3.14 (m, 2H, and NHCH₂), 3.02-2.98 (m, 2H, and NHCH₂), and 1.53-1.37 (m, 4H, and CH₂×2); 13 C-NMR (DMSO- d_6): δ 161.2, 158.6, 158.4, 156.1, 143.9, 140.7, 128.1, 127.6, 127.0, 125.5, 125.1, 123.0, 122.8, 122.09, 122.06, 120.1, 118.4, 117.7, 112.6, 106.6, 104.6, 104.1, 65.2, 46.8, 38.1, 36.2, 36.1, 35.9, 27.0, and 26.7; HRMS (ESI-TOF) m/z: calcd for $C_{37}H_{40}N_7O_5(M+H)^+$ 662.3091, found 662.3054.

2.6. Ethyl 1-Methyl-4-Nitroimidazole-2-Carboxylate (21). Ethyl 1-methylimidazole-2-carboxylate (20) [30] (2.97 g, 19.3 mmol) was dissolved in chloroform (19 mL), and then tetramethylammonium nitrate (5.26 g, 38.6 mmol) and trifluoroacetic anhydride (10.7 mL, 77.2 mmol) were added to the solution at 0°C. After stirring for 2.5 h at room temperature, 5% NaHCO₃ aq. (300 mL) was added. Products were extracted with chloroform (900 mL) from the resulting solution. The organic layer was washed with 5% NaHCO₃ aq. (200 mL \times 2) and H₂O (100 mL), dried over anhydrous magnesium sulfate, and evaporated to dryness. The residue was subjected to silica gel column chromatography using an ethyl acetate/hexane $(3:5\sim1:1 v/v)$ solvent system to give 21 (2.28 g, 59%) yield) and ethyl 1-methyl-5-nitroimidazole-2-carboxylate (22) (920 mg, 24% yield).

Compound **20**: Rf 0.20 (ethyl acetate/hexane $(2:1 \nu/\nu)$ solvent system)

Compound **21** (white powder): Rf 0.42 (ethyl acetate/ hexane (2:1 ν/ν) solvent system), ¹H-NMR (DMSO- d_6): δ 8.63 (s, 1H, and Im-<u>H</u>), 4.35 (q, 2H, J = 7.1 Hz, and C<u>H</u>₂CH₃), 3.99 (s, 3H, and NC<u>H</u>₃), and 1.33 (t, 3H, J = 7.1 Hz, and CH₂C<u>H</u>₃); ¹³C-NMR (DMSO- d_6): δ 157.7, 144.9, 134.8, 126.8, 61.7, 36.7, and 13.9; HRMS (ESI-TOF) *m/z*: calculated for C₇H₁₀N₃O₄(M + H)⁺ 200.0671, found 200.0664. Anal. Calcd for C₇H₉N₃O₄: C, 42.21; H, 4.55; N, 21.10, found. C, 42.23; H, 4.59; and N, 21.09

Compound **22** (white powder): Rf 0.49 (ethyl acetate/ hexane (2:1 ν/ν) solvent system), ¹H-NMR (DMSO- d_6): δ 8.15 (s, 1H, and Im-<u>H</u>), 4.38 (q, 2H, J = 7.1Hz, and OCH₂CH₃), 4.19 (s, 3H, and NCH₃), and 1.33 (t, 3H, J = 7.1Hz, and OCH₂C<u>H₃</u>); ¹³C-NMR (DMSO- d_6): δ 158.0, 140.7, 138.9, 131.4, 62.1, 35.0, and 13.9; HRMS (ESI-TOF) *m/z*: calcd for C₇H₁₀N₃O₄(M+H)⁺ 200.0671, found 200.0669. Anal. Calcd for C₇H₉N₃O₄: C, 42.21; H, 4.55; N, 21.10, found. C, 42.13; H, 4.50; and N, 21.01

2.7. 1-Methylimidazole-2-Carboxylic Acid (23). Ethyl 1methyl-1H-imidazole-2-carboxylate (**20**) (3.08 g, 20.0 mmol) was dissolved in ethanol (50 mL)/pyridine (50 mL), and then 2 M NaOH aq. (100 mL) was added to the solution. After stirring at room temperature for 1 h, Dowex 50WX8 (H⁺form) was added. Dowex 50WX8 was removed by filtration, and the solution evaporated to give **23** (2.52 g, quantitative yield) as a white powder, which was subsequently used without purification. ¹H-NMR (CD₃OD): δ 7.49 (s, 1H, and Im-H), 7.39 (s, 1H, and Im-H), and 4.15 (s, 3H, and NCH₃); ¹³C-NMR (CD₃OD): δ 158.0, 141.9, 126.6, 119.6, and 37.1; HRMS (ESI-TOF) *m/z*: calcd for C₅H₇N₂O₂(M+H)⁺-127.0508, found 127.0512.

2.8. Ethyl 4-Amino-1-Methylimidazole-2-Carboxylate (24). Ethyl 4-nitro-1*H*-imidazole-2-carboxylate (21) (2.54 g, 12.7 mmol) was dissolved in ethanol (64 mL)/ethyl acetate (64 mL), and then 10% Pd/C (0.49 g) was added. The mixture was stirred under a slight positive pressure of hydrogen at room temperature for 3 h. Pd/C was removed by filtration through celite and washed with ethyl acetate (50 mL). The filtrate was evaporated to dryness to give **24** (2.14 g, quantitative yield) as a white powder, which was subsequently used without purification. ¹H-NMR (CDCl₃): δ 6.37 (s, 1H, and Im-<u>H</u>), 4.38 (2H, q, J = 7.1 Hz, and OCH₂CH₃), 3.92 (3H, s, and NCH₃), 2.96 (brs, NH₂, and 2H), and 1.40 (3H, t, J = 7.1 Hz, and OCH₂CH₃); ¹³C-NMR (CDCl₃): δ 159.0, 145.6, 131.6, 109.5, 61.3, 35.7, and 14.5; HRMS (ESI-TOF) *m/z*: calcd for C₇H₁₂N₃O₂(M + H)⁺ 170.0930, found 170.0938.

2.9. Ethyl 4-(tert-Butoxycarbonylamino)-1-Methyl-1H-Imidazole-2-Carboxylate (25). Compound 24 (2.09 g, 12.4 mmol) was dissolved in DMF (15 mL), and then a solution of di-tert-butyldicarbonate (5.42 g, 24.8 mmol) in DMF (10 mL) was added. After stirring for 19 h at room temperature, H_2O (50 mL) was added to the solution. The solution was diluted with chloroform (300 mL) and washed with H_2O (100 mL × 3). The organic layer was dried over anhydrous magnesium sulfate and evaporated to dryness. The residue was subjected to silica gel column chromatography using an ethyl acetate/hexane (2:3 v/v) solvent system to give **25** (3.34 g, quantitative yield) as a white powder. ¹H-NMR (DMSO-*d*₆): δ 9.68 (s, 1H, and CON<u>H</u>), 7.30 (s, 1H, and Im-<u>H</u>), 4.25 (q, 2H, *J* = 7.2 Hz, and OC<u>H</u>₂CH₃), 3.88 (s, 3H, and NC<u>H</u>₃), 1.44 (s, 9H, and OC(C<u>H</u>₃)₃), and 1.28 (t, 3H, *J* = 7.2 Hz, and OCH₂C<u>H</u>₃); ¹³C-NMR (DMSO-*d*₆): δ 158.4, 152.7, 138.1, 130.9, 113.8, 78.9, 60.42, 35.4, 28.0, and 14.1; HRMS (ESI-TOF) *m/z*; calcd for C₁₂H₂₀N₃O₄(M +H)⁺270.1454, found 270.1439; Anal. Calcd for C₁₂H₁₉N₃O₄: C, 53.52; H, and 7.11; N, 15.60, found. C, 53.22; H, 7.05; and N, 15.55.

2.10. 4-(tert-Butoxycarbonylamino)-1-Methyl-1H-Imidazole-2-Carboxylic Acid (26). Compound **25** (2.63 g, 9.80 mmol) was dissolved in ethanol (24.5 mL)/pyridine (24.5 mL), and then 2 M NaOH aq. (49 mL) was added to the solution. After stirring at room temperature for 1 h, Dowex 50WX8 (H⁺-form) was added. Dowex 50WX8 was removed by filtration, and the solution evaporated to give **26** (2.36 g, quantitative yield) as a white powder, which was subsequently used without purification. ¹H-NMR (DMSO-*d*₆): δ 9.52 (s, 1H, and CON<u>H</u>), 7.16 (s, 1H, and Im-<u>H</u>), 3.88 (s, 3H, and NC<u>H</u>₃), and 1.44 (s, 9H, and OC(C<u>H</u>₃)₃); ¹³C-NMR (DMSO-*d*₆): δ 160.4, 152.5, 137.1, 133.7, 112.2, 79.0, 35.3, and 28.1; HRMS (ESI-TOF) *m/z*: calcd for C₁₀H₁₅N₃O₄Na (M+Na)⁺ - 264.0960, found 264.0950.

2.11. Ethyl 4-(4-(tert-Butoxycarbonylamino)-1-Methyl-1H-Imidazole-2-Carboxamido)-1-Methyl-1H-Imidazole-2-Carboxylate (27). Compounds 24 (660 mg, 3.90 mmol) and 26 (1.13 g, 4.70 mmol) were dissolved in DMF (39 mL), and then *N*-ethyldiisopropylamine (1.36 mL, 7.80 mmol), 1hydroxybenzotriazole (1.05 g, 7.80 mmol), and N,N '-diisopropylcarbodiimide (DCI) (3.60 mL, 23.3 mmol) were added to the solution. After stirring for 18h, the reaction solution was diluted with chloroform (200 mL) and washed with 5% NaHCO₃ aq. $(100 \text{ mL} \times 2)$ and H₂O (100 mL). The organic layer was dried over anhydrous magnesium sulfate and evaporated to dryness. The residue was subjected to chromatographic separation on a column of silica gel using an ethyl acetate/hexane (2:1 v/v) solvent system to give 27 (1.34 g, 88% yield) as a slightly brown glass. ¹H-NMR (CDCl₃): δ 9.45 (s, 1H, and CONH), 7.54 (s, 1H, and Im-H), 7.25 (s, 1H, and Im-H), 6.71 (s, 1H, and CONH), 4.43 (q, 2H, J = 7.2 Hz, and OCH₂CH₃), 4.025 (s, 3H, and NCH₃), 4.016 (s, 3H, and NCH₃), 1.52 (s, 9H, and OC(CH₃)₃), 1.44 (t, 3H, J = 7.2 Hz, and OCH₂CH₃); ¹³C-NMR (CDCl₃): δ 159.0, 156.2, 152.6, 137.2, 136.8, 133.2, 132.0, 114.9, 112.7, 81.1, 61.7, 36.2, 35.7, 28.5, and 14.6; HRMS (ESI-TOF) m/z: calcd for $C_{17}H_{25}N_6O_5(M+H)^+$ -393.1886, found 393.1902.

2.12. Ethyl 1-Methyl-4-(1-Methyl-4-(1-Methyl-1H-Imidazole-2-Carboxamido)-1H-Imidazole-2-Carboxamido)-1H-Imidazole-2-Carboxylate (28). Compound **27** (510 mg, 1.30 mmol) was dissolved in ethanol (19.5 mL)/chloroform (6.5 mL), and then acetyl chloride (2.80 mL, 39.0 mmol) was added to the solution at room temperature. After stirring for 2 h at 40°C, the reaction solution was concentrated *in vacuo* to give Im₂-amine compound, which was subsequently used without purification. ¹H-NMR (DMSO- d_6): δ 10.45 (1H, s, and CON<u>H</u>), 7.71 (s, 1H, and Im-<u>H</u>), 7.47 (s, and 1H, Im-<u>H</u>), 4.28 (q, 2H, J = 7.1 Hz, and OC<u>H</u>₂CH₃), 3.99 (s, 3H, and NC<u>H</u>₃), 3.94 (s, 3H, and NC<u>H</u>₃), and 1.29 (t, 3H, J = 7.1 Hz, and OCH₂C<u>H</u>₃); ¹³C-NMR (DMSO- d_6): δ 158.1, 154.9, 135.7, 135.0, 131.4, 129.9, 117.6, 115.9, 60.8, 48.6, 35.75, 35.66, and 14.1; HRMS (ESI-TOF) *m/z*: calcd for C₁₂H₁₇N₆O₃(M + H)⁺ 293.1362, found 293.1365.

Im2-amine compound (1.30 mmol) and 23 (214 mg, 1.70 mmol) were dissolved in DMF (13 mL), and then EDCI (1.02 g, 5.30 mmol) and DMAP (490 mg, 4.00 mmol) were added to the solution. After stirring at room temperature for 18 h, the solution was diluted with chloroform (200 mL) and washed with H₂O (10 mL), 5% NaHCO₃ aq. $(100 \text{ mL} \times 2)$ and H₂O (100 mL). The organic layer was dried over anhydrous magnesium sulfate and evaporated to dryness. The residue was subjected to chromatographic separation on a column of silica gel using an ethyl acetate/hexane (2:1 v/v) solvent system to give 28 (440 mg, 84% yield) as a slightly brown glass. ¹H-NMR (CDCl₃): δ 9.48 (s, 1H, and CONH), 9.40 (s, 1H, and CONH), 7.56 (s, 1H, and Im-H), 7.50 (s, 1H, and Im-H), 7.11 (s, 1H, and Im-H), 7.02 (s, 1H, and Im-H), 4.44 (q, 2H, J = 7.1 Hz, and OCH₂CH₃), 4.10 (s, 3H, and NCH₃), 4.08 (s, 3H, and NCH_{3} , 4.03 (s, 3H, and NCH_{3}), and 1.45 (t, 3H, and J =7.1 Hz, and OCH₂CH₃); ¹³C-NMR (CDCl₃): δ 158.1, 156.5, 156.2, 138.5, 136.8, 136.0, 133.6, 132.1, 128.4, 126.4, 115.1, 114.6, 61.8, 36.2, 35.90, 35.85, and 14.6; HRMS (ESI-TOF) m/z: calcd for $C_{17}H_{21}N_8O_4(M+H)^+401.1686$, found 401.1682; UV (CH₃OH): λ_{max} 311 nm, λ_{min} 236 nm, ε_{260} 1.2 $\times 10^{4}$.

2.13. (9H-Fluoren-9-yl)Methyl 3-(1-Methyl-4-(1-Methyl-4-(1-Methyl-1H-Imidazole-2-Carboxamido)-1H-Imidazole-2-Carboxamido)-1H-Imidazole-2-Carboxamido)Propylcarbamate (29). Compound 28 (500 mg, 1.20 mmol) was dissolved in ethanol (6 mL)/pyridine (6 mL) and then 2 M NaOH aq. (12 mL) was added to the solution. After stirring at room temperature for 3 h, Dowex 50WX8 (H⁺-form) was added. Dowex 50WX8 was removed by filtration, and the solution evaporated to give Im₃-carboxylic acid (450 mg, quantitative yield) as a white powder, which was subsequently used without purification. ¹H-NMR (DMSO- d_6): δ 10.09 (s, 1H, and CONH), 9.90 (s, 1H, and CONH), 7.61 (s, 1H, and Im-H), 7.55 (s, 1H, and Im-H), 7.44 (s, 1H, and Im-H), 7.07 (s, 1H, and Im-H), 4.01 (s, 3H, and NCH₃), 4.00 (s, 3H, and NCH₃), and 3.94 (s, 3H, and NCH₃); ¹³C-NMR (DMSO*d*₆): δ 160.2, 155.9, 155.4, 137.8, 135.3, 135.0, 134.3, 133.4, 127.7, 127.0, 114.6, 113.8, 35.4, 35.2, and 35.1; HRMS (ESI-TOF) m/z: calcd for $C_{15}H_{17}N_8O_4(M+H)^+$ 373.1373, found 373.1366.

Im₃-carboxylic acid (330 mg, 0.90 mmol) and **9** (440 mg, 1.30 mmol) were dissolved in DMF (9 mL), and then *N*-ethyldiisopropylamine (210 μ L, 1.20 mmol), 1-hydroxybenzotriazole (360 mg, 2.70 mmol), and *N*,*N* '-diisopropylcarbodiimide (800 μ L, 5.40 mmol) were added to the solution. After stirring for 19 h, the solution was diluted with chloroform (100 mL) and washed with H₂O (50 mL × 3). The organic layer was dried over anhydrous magnesium

sulfate and evaporated to dryness. The residue was subjected to chromatographic separation on a column of silica gel using a 0-5% methanol/chloroform solvent system to give 29 (290 mg, 50% yield) as a slightly brown glass. ¹H-NMR (DMSO- d_6): δ 10.05 (s, 1H, and CONH), 9.56 (s, 1H, and CONH), 8.31-8.29 (m, and 1H, CONH), 7.88 (d, 2H, J = 7.4 Hz, and Ar – H \times 2 of the Fmoc group), 7.69 (d, 2H, J = 7.4 Hz, $Ar - H \times 2$ of the Fmoc group), 7.64 (s, 1H, and Im-H), 7.51 (s, 1H, and Im-H), 7.45 (s, 1H, and Im-H), 7.42 (t, 2H, J = 7.4 Hz, and Ar-H \times 2 of the Fmoc group), 7.34 (t, 2H, J = 7.4 Hz, and Ar – <u>H</u>×2 of the Fmoc group), 7.30-7.27 (m, 1H, and CONH), 7.08 (s, 1H, and Im-H), 4.32 (d, 2H, J = 6.9 Hz, and CHCH₂ of the Fmoc group), 4.22 (t, 1H, J = 6.9 Hz, and CHCH₂ of the Fmoc group), 4.02 (s, 3H, and NCH₃), 4.00 (s, 3H, and NCH₃), 3.96 (s, 3H, and NCH₃), 3.24-3.20 (m, 2H, and NHCH₂), 3.05-3.01 (m, 2H, and NHCH₂), and 1.66-1.59 (m, 2H, and CH₂); ¹³C-NMR (CDCl₃): δ 159.7, 156.9, 156.5, 156.0, 144.2, 141.4, 138.5, 135.9, 135.5, 134.4, 133.8, 128.3, 127.7, 127.1, 126.3, 125.2, 120.1, 114.6, 113.9, 66.7, 47.5, 38.0, 36.0, 35.81, 35.78, 35.76, and 30.2; HRMS (ESI-TOF) m/z: calcd for $C_{33}H_{35}N_{10}O_5(M+H)^+ 651.2792$, found 651.2820.

2.14. (9H-Fluoren-9-yl)Methyl 4-(1-Methyl-4-(1-Methyl-4-(1-Methyl-1H-Imidazole-2-Carboxamido)-1H-Imidazole-2-Carboxamido)-1H-Imidazole-2-Carboxamido)Butylcarbamate (30). Im₃-carboxylic acid (740 mg, 2.00 mmol) and 10 (1.04 g, 3.00 mmol) were dissolved in DMF (20 mL), and then *N*-ethyldiisopropylamine (400 μL, 2.60 mmol), 1hydroxybenzotriazole (810 mg, 6.00 mmol), and N_{N} -diisopropylcarbodiimide (1.80 mL, 12.0 mmol) were added to the solution. After stirring for 19 h, the solution was diluted with chloroform (200 mL) and washed with H₂O (100 $mL \times 3$). The organic layer was dried over anhydrous magnesium sulfate and evaporated to dryness. The residue was subjected to chromatographic separation on a column of silica gel using a 0-5% methanol/chloroform solvent system to give 30 (430 mg, 33% yield) as a slightly brown glass. ¹H-NMR (DMSO- d_6): δ 9.68 (s, 1H, and CONH), 9.56 (s, 1H, and CONH), 8.28-8.26 (m, 1H, and CONH), 7.88 (d, 2H, J = 7.5 Hz, and Ar-H of the Fmoc group), 7.68 (d, 2H, J = 7.5 Hz, and Ar-<u>H</u> of the Fmoc group), 7.64 (s, 1H, and Im-H), 7.51 (s, 1H, and Im-H), 7.45 (s, 1H, and Im-H), 7.39 (t, 2H, J = 7.5 Hz, and Ar-H of the Fmoc group), 7.33 (t, 2H, J = 7.5 Hz, and Ar-H of the Fmoc group), 7.29-7.297 (m, 1H, and CONH), 7.08 (s, 1H, and Im-H), 4.29 (d, 2H, J = 6.8 Hz, and CHCH₂ of the Fmoc group), 4.20 (t, 1H, J = 6.8 Hz, and CHCH₂ of the Fmoc group), 4.02 (s, 3H, and NCH₃), 4.00 (s, 3H, and NCH₃), 3.95 (s, 3H, and NCH₃), 3.24-3.19 (m, 2H, and NHCH₂), 3.02-2.98 (m, 2H, and NHCH₂), and 1.49-1.41 (m, 4H, and CH₂×2); ¹³C-NMR (CDCl₃): δ 159.3, 156.7, 156.5, 156.0, 144.2, 141.5, 138.5, 135.9, 135.4, 134.6, 133.7, 128.4, 127.8, 127.2, 126.3, 125.2, 120.1, 114.5, 113.8, 66.7, 47.5, 40.9, 38.8, 35.86, 35.83, 35.80, 27.5, and 27.2; HRMS (ESI-TOF) m/z: calcd for $C_{34}H_{37}N_{10}O_5(M+H)^+ 665.2948$, found 665.2973.

2.15. (9H-Fluoren-9-yl)Methyl 5-(1-Methyl-4-(1-Methyl-4-(1-Methyl-1H-Imidazole-2-Carboxamido)-1H-Imidazole-2-Carboxamido)-1H-Imidazole-2-Carboxamido)Pentylcarbamate (31). Im₃-carboxylic acid (450 mg, 1.20 mmol) and 11 (650 mg, 1.80 mmol) were dissolved in DMF (12 mL), and then N-ethyldiisopropylamine $(300 \,\mu\text{L}, 1.60 \,\text{mmol}), 1$ hydroxybenzotriazole (490 mg, 3.60 mmol) and N,N ' -diisopropylcarbodiimide (1.10 mL, 7.20 mmol) were added to the solution. After stirring for 19h, the solution was diluted with chloroform (100 mL) and washed with H₂O $(50 \text{ mL} \times 3)$. The organic layer was dried over anhydrous magnesium sulfate and evaporated to dryness. The residue was subjected to chromatographic separation on a column of silica gel using a 0-5% methanol/chloroform solvent system to give 31 (580 mg, 71% yield) as a slightly brown glass. ¹H-NMR (DMSO- d_6): δ 10.03 (s, 1H, and CONH), 9.56 (s, 1H, and CONH), 8.26-8.24 (m, 1H, and CONH), 7.87 (d, 2H, *J* = 7.4 Hz, and Ar-H of the Fmoc group), 7.67 (d, 2H, J = 7.4 Hz, and Ar-H of the Fmoc group), 7.64 (s, 1H, and Im-H), 7.50 (s, 1H, and Im-H), 7.45 (s, 1H, and Im-H), 7.39 (t, 2H, J = 7.5 Hz, and Ar-<u>H</u> of the Fmoc group), 7.33 (t, 2H, J = 7.5 Hz, and Ar-H of the Fmoc group), 7.26-7.24 (m, 1H, and CONH), 7.08 (s, 1H, and Im-H), 4.29 (d, 2H, J = 6.9 Hz, and CHCH₂ of the Fmoc group), 4.19 (t, 1H, J = 6.9 Hz, and $CHCH_2$ of the Fmoc group), 4.01 (s, 3H, and NCH₃), 4.00 (s, 3H, and NCH₃), 3.95 (s, 3H, and NCH₃), 3.23-3.18 (m, 2H, and NHCH₂), 3.00-2.95 (m, 2H, and NHCH₂), 1.54-1.39 (m, 4H, and CH₂ × 2), and 1.30-1.24 (m, 2H, and CH₂); ¹³C-NMR(CDCl₃): δ 159.2, 156.6, 156.3, 155.9, 144.1, 141.3, 138.4, 135.8, 135.3, 134.6, 133.7, 128.2, 127.6, 127.0, 126.1, 125.1, 120.0, 114.4, 113.7, 66.5, 47.4, 40.9, 38.8, 35.69, 35.66, 35.64, 29.6, 29.4, and 24.1; HRMS (ESI-TOF) m/z: calcd for $C_{35}H_{39}N_{10}O_5(M+H)^+$ -679.3105, found 679.3085.

2.16. Ethyl 4-(1-Methyl-4-(1-Methyl-4-(1-Methyl-1H-Pyrrole-2-Carboxamido)-1H-Pyrrole-2-Carboxamido)-1H-Pyrrole-2-Carboxamido)Butanoate (32). Pyrrole amide trimer **6** (1.51 g, 3.93 mmol) was dissolved in ethanol (17 mL)/pyridine (17 mL), and then 2 M NaOH aq. (34 mL) was added to the solution. After stirring at room temperature for 3 h, Dowex 50WX8 (H⁺-form) was added. Dowex 50WX8 was removed by filtration, and the solution evaporated to give Py₃-carboxylic acid (1.45 g, quantitative yield), which was subsequently used without purification.

Py₃-carboxylic acid (1.45 g, 3.93 mmol) and ethyl 4aminobutanoate (0.774 g, 5.90 mmol) were dissolved in dichloromethane (20 mL), and then EDCI (1.50 g, 7.86 mmol) and DMAP (960 mg, 7.86 mmol) were added to the solution. After stirring at room temperature for 10 h, the solution was diluted with chloroform (300 mL) and washed with H₂O (80 mL), 5% NaHCO₃ aq. (80 mL × 2), and H₂O (80 mL). The organic layer was dried over anhydrous magnesium sulfate and evaporated to dryness. The residue was subjected to chromatographic separation on a column of silica gel using an ethyl acetate/hexane (2:1~8:1 v/v) solvent system to give **32** (1.56 g, 82% yield) as a slightly brown glass. ¹H-NMR(CDCl₃): δ 7.60 (s, 1H, and CONH), 7.50 (s, 1H, and CONH), 7.15 (d, 1H, *J* = 1.8 Hz, and Py-<u>H</u>), 7.12 (d, 1H, J = 1.8 Hz, and Py-<u>H</u>), 6.78-6.77 (m, 1H, and Py-<u>H</u>), 6.71 (d, 1H, J = 1.8 Hz, Py-<u>H</u>), 6.68-6.66 (m, 1H, and Py-<u>H</u>), 6.52 (d, 1H, J = 1.9 Hz, and Py-<u>H</u>), 6.24-6,22 (m, 1H, and CON<u>H</u>), 6.13 (dd, 1H, J = 2.6 Hz, J = 4.0 Hz, and Py-<u>H</u>), 4.15 (q, 2H, J = 7.2 Hz, and OC<u>H</u>₂CH₃), 3.98 (s, 3H, and NC<u>H</u>₃), 3.93 (s, 3H, and NC<u>H</u>₃), 3.90 (s, 3H, and NC<u>H</u>₃), 3.44-3.39 (m, 2H, and NHC<u>H</u>₂CH₂-), 2.41 (t, 2H, J = 7.1 Hz, and COC<u>H</u>₂CH₂-), 1.95-1.88 (m, 2H, and -CH₂C<u>H</u>₂CH₂-), and 1.25 (t, 3H, J = 7.2 Hz, and OCH₂C<u>H</u>₃); ¹³C-NMR(CDCl₃): δ 173.8, 161.8, 159.5, 1589.0, 128.5, 125.4, 123.4, 123.2, 121.5, 121.2, 119.3, 118.9, 112.0, 107.4, 103.8, 103.2, 60.7, 38.9, 36.8, 36.65, 36.57, 31.9, 24.7, and 14.2; HRMS (ESI-TOF) *m/z*: calcd for C₂₄H₃₁N₆O₅ (M + H)⁺ 483.2356, found 483.2354.

2.17. Ethyl 1-Methyl-4-(1-Methyl-4-(1-Methyl-4-(tert-Butoxycarbonylamino)-1H-Imidazole-2-Carboxamido)-1H-Imidazole-2-Carboxamido)-1H-Imidazole-2-Carboxylate (33). Compound **27** (2.22 g, 5.65 mmol) was dissolved in ethanol (19.5 mL)/chloroform (6.5 mL), and then acetyl chloride (2.80 mL, 39.0 mmol) was added to the solution at room temperature. After stirring for 2 h at 40°C, the reaction solution was concentrated *in vacuo* to give Im_2 -amine compound, which was subsequently used without purification.

 Im_2 -amine compound (5.65 mmol) and 26 (2.27 g, 8.48 mmol) were dissolved in dichloromethane (56.5 mL), and then EDCI (3.25 g, 17.0 mmol) and DMAP (2.07 g, 17.0 mmol) were added to the solution. After stirring at room temperature for 19h, the solution was diluted with chloroform (500 mL) and washed with H₂O (100 mL), 5% NaHCO₃ aq. (100 mL \times 2) and H₂O (100 mL). The organic layer was dried over anhydrous magnesium sulfate and evaporated to dryness. The residue was subjected to chromatographic separation on a column of silica gel using an ethyl acetate/hexane (2:1 v/v) solvent system to give 33 (2.05 g, 70% yield) as a slightly brown glass. ¹H-NMR (CDCl₃): § 9.53 (s, 1H, and CONH), 9.17 (s, 1H, and CONH), 7.57 (s, 1H, and Im-H), 7.49 (s, 1H, and Im-H), 7.19 (s, 1H, and Im-H), 6.92 (s, 1H, and CONH), 4.44 (q, 2H, J = 7.1 Hz, and OCH₂CH₃), 4.07 (s, 3H, and NCH₃), 4.05 (s, 3H, and NCH₃), 4.03 (s, 3H, and NCH₃), 1.53 (s, 9H, and OC(CH₃)₃), 1.45 (t, 3H, J = 7.1 Hz, and OCH₂CH₃); ¹³C-NMR (CDCl₃): δ 158.8, 155.9, 155.8, 152.5, 137.0, 136.6, 135.7, 133.3, 133.0, 131.8, 114.8, 114.3, 112.7, 80.8, 61.5, 36.0, 35.7, 35.6, 28.3, and 14.3; HRMS (ESI-TOF) m/z: calcd for $C_{22}H_{30}N_9O_6(M+H)^+$ 516.2319, found 516.2318.

2.18. Ethyl 1-Methyl-4-(1-Methyl-4-(1-Methyl-4-(4-(1-Methyl-4-(1-Methyl-4-(1-Methyl-1H-Pyrrole-2-Carboxamido)-1H-Pyrrole-2-Carboxamido)-1H-Pyrrole-2-Carboxamido) Butanamido)-1H-Imidazole-2-Carboxamido)-1H-Imidazole-2-Carboxamido)-1H-Imidazole-2-Carboxylate (34). Compound **32** (1.44 g, 2.99 mmol) was dissolved in ethanol (7.5 mL)/pyridine (7.5 mL), and then 2 M NaOH aq. (15 mL) was added to the solution. After stirring at room temperature for 3 h, Dowex 50WX8 (H⁺-form) was added. Dowex 50WX8 was removed by filtration and the solution evaporated to give Py_3 -NH(CH₂)₃CO₂H (1.36 g, quantitative yield), which was subsequently used without purification. ¹H-NMR (DMSO- *d*₆): δ 9.89 (s, 1H, and CON<u>H</u>), 9.83 (s, 1H, and CON<u>H</u>), 8.06-8.03 (m, 1H, and CON<u>H</u>), 7.23 (d, 1H, *J* = 1.8 Hz, and Py-H), 7.18 (d, 1H, *J* = 1.8 Hz, and Py-<u>H</u>), 7.02 (d, 1H, *J* = 1.9 Hz, and Py-<u>H</u>), 6.95-6.93 (m, 1H, and Py-<u>H</u>), 6.92-6.91 (m, 2H, Py-<u>H</u>×2), 6.87 (d, 1H, *J* = 1.9 Hz, and Py-<u>H</u>), 6.06 (dd, 1H, *J* = 2.6 Hz, *J* = 3.9 Hz, and Py-<u>H</u>), 3.88 (s, 3H, and NC<u>H</u>₃), 3.85 (s, 3H, and NC<u>H</u>₃), 3.79 (s, 3H, and NC<u>H</u>₃), 3.19-3.16 (m, 2H, and NHC<u>H</u>₂CH₂-), 2.24 (t, 2H, *J* = 7.4 Hz, and COC<u>H</u>₂CH₂-); ¹³C-NMR(DMSO-*d*₆): δ 174.5, 161.4, 158.6, 158.5, 128.2, 125.5, 123.0, 122.8, 122.15, 122.12, 118.5, 117.8, 112.7, 106.7, 104.7, 104.2, 37.9, 36.3, 36.1, 36.0, 31.3, and 24.8; HRMS (ESI-TOF) *m/z*: calcd for C₂₂H₂₇N₆O₅(M + H)⁺ 455.2043, found 455.2039.

Compound **33** (54 mg, 0.104 mmol) was dissolved in ethanol (1.56 mL)/chloroform (0.52 mL), and then acetyl chloride (220 μ L, 3.14 mmol) was added to the solution at room temperature. After stirring for 3 h at 40°C, the reaction solution was concentrated *in vacuo* to give Im₃-amine compound, which was subsequently used without purification. ¹H-NMR (CD₃OD): δ 7.81 (s, 1H, and Im-<u>H</u>), 7.65 (s, 1H, and Im-<u>H</u>), 7.35 (s, 1H, and Im-<u>H</u>), 4.49 (q, 2H, *J* = 7.1 Hz, and OC<u>H₂CH₃</u>), 4.14 (s, 3H, and NC<u>H₃</u>), 4.11 (s, 3H, and NC<u>H₃</u>), 4.10 (s, 3H, and NC<u>H₃</u>), and 1.45 (t, 3H, *J* = 7.1 Hz, and OCH₂C<u>H₃</u>); ¹³C-NMR (DMSO-*d₆*): δ 158.2, 155.6, 154.7, 135.9, 135.2, 134.8, 133.5, 131.5, 131.4, 115.9, 115.5, 115.1, 60.8, 35.7, 35.7, 35.2, and 14.1; HRMS (ESI-TOF) *m/z*: calcd for C₁₇H₂₁N₉O₄(M+H)⁺ 416.1795, found 416.1788.

compound (0.104 mmol) Im₃-amine and Py₃-NH(CH₂)₃CO₂H (71 mg, 0.156 mmol) were dissolved in dichloromethane (2.1 mL), and then EDCI (60 mg, 0.312 mmol) and DMAP (38 mg, 0.312 mmol) were added to the solution. After stirring at room temperature for 14 h, the solution was diluted with chloroform (50 mL) and washed with H_2O (20 mL), 5% NaHCO₂ aq. (20 mL × 2) and H₂O (20 mL). The organic layer was dried over anhydrous magnesium sulfate and evaporated to dryness. The residue was subjected to chromatographic separation on a column of silica gel using a 2% methanol/chloroform solvent system to give 34 (50 mg, 57% yield) as a slightly brown glass. ¹H-NMR(CDCl₃): δ 9.51 (s, 1H, and CONH), 9.24 (s, 1H, and CONH), 8.87 (s, 1H, and CONH), 7.93 (s, 1H, and CONH), 7.58-7.54 (m, 2H, Im-H, and CONH), 7.46 (s, 1H, and Im-H), 7.44 (s, 1H, and Im-H), 7.20 (d, 1H, J = 1.5 Hz, and Py-H), 7.18 (d, 1H, J = 1.5 Hz, and Py-H), 6.75-6.74 (m, 2H, and Py-H×2), 6.60-6.59 (m, 1H, and Py-<u>H</u>), 6.52-6.44 (m, 2H, Py-<u>H</u>, and CON<u>H</u>), 6.10-6.09 (m, 1H, and Py-<u>H</u>), 4.39 (q, 2H, J = 7.1 Hz, and OCH₂CH₃), 4.02 (s, 3H, and NCH₃), 4.01 (s, 3H, and NCH₃), 4.00 (s, 3H, and NCH₃), 3.97 (s, 3H, and NCH₃), 3.93 (s, 3H, and NCH₃), 3.92 (s, 3H, and NCH₃), 3.52-3.48 (m, 2H, and NHCH₂CH₂-), 2.52 (t, 2H, J = 6.7 Hz, and COCH₂CH₂-), 2.07-2.04 (m, 2H, $-CH_2CH_2-$), and 1.40 (t, 3H, J = 7.1Hz, and OCH_2CH_3 ; ¹³C-NMR(CDCl₃): δ 171.2, 162.6, 159.8, 159.3, 158.7, 155.9, 155.8, 136.5, 136.4, 135.8, 135.7, 133.3, 133.1, 131.9, 128.4, 125.5, 123.09, 123.05, 121.9, 121.7, 119.4, 119.0, 115.0, 114.6, 112.5, 107.3, 104.2, 103.9, 61.6, 38.9, 36.8, 36.6, 36.5, 36.1, 35.63, 35.56, 33.8, 25.5,

and 14.2; HRMS (ESI-TOF) *m/z*: calcd for $C_{39}H_{46}$ - $N_{15}O_8(M + H)^+$ 852.3654, found 852.3651; UV (CH₃OH): λ_{max} 300 nm, λ_{min} 257 nm, ε_{260} 3.0 × 10⁴.

2.19. (9H-Fluoren-9-yl)Methyl-(3-(1-Methyl-4-(1-Methyl-4-(1-Methyl-4-(4-(1-Methyl-4-(1-Methyl-4-(1-Methyl-1H-Pyrrole-2-Carboxamido)-1H-Pyrrole-2-Carboxamido)-1H-Pyrrole-2-Carboxamido)Butanamido)-1H-Imidazole-2-Carboxamido)-1H-Imidazole-2-Carboxamido)-1H-Imidazole-2-Carboxamido)Ethyl)Carbamate (35). Compound 34 (350 mg, 0.41 mmol) was dissolved in ethanol (2 mL)/pyridine (2 mL), and then 2 M NaOH aq. (2 mL) was added to the solution. After stirring at room temperature for 6h, Dowex 50WX8 (H⁺-form) was added. Dowex 50WX8 was removed by filtration, and the solution evaporated to give $Py_3-\gamma-Im_3$ carboxylic acid (338 mg, quantitative yield) as a white powder, which was subsequently used without purification. ¹H-NMR(DMSO- d_6): δ 10.48 (s, 1H, and CONH), 10.22 (s, 1H, and CONH), 9.93 (s, 1H, and CONH), 9.89 (s, 1H, and CONH), 9.47 (s, 1H, and CONH), 8.09-8.06 (m, 1H, and CONH), 7.62 (s, 1H, and Im-H), 7.60 (s, 1H, and Im-H), 7.54 (s, 1H, and Im-H), 7.24 (d, 1H, J = 1.5 Hz, and Py-H), 7.19 (d, 1H, *J* = 1.5 Hz, and Py-H), 7.06 (d, 1H, *J* = 1.7 Hz, and Py-H), 6.97-6.95 (m, 1H, and Py-H), 6.94-6.93 (m, 1H, and Py-H), 6.91 (d, 1H, J = 1.7 Hz, and Py-H), 6.05-6.04 (m, 1H, and Py-H), 4.01 (s, 3H, and NCH₃), 3.98 (s, 3H, and NCH₃), 3.94 (s, 3H, and NCH₃), 3.88 (s, 3H, and NCH₃), 3.84 (s, 3H, and NCH₃), 3.80 (s, 3H, and NCH₃), 3.22-3.16 (m, 2H, and NHCH₂CH₂-), 2.39 (t, 2H, J = 7.2 Hz, and COCH₂CH₂-), and 1.82-1.79 (m, 2H, and -CH₂CH₂CH₂-); ¹³C-NMR(DMSO- d_6): δ 169.6, 160.8, 158.1, 158.0, 155.0, 154.9, 149.1, 136.0, 135.1, 134.5, 133.0, 132.9, 132.1, 127.6, 125.0, 123.4, 122.5, 122.3, 121.7, 121.6, 117.9, 117.3, 114.3, 114.0, 112.3, 106.1, 104.3, 103.8, 37.6, 35.8, 35.6, 35.5, 35.1, 34.8, 34.6, 32.4, and 25.0; HRMS (ESI-TOF) m/z: calcd for $C_{37}H_{42}N_{15}O_8(M+H)^+$ 824.3341, found 824.3337.

Py₃-γ-Im₃-carboxylic acid (330 mg, 0.40 mmol) and 8 (190 mg, 0.60 mmol) were dissolved in dichloromethane (6 mL), and then EDCI (230 mg, 1.20 mmol) and DMAP (70 mg, 0.60 mmol) were added to the solution. After stirring at room temperature for 17 h, the solution was diluted with chloroform (50 mL) and washed with $\rm H_2O$ (20 mL), 5% NaHCO₃ aq. $(20 \text{ mL} \times 2)$, and H₂O (20 mL). The organic layer was dried over anhydrous magnesium sulfate and evaporated to dryness. The residue was subjected to chromatographic separation on a column of silica gel using a 0-5% methanol/chloroform solvent system to give 35 (240 mg, 55% yield) as a slightly brown glass. ¹H-NMR (DMSO- d_6): δ 10.39 (s, 1H, and CONH), 9.89 (s, 1H, and CONH), 9.81 (s, 1H, and CONH), 9.64 (s, 1H, and CONH), 9.60 (s, 1H, and CONH), 8.26-8.24 (m, 1H, and CONH), 8.03-8.01 (m, 1H, and CONH), 7.87 (d, 2H, J = 7.4 Hz, and Ar-H of the Fmoc group), 7.66 (d, 2H, J = 7.4 Hz, and Ar-H of the Fmoc group), 7.64 (s, 1H, and Im-H), 7.53 (s, 1H, and Im-H), 7.50 (s, 1H, and Im-H), 7.41-3.9 (m, 1H, and CONH), 7.39 (t, 2H, J = 7.4 Hz, and Ar-H of the Fmoc group), 7.29 (t, 2H, J = 7.4 Hz, and Ar-H of the Fmoc group), 7.22 (d, 1H, J = 1.7 Hz, and Py-H), 7.18 (d, 1H, J = 1.6 Hz, and Py-H), 7.04 (d, 1H, J = 1.6 Hz, and Py-H), 6.94 (s, 1H, and Py-H), 6.92-6.91 (m, 1H, and Py-H), 6.89 (d, 1H, J = 1.9 Hz, and Py-<u>H</u>), 6.05 (dd, J = 2.6 Hz, J = 3.8Hz, 1H, and Py-H), 4.28 (d, 2H, J = 7.0 Hz, and CHCH₂ of the Fmoc group), 4.20 (t, 1H, J=7.0 Hz, and CHCH₂ of the Fmoc group), 4.01 (s, 3H, and NCH₃), 3.97 (s, 3H, and NCH₃), 3.93 (s, 3H, and NCH₃), 3.88 (s, 3H, and NCH₃), 3.85 (s, 3H, and NCH₃), 3.80 (s, 3H, and NCH₃), 3.30-3.15 (m, 6H, and NHCH₂CH₂- \times 3), 2.36 (t, 2H, *J* = 6.5 Hz, and COCH2CH2-), and 1.82-1.78 (m, 2H, and -CH2CH2CH2-); ¹³C-NMR (CDCl₃): δ 171.1, 162.3, 159.7, 159.6, 159.1, 157.2, 155.7, 155.6, 143.7, 141.1, 136.4, 135.5, 135.3, 134.1, 133.5, 133.1, 128.4, 127.6, 126.9, 125.4, 124.9, 123.1, 122.8, 121.8, 121.5, 119.9, 119.5, 119.1, 115.0, 114.4, 113.9, 112.5, 107.3, 104.0, 103.9, 66.8, 47.0, 39.2, 38.92, 38.85, 38.79, 36.8, 36.6, 36.4, 35.5, 33.7, 29.7, and 25.3; HRMS (ESI-TOF) m/z: calcd for $C_{54}H_{58}N_{17}O_9(M+H)^+$ -1088.4603, found 1088.4604.

2.20. (9H-Fluoren-9-yl)Methyl (3-(1-Methyl-4-(1-Methyl-4-(1-Methyl-4-(4-(1-Methyl-4-(1-Methyl-4-(1-Methyl-1H-Pyrrole-2-Carboxamido)-1H-Pyrrole-2-Carboxamido)-1H-Pyrrole-2-Carboxamido)Butanamido)-1H-Imidazole-2-Carboxamido)-1H-Imidazole-2-Carboxamido)-1H-Imidazole-2-Carboxamido)Propyl)Carbamate (36). Py₃-y-Im₃-carboxylic acid (338 mg, 0.41 mmol) and 9 (205 mg, 0.62 mmol) were dissolved in dichloromethane (10 mL), and then EDCI (236 mg, 1.23 mmol) and DMAP (90 mg, 0.74 mmol) were added to the solution. After stirring at room temperature for 17 h, the solution was diluted with chloroform (50 mL) and washed with H_2O (20 mL), 5% NaHCO₃ aq. (20 mL × 2), and H_2O (20 mL). The organic layer was dried over anhydrous magnesium sulfate and evaporated to dryness. The residue was subjected to chromatographic separation on a column of silica gel using a 0-5% methanol/chloroform solvent system to give 36 (240 mg, 53% yield) as a slightly brown glass. ¹H-NMR((DMSO- d_{6}): δ 10.40 (s, 1H, and CONH), 9.88 (s, 1H, and CONH), 9.81 (s, 1H, and CONH), 9.63-9.58 (m, 2H, and CONH×2), 8.26-8.24 (m, 1H, and CONH), 8.03-8.01 (m, 1H, and CONH), 7.87 (d, 2H, J = 7.4 Hz, and Ar-H of the Fmoc group), 7.68 (d, 2H, J = 7.4 Hz, and Ar-H of the Fmoc group), 7.64 (s, 1H, and Im-H), 7.54 (s, 1H, and Im-H), 7.51 (s, 1H, and Im-H), 7.40 (t, 2H, J = 7.4 Hz, and Ar-H of the Fmoc group), 7.32 (t, 2H, J = 7.4 Hz, and Ar-H of the Fmoc group), 7.30-7.27 (1H, m, and CONH), 7.22 (d, 1H, J = 1.7 Hz, and Py-H), 7.17 (d, 1H, J = 1.7 Hz, and Py-H), 7.04 (d, 1H, J = 1.7 Hz, and Py-H), 6.95-6.94 (m, 1H, and Py-H), 6.92-6.90 (m, 1H, and Py-H), 6.89 (d, 1H, J = 1.7 Hz, and Py-<u>H</u>), 6.05 (dd, *J* = 2.5 Hz, *J* = 3.9 Hz, 1H, and Py-<u>H</u>), 4.31 (d, 2H, J = 6.8 Hz, and CHCH₂ of the Fmoc group), 4.21(t, 1H, J = 6.8 Hz, and CHCH₂ of the Fmoc group), 4.01 (s, 3H, and NCH₃), 3.97 (s, 3H, and NCH₃), 3.95 (s, 3H, and NCH₃), 3.88 (s, 3H, and NCH₃), 3.84 (s, 3H, and NCH₃), 3.80 (s, 3H, and NCH₃), 3.22-3.20 (m, 4H, and NHCH₂CH₂- \times 2), 3.03-3.01 (m, 2H, and NHCH₂CH₂), 2.39-2.35 (m, 2H, and COCH2CH2-), 1.82-1.78 (m, 2H, and -CH₂CH₂CH₂-), and 1.64-1.62 (m, 2H, and -CH₂CH₂CH₂-); ¹³C-NMR (DMSO- d_6): δ 170.0, 161.4, 158.7, 158.5, 158.5, 156.2, 155.6, 155.4, 143.9, 140.8, 136.5, 135.2, 134.6, 134.4, 133.3, 132.8, 128.1, 127.6, 127.1, 125.5, 125.1, 123.0, 122.8,

122.2, 122.1, 120.1, 118.4, 117.8, 114.8, 114.6, 114.0, 112.7, 106.7, 104.7, 104.3, 65.3, 46.8, 38.2, 37.9, 36.2, 36.1, 36.01, 35.97, 35.3, 35.1, 35.0, 32.9, 29.6, and 25.5; HRMS (ESI-TOF) *m/z*: calcd for $C_{55}H_{60}N_{17}O_9$ (M+H)⁺ 1102.4760, found 1102.4775.

2.21. (9H-Fluoren-9-yl)Methyl (4-(1-Methyl-4-(1-Methyl-4-(1-Methyl-4-(4-(1-Methyl-4-(1-Methyl-4-(1-Methyl-1H-Pyrrole-2-Carboxamido)-1H-Pyrrole-2-Carboxamido)-1H-Pyrrole-2-Carboxamido)Butanamido)-1H-Imidazole-2-Carboxamido)-1H-Imidazole-2-Carboxamido)-1H-Imidazole-2-Carboxamido)Butyl)Carbamate (37). Py₃-y-Im₃-carboxylic acid (41 mg, 0.048 mmol) and 10 (28 mg, 0.080 mmol) were dissolved in dichloromethane (3 mL), and then EDCI (28 mg, 0.14 mmol) and DMAP (12 mg, 0.096 mmol) were added to the solution. After stirring at room temperature for 14 h, the solution was diluted with chloroform (50 mL) and washed with H_2O (20 mL), 5% NaHCO₃ aq. (20 mL × 2) and H₂O (20 mL). The organic layer was dried over anhydrous magnesium sulfate and evaporated to dryness. The residue was subjected to chromatographic separation on a column of silica gel using a 0-5% methanol/chloroform solvent system to give 37 (14 mg, 27% yield) as a slightly brown glass. ¹H-NMR (DMSO- d_6): δ 10.40 (s, 1H, and CONH), 9.88 (s, 1H, and CONH), 9.81 (s, 1H, and CONH), 9.63-9.58 (m, 2H, and CONH×2), 8.25-8.23 (m, 1H, and CONH), 8.04-8.02 (m, 1H, and CONH), 7.87 (d, 2H, J = 7.4 Hz, and Ar-H of the Fmoc group), 7.68 (d, 2H, J = 7.4 Hz, and Ar-H of the Fmoc group), 7.65 (s, 1H, and Im-H), 7.54 (s, 1H, and Im-H), 7.52 (s, 1H, and Im-H), 7.40 (t, 2H, J = 7.1 Hz, and Ar-H of the Fmoc group), 7.32 (t, 2H, J = 7.1 Hz, and Ar-H of the Fmoc group), 7.29-7.27 (1H, m, and CONH), 7.23 (d, 1H, J = 1.8 Hz, and Py-H), 7.18 (d, 1H, J = 1.8 Hz, and Py-H), 7.04 (d, 1H, J = 1.8 Hz, and Py-H), 6.95-6.94 (m, 1H, and Py-H), 6.93-6.91 (m, 1H, and Py-H), 6.90 (d, 1H, J = 1.8 Hz, and Py-H), 6.05 (dd, 1H, J = 2.6 Hz, J = 3.9 Hz, and Py-H), 4.29 (d, 2H, J = 6.8 Hz, CHCH₂ of the Fmoc group), 4.19 (t, 1H, J = 6.8 Hz, CHCH₂ of the Fmoc group), 4.01 (s, 3H, and NCH₃), 3.97 (s, 3H, and NCH₃), 3.95 (s, 3H, and NCH₃), 3.88 (s, 3H, and NCH₃), 3.85 (s, 3H, and NCH₃), 3.80 (s, 3H, and NCH₃), 3.22-3.20 (m, 4H, NHCH₂CH₂-×2), 3.00-2.99 (m, 2H, and NHCH₂CH₂-), 2.38-2.35 (m, 2H, and COCH2CH2-), 1.81-1.78 (m, 2H, and -CH2CH2CH2-), 1.46-1.30 (m, 4H, and -CH₂CH₂CH₂-×2); ¹³C-NMR $(DMSO-d_6): \delta$ 170.0, 161.3, 158.6, 158.5, 158.4, 156.1, 155.6, 155.4, 143.9, 140.7, 136.5, 135.2, 134.6, 134.5, 133.3, 132.8, 128.1, 127.6, 127.0, 125.5, 125.1, 123.0, 122.8, 122.2, 122.1, 120.1, 118.4, 117.8, 114.8, 114.6, 114.0, 112.7, 106.7, 104.7, 104.2, 65.2, 46.8, 38.2, 38.1, 36.2, 36.1, 36.0, 35.3, 35.1, 35.0, 32.9, 26.9, 26.6, 25.5, and 24.0; HRMS (ESI-TOF) m/z: calcd for $C_{56}H_{62}N_{17}O_9$ (M + H)⁺ 1116.1926, found 1116.4918.

2.22. Synthesis of MGB Polyamide-Oligonucleotide Conjugates ON 1-4. Conjugates ON 1-4 were synthesized by the postsynthetic modification method as previously described for the synthesis of ON 1 (n = 3) [13].

CPG support-bound oligonucleotide **18** (11-mer: 5' $-d(CGI^{F,NPE}AATTTGGC)-3'$ or 5'- $d(CGI^{F,NPE}ACCCTG$ GC)-3') was synthesized using a syringe-based system.

CPG support-bound 2'-deoxynucleoside 16 (B = C^{Bz} , 1000 Å, purchased from Applied Biosystems Pty Ltd.) (2 μ mol) was treated with 3% w/v Cl₃CCO₂H in dichloromethane $(1.0 \text{ mL} \times 2)$ for 1 min, followed by washing with acetonitrile (2.0 mL \times 2). A 0.1 M solution of 2'-deoxynucleoside 3'-phosphoramidite 17 $(B = G^{iBu})$ in acetonitrile (0.5 mL) and 0.5 M 1H-tetrazole in acetonitrile (0.5 mL) were then delivered to the column. Following 10 min, coupling agents were ejected from the column, and the CPG support was washed with acetonitrile $(2.0 \text{ mL} \times 2)$ to give the phosphite dimer. Following this, 1:1:8 acetic anhydride/2,6-lutidine/THF (1.0 mL) and 16% 1-methylimidazole/THF (1.0 mL) were delivered to the column, coupling agents were ejected from the column, and the CPG support was washed with acetonitrile $(2.0 \text{ mL} \times 2)$. The resultant CPG support-bound phosphite dimer was treated with 0.02 M I₂ in 1:2:7 H₂O/pyridine/THF (1.0 mL) for 1 min and washed with acetonitrile $(2.0 \text{ mL} \times 2)$ to give the CPG support-bound phosphorotriester dimer. Following chain elongation using 2'-deoxynucleoside 3'-phosphoramidites 17 (B = T, C^{Bz} , A^{Bz} , G^{iBu} , and $I^{F,NPE}$), as described above, the terminal DMTr protecting group of the oligonucleotide was removed by treatment with 3% w/v Cl₃CCO₂H in dichloromethane $(1.0 \text{ mL} \times 2)$ for 1 min, and the CPG support was washed with acetonitrile $(2.0 \text{ mL} \times 2)$. Resultant CPG support-bound oligonucleotide 18 was treated with 0.1 M Fmoc-NH(CH₂)_nNH-MGB polyamide (12, 13, 14, 15, 29, 30, 31, 35, 36, or 37) in 1:5 Et₃N/1,4-dioxane (1.0 mL) at 60°C for 24 h and then washed with acetonitrile $(2.0 \text{ mL} \times 2)$. Following this, the CPG support-bound oligomer was treated with 0.5 M DBU in pyridine (2.0 mL) at room temperature for 12h and washed with acetonitrile $(2.0 \text{ mL} \times 2)$. The generated oligomer was then cleaved from the CPG support by treatment with conc. NH_4OH (1.5 mL × 2) for 2 h at room temperature. The resulting solution was then heated in a sealed vial at 55°C for 6 h. Following evaporation, the residue was dissolved in H₂O (5.0 mL) and washed with ethyl acetate $(5.0 \text{ mL} \times 3)$, and the aqueous layer was evaporated. The MGB polyamide-oligonucleotide conjugates ON 1-4 were then purified by reversed-phase HPLC.

ON 1 $(5' - d(CGGAATTTGGC) - 3', G = Py_4 - NH(CH_2)_n - G (n = 3 - 5)).$

ON 1 (n = 3) yields 48.8 A₂₆₀ units from **16** $(B = C^{Bz})$ (2 μ mol). HRMS (ESI-TOF) m/z calcd for C₁₃₅H₁₆₈N₅₀-O₆₉P₁₀(M+2H)²⁺ 1951.4276, found 1951.4158. **ON 1** (n = 4): yields 34.0 A₂₆₀ units from **16** $(B = C^{Bz})$ (2 μ mol). HRMS (ESI-TOF) m/z calcd for C₁₃₆H₁₇₀N₅₀O₆₉P₁₀(M +2H)²⁺ -1958.4353, found 1958.4075. **ON 1** (n = 5): yields 31.4 A₂₆₀ units from **16** $(B = C^{Bz})$ (2 μ mol). HRMS (ESI-TOF) m/z calcd for C₁₃₇H₁₇₃N₅₀O₆₉P₁₀(M +2H)²⁺ -1958.4353, found 1958.4075. **ON 1** (n = 5): yields 31.4 A₂₆₀ units from **16** $(B = C^{Bz})$ (2 μ mol). HRMS (ESI-TOF) m/z calcd for C₁₃₇H₁₇₃N₅₀O₆₉P₁₀(M +3H)³⁺ 1310.6314, found 1310.5460.

ON 2 $(5' - d(CGGAATTTGGC) - 3', G = Py_3 - NH(CH_2)_n - G (n = 4).$

ON 2 (n = 4) yields 22.5 A₂₆₀ units from **16** (B = C^{Bz}) (2 μ mol). HRMS (ESI-TOF) m/z calcd for C₁₃₀H₁₆₅N₄₈O₆₈-P₁₀ (M+3H)³⁺ 1265.2768, found 1265.2252.

ON 3 $(5' - d(CGGACCCTGGC) - 3', G = Im_3 - NH(CH_2)_n - G (n = 3 - 5)).$

SCHEME 1: Synthesis of pyrrole polyamides. Reagents and conditions: i EDCI, DMAP, CH_2Cl_2 , rt, 6 (80%). Compounds 2, 3, 4, and 5 were prepared as previously described [10–13].

SCHEME 2: Synthesis of aminoalkyl linker reagents. Reagents and conditions: i $H_2N(CH_2)_nNH_2$, MeOH, rt; (ii) pyridinium hydrochloride, 8 (20%); 10 (61%); 11 (45%). Compound 9 was prepared as previously described [10–13].

ON 3 (n=3) yields 21.8 A_{260} units from **16** (B = C^{B2}) (2 μ mol). HRMS (ESI-TOF) m/z calcd for $C_{123}H_{156}N_{51}$ - $O_{67}P_{10}$ (M + H)⁺ 3728.7744, found 3728.7866. **ON 3** (n = 4) yields 20.7 A_{260} units from **16** (B = C^{B2}) (2 μ mol). HRMS (ESI-TOF) m/z calcd for $C_{124}H_{158}N_{51}O_{67}P_{10}$ (M + H)⁺ - 3742.7900, found 3742.7827. **ON 3** (n = 5) yields 28.7 A_{260} units from **16** (B = C^{B2}) (2 μ mol). HRMS (ESI-TOF) m/z calcd for $C_{125}H_{160}N_{51}O_{67}P_{10}$ (M + H)⁺ 3756.8057, found 3756.8152. **ON 4** (5'-d(CGGACCCTGGC)-3': <u>G</u> = Py₃- γ -Im₃-

NH(CH₂)_n-G (n = 2 - 4)). **ON 4** (n = 2) yields 8.4 A₂₆₀ units from **16** (B = C^{Bz}) (1 µmol). HRMS (ESI-TOF) m/z calcd for C₁₄₄H₁₇₉-N₅₈O₇₁P₁₀ (M+H)⁺4165.9555, found 4165.9580. **ON 4** (n = 3) yields 11.0 A₂₆₀ units from **16** (B = C^{Bz}) (1 µmol). HRMS (ESI-TOF) m/z calcd for C₁₄₅H₁₈₁N₅₈O₇₁P₁₀ (M + H)⁺4179.9712, found 4179.9858. **ON 4** (n = 4) yields 11.3 A₂₆₀ units from **16** (B = C^{Bz}) (1 µmol). HRMS (ESI-TOF) m/z calcd for C₁₄₆H₁₈₃N₅₈O₇₁P₁₀ (M + H)⁺-4193.9868, found 4194.0024. 2.23. Melting Temperature Experiments. Absorbance versus temperature profiles of duplexes in 10 mM sodium phosphate buffer (pH 7.0) containing 10 mM NaCl and 0.1 mM Na₂EDTA were measured using a TMSPC-8/UV1600 (Shimadzu Co., Ltd.) instrument equipped with a thermoelectrically controlled cell holder at 260 nm and a heating rate of 1.0°C/min. The concentration of each duplex was 4.3 μ M [5, 36]. From these melting curves, $T_{\rm m}$ values were obtained using a TMSPC-8 system with $T_{\rm m}$ analysis software.

2.24. Circular Dichroism (CD) Spectropolarimetry. CD spectra of duplexes in 10 mM sodium phosphate buffer (pH 7.0) containing 10 mM NaCl and 0.1 mM Na₂EDTA were measured using a JASCO J-720 spectropolarimeter equipped with a thermoelectrically controlled cell holder (at 20°C) and a cuvette with a path length of 10 mm. The concentration of each duplex was $5.8 \,\mu$ M [5].

SCHEME 3: Synthesis of pyrrole polyamides bearing aminoalkyl linker. Reagents and conditions: i 1 M NaOH aq./MeOH, 60°C; Dowex 50WX8 (H⁺-form); ii 9, 10, or 11, DCC, HOBt, DIEA, DMF, and rt; 13 (71%); 14 (84%); 15 (61%). Compound 12 was prepared as previously described [10–13].

SCHEME 4: Synthesis of MGB polyamide-oligonucleotide conjugates. Reagents and conditions: i Oligonucleotide assembly on CPG support by the phosphoramidite method, 3% Cl_3CCO_2H , CH_2Cl_2 ; 0.05 M phosphoramidite **17**, 0.25 M 1*H*-tetrazole, CH_3CN , or CH_2Cl_2 ; Ac₂O, 2,6-lutidine, 1-methylimidazole, THF; and 0.02 M I₂, H₂O/pyridine/THF. (ii) 3% Cl_3CCO_2H , CH_2Cl_2 ; 0.1 M FmocNH-(CH_2)_nNH-MGB polyamide **12**, **13**, **14**, **15**, **29**, **30**, **31**, **35**, **36**, or **37**, 1:5 Et₃N/1,4-dioxane, 60°C, 24 h; 0.5 M DBU, pyridine, rt, 12 h. Conc. NH₄OH, rt., 2 h–55°C, and 6 h.

3. Results and Discussion

In an effort to examine the effect of linker length or the distance between the guanine base and pyrrole polyamide on the stability of the modified dsDNA (**ON 1**/complementary DNA), we synthesized **ON 1** (n = 3, 4, and 5) (5' -d(CG<u>G</u>AATTTGGC)-3': <u>G</u> = Py₄-NH(CH₂)_n-G) using 3-aminopropyl [13], 4-aminobutyl, and 5-aminopentyl linkers.

Pyrrole amide tetramer **4** and the linker reagent **9** were prepared as previously described (Schemes 1 and 2)

dsDNAs	Complementary DNA 3'-d(GCCTTAAACCG)-5'		Mismatch DNA ^{d)}			
			3'-d(GCCTTcAACCG)-5'		3 ['] -d(GC a TT c AACCG)-5 [']	
	$T_{\rm m}(^{\circ}{\rm C})^{\rm b)}$	$\Delta T_{\rm m}(^{\circ}{\rm C})^{\rm c})$	$T_{\rm m}(^{\circ}{\rm C})^{\rm b)}$	$\Delta T_{\rm m}(^{\circ}{\rm C})^{\rm c})$	$T_{\rm m}(^{\circ}{\rm C})^{\rm b)}$	$\Delta T_{\rm m}(^{\circ}{\rm C})^{\rm c})$
Unmodified DNA	34.1	_	22.1	_	n.d. ^{e)}	_
Modified DNA ^{a)}						
ON 1 (<i>n</i> = 3)	59.5	+25.4 ^f)				
ON 1 (<i>n</i> = 4)	60.2	+26.1	45.6	+23.5	n.d. ^{e)}	_
ON 1 (<i>n</i> = 5)	52.9	+18.8				
ON 2 $(n = 4)$	50.8	+16.7	39.1	+17.0	n.d. ^{e)}	_

TABLE 1: $T_{\rm m}$ values of modified dsDNAs and respective $\Delta T_{\rm m}$ values.

^{a)}modified DNA: 5'-d(CGGAATTTGGC)-3', **ON 1** ($\underline{G} = Py_4$ -NH(CH₂)_n-G); **ON 2** ($\underline{G} = Py_3$ -NH(CH₂)_n-G). ^{b)}dsDNA (4.3 μ M) in 10 mM sodium phosphate buffer (pH 7.0) containing 10 mM NaCl and 0.1 mM Na₂EDTA. ^{c)} ΔT_m (°C) = T_m [modified dsDNA]- T_m (unmodified dsDNA). ^{d)}mismatch base: **a**: adenine; **c**: cytosine. ^{e)} n.d.: not detected. ^{f)}it was confirmed that **ON 1** (n = 3) formed stable dsDNA with complementary DNA [13].

[10-13]. Linker reagents 8, 10, and 11 were prepared according to the synthetic procedure of 9. Pyrrole amide tetramers 12, 13, and 14 bearing 3-aminopropyl, 4-aminobutyl, and 5-aminopentyl linkers were synthesized via hydrolysis of the ester moiety of 4 and coupling with linker reagents 9, 10, and 11, respectively, as shown in Scheme 3. ON 1 (n = 3, 4, and 5) were synthesized by a postsynthetic modification method using 2'-deoxy-2-fluoroinosine 3'-phosphoramidite 17 ($B = I^{F,NPE}$) [32-35] and pyrrole amide tetramers 12, 13, and 14 as previously described (Scheme 4) [13]. 2'-Deoxy-2-fluoroinosine (I^{F,NPE}) was incorporated into CPG support-bound oligonucleotide **18** (5'-d(CGI^{F,NPE}AATTTGGC)-3') using a standard procedure [37]. Resultant CPG support-bound oligonucleotide 18 was treated with 0.1 M 12, 13, or 14 in 1:5 Et₃N/1,4-dioxane at 60°C for 24 h. The generated CPG support-bound oligonucleotide was then treated with 0.5 M DBU in pyridine to remove the NPE and CE protecting groups, and then treated with concentrated NH₄OH to cleave the oligomer from the CPG support and remove the Bz and iBu protecting groups. Conjugates **ON 1** (n = 3, 4, and 5) were purified by reversed-phase HPLC to yield 48.8, 34.0, and 31.4 $\mathrm{A}_{\mathrm{260}}$ units, respectively, from **16** (B = C^{Bz}) (2 μ mol).

Conjugates **ON 1** (n = 3, 4, and 5) were converted to modified dsDNAs (**ON 1**/complementary DNA) by annealing with complementary DNA. The stability of modified dsDNAs was investigated by T_m and CD analyses. From the T_m values, it was found that the stability of modified dsDNA was greatly influenced by the linker length (**ON 1** (n = 3, $T_m = 59.5^{\circ}$ C, $\Delta T_m = +25.4^{\circ}$ C), (n = 4, $T_m = 60.2^{\circ}$ C, $\Delta T_m = +26.1^{\circ}$ C), and (n = 5, $T_m = 52.9^{\circ}$ C, $\Delta T_m = +18.8^{\circ}$ C)) (Table 1). **ON 1** (n = 4) showed high binding ability for complementary DNA, similar to **ON 1** (n = 3) previously reported [13]. In the CD spectrum for dsDNA [**ON 1** (n = 4)/complementary DNA], a strong additional CD band centered at 331 nm resulting from an induced Cotton effect of the bound pyrrole amide moiety was observed (Figure 3(I)) [5, 6, 13].

Using single-mismatch DNA (3'-d(GCCTTcAACCG)-5'), which contains a mismatch base in the recognition sequence (5'-d(AATTT)-3'/3'-(TTAAA)-5') of the pyrrole

FIGURE 3: CD spectra of unmodified and modified dsDNAs. modified DNA: 5'-d(CGGAATTTGGC)-3', ON 1 ($\underline{G} = Py_4$ -NH(CH₂)_n-G) and ON 2 ($\underline{G} = Py_3$ -NH(CH₂)_n-G).

amide moiety, and 2-base mismatch DNA (3'-d(GCaTTcAACCG)-5') which does not form dsDNA with the unmodified DNA, the DNA sequence recognition ability of **ON 1** (n = 4) was investigated by T_m analysis (Table 1). **ON 1** (n = 4) formed dsDNA with single-base mismatch DNA and displayed stabilization of the dsDNA ($T_m = 45.6 \circ C$, $\Delta T_m = +23.5^{\circ}C$,) by the pyrrole amide moiety. On the other hand, **ON 1** (n = 4) did not form dsDNA with 2-base mismatch DNA and the pyrrole amide moiety did not show any activity.

SCHEME 5: Synthesis of imidazole polyamide derivatives. Reagents and conditions: i $(CH_3)_4N^+ NO_3^-$, TFAA, $CHCl_3$, 0°C-rt, **21** (59%), and **22** (24%). ii 1 M NaOH aq./EtOH/pyridine, rt; Dowex 50WX8 (H⁺-form), **23** (quant.); **26** (quant.). iii H₂, 10% Pd/C, 1:1 AcOEt/EtOH, rt, **24** (quant.). iv (Boc)₂O, DMF, rt, **25** (quant.); (v) DCI, HOBt, DIEA, DMF, rt, **27** (88%). vi AcCl, EtOH/CHCl₃, rt-40°C. vii **23**, EDCI, DMAP, DMF, rt, **28** (84%). viii **9**, **10**, or **11**, DCI, HOBt, DIEA, DMF, rt, **29** (50%); **30** (33%); **31** (71%). Compound **20** was prepared according to the procedure described by Baird and Dervan [30].

dsDNAs	Complementary DNA 3'-d(GCCTGGGACCG)-5'		Mismatch DNA ^{d)}			
			3'-d(GCCTG a GACCG)-5'		3'-d(GCCTGGGACtG)-5'	
	$T_{\rm m}(^{\circ}{\rm C})^{\rm b)}$	$\Delta T_{\rm m}(^{\circ}{\rm C})^{\rm c})$	$T_{\rm m}(^{\circ}{\rm C})^{\rm b)}$	$\Delta T_{\rm m}(^{\circ}{\rm C})^{\rm c})$	$T_{\rm m}(^{\circ}{\rm C})^{\rm b)}$	$\Delta T_{\rm m}(^{\circ}{\rm C})^{\rm c})$
Unmodified DNA	41.4	_	33.9	_	35.5	_
Modified DNA ^{a)}						
ON 3 (<i>n</i> = 3)	43.7	+2.3				
ON 3 $(n = 4)$	46.5	+5.1	35.4	+1.5	37.1	+1.6
ON 3 (<i>n</i> = 5)	43.6	+2.2				
ON 4 (<i>n</i> = 2)	63.3	+21.9				
ON 4 (<i>n</i> = 3)	53.6	+12.2	41.1	+7.2	55.8	+20.3
ON 4 $(n = 4)$	49.8	+8.4				

TABLE 2: $T_{\rm m}$ values of modified dsDNAs and respective $\varDelta T_{\rm m}$ values.

a) modified DNA: 5'-d(CGGACCCTGGC)-3', ON 3 ($G = Im_3$ -NH(CH₂)_n-G); ON 4 ($G = Py_3 - \gamma - Im_3$ -NH(CH₂)_n-G). b) dsDNA (4.3 μ M) in 10 mM sodium phosphate buffer (pH 7.0) containing 10 mM NaCl and 0.1 mM Na₂EDTA. c) ΔT_m (°C) = T_m (modified dsDNA)- T_m (unmodified dsDNA). d) mismatch base, a: adenine, **t**: thymine.

We surmised that shortening the pyrrole amide chain of the modified DNA would be effective in reducing activity and increasing recognition of the target DNA sequence. **ON 2** (n=4) $(5'-d(CGGAATTTGGC)-5': G=Py_3-$ $NH(CH_2)_n$ -G) was synthesized by a postsynthetic modification method using pyrrole amide trimer 15, which was prepared via coupling of pyrrole amide dimer 2 and pyrrole-2carboxylic acid 5, hydrolysis of ester product 6, and

FIGURE 4: CD spectra of unmodified and modified dsDNAs. modified DNA: 5'-d(CG<u>G</u>ACCCTGGC)-3', **ON 3** (<u>G</u> = Im₃-NH(CH₂)_n-G) and **ON 4** (G = $Py_3-\gamma$ -Im₃-NH(CH₂)_n-G).

condensation with linker reagent **10** (Schemes 1 and 3). **ON 2** (n = 4) was purified by reversed-phase HPLC and yielded 22.5 A₂₆₀ units from **16** (B = C^{Bz}) (2 μ mol) (Scheme 4).

The stability of the modified dsDNA of **ON 2** (n = 4)and complementary DNA was investigated (Table 1 and Figure 3(II)). The stability of the modified dsDNA (ON 2 (n = 4)/complementary DNA: $T_m = 50.8^{\circ}$ C, $\Delta T_m = +$ 16.7°C) was lower compared with modified dsDNA (ON 1 (n = 4)/complementary DNA: $T_m = 60.2^{\circ}$ C, $\Delta T_m = +$ 26.1°C). The DNA sequence recognition ability of ON 2 (n = 4) was investigated using single- and 2-base mismatch DNAs (Table 1). ON 2 (n=4) formed dsDNA with single-base mismatch DNA and displayed stabilization of the dsDNA ($T_{\rm m} = 39.1^{\circ}$ C, $\Delta T_{\rm m} = +17.0^{\circ}$ C). On the other hand, ON 2 (n = 4) did not form dsDNA with 2-base mismatch DNA. The DNA sequence recognition ability of pyrrole polyamide-oligonucleotide conjugates was not improved. However, from the result of 2-base mismatch DNA, it was thought that conjugates (modified DNAs ON 1 (n = 4) and ON 2 (n = 4) did not act on single-base mismatch DNA under conditions where dsDNA (unmodified DNA/single-base mismatch DNA) did not form (e.g., processing temperature > $T_{\rm m}$ (unmodified DNA/single-base mismatch DNA)).

Polyamides containing 1-methylpyrrole (Py) and 1methylimidazole (Im) can be combined in antiparallel sideby-side dimeric complexes with the minor groove of dsDNA [22–24]. An imidazole ring on one ligand complemented by a pyrrole ring on a second ligand (Im/Py combination) recognizes G-C base pairs, while a Py/Im combination targets C-G base pairs. A Py/Py combination is partially degenerate and binds either A-T or T-A base pairs. Based on the results of **ON 1** and **ON 2** described above, it was expected that imidazole polyamide-oligonucleotide conjugates should possess high binding ability for DNA that includes a guanine (G) base. Next, we synthesized and evaluated imidazole polyamide-oligonucleotide conjugates **ON 3** (n = 3, 4, and 5) (5'-d(CGGACCCTGGC)-3': G=Im₃-NH(CH₂)_n-G) as model modified oligonucleotides, which form dsDNA with complementary DNA (3'-d(GCCT<u>GGGACCG</u>)-5') that includes the imidazole polyamide binding sequence (Figure 2).

Conjugates **ON 3** (n = 3, 4, and 5) were synthesized by a postsynthetic modification method using imidazole amide trimers (**29**, **30** and **31**) as described above (Scheme 4). Imidazole amide trimers (**29**, **30**, and **31**) bearing 3-aminopropyl, 4-aminobutyl, and 5-aminopentyl linkers, respectively, were synthesized as shown in Scheme 5.

Baird and Dervan have reported the nitration of ethyl 1methylimidazole-2-carboxylate (20) by treatment with concentrated sulfuric acid/90% nitric acid [30]. The reaction mixture was refluxed for 50 min and then guenched by pouring on ice. Ethyl 1-methyl-4-nitroimidazole-2-carboxylate (21) was extracted with dichloromethane and recrystallized from 21:1 CCl₄/ethanol in 22% yield. We attempted an improvement of the nitration method of 20 using tetramethylammonium nitrate/trifluoroacetic anhydride as a nitrating agent [38]. The reaction was performed at room temperature for 2.5 h. Following the extraction process, the reaction mixture was subjected to silica gel column chromatography using an ethyl acetate/hexane solvent system. Compound 21 and ethyl 1-methyl-5-nitroimidazole-2-carboxylate (22) were readily isolated in 59% and 24% yields, respectively.

Compounds 24 and 26 were prepared from 21 according to the procedure described by Baird and Dervan [30]. Imidazole amide trimers (29, 30, and 31) bearing 3-aminopropyl, 4-aminobutyl, and 5-aminopentyl linkers, respectively, were synthesized via coupling of 24 and 26 to give imidazole amide dimer 27, deprotection of the Boc group of 27, coupling with 23 to give imidazole amide trimer 28, hydrolysis of the ester moiety of 28, and condensation with 3-aminopropyl, 4-aminobutyl, and 5-aminopentyl linker reagents (9, 10 and 11), respectively. Conjugates ON 3 (n = 3, 4, and 5) were synthesized using imidazole amide trimers (29, 30, and 31) to yield 21.8, 20.7, and 28.7 A₂₆₀ units, respectively, from 16 ($B = C^{Bz}$) (2 μ mol).

Conjugates **ON 3** (n = 3, 4, and 5) were converted into modified dsDNAs by annealing with complementary DNA.The stability of modified dsDNAs was investigated by $T_{\rm m}$ and CD analyses as described above. **ON 3** (n = 4) formed more stable dsDNA with complementary DNA ($T_{\rm m} = 46.5^{\circ}$ C, $\Delta T_{\rm m} = +5.1^{\circ}$ C) compared with **ON 3** ((n = 3, $T_{\rm m} = 43.7^{\circ}$ C, $\Delta T_{\rm m} = +2.3^{\circ}$ C) and (n = 5, $T_{\rm m} = 45.6^{\circ}$ C, $\Delta T_{\rm m} =$ +2.2°C)) (Table 2). Moreover, it was determined that the imidazole amide moiety of **ON 3** (n = 4) was bound in the minor groove of dsDNA, since an induced CD band of the

SCHEME 6: Synthesis of pyrrole- γ -imidazole polyamide derivatives. Reagents and conditions: i 1 M NaOH aq./EtOH/pyridine, rt; Dowex 50 WX8 (H⁺-form). ii H₂N(CH₂)₃CO₂Et, EDCI, DMAP, CH₂Cl₂, rt, **32** (82%). iii AcCl, CH₃OH, rt–40°C. iv **26**, EDCI, DMAP, CH₂Cl₂, rt, **33** (70%). v EDCI, DMAP, CH₂Cl₂, rt, **34** (57%). vi **8**, **9** or **10**, EDCI, DMAP, CH₂Cl₂, rt, **35** (55%); **36** (53%); **37** (27%).

imidazole amide moiety centered at 314 nm was observed (Figure 4(I)) [5, 6, 13]. Although **ON 3** (*n* = 4) formed stable dsDNA with complementary DNA, stabilization of dsDNA by the imidazole amide moiety of **ON 3** (n = 4) was lower compared with the pyrrole amide moiety of **ON 2** (n = 4) $(\Delta T_{\rm m} = +16.7^{\circ}\text{C}, \text{ Table 1})]$. The DNA sequence recognition ability of ON 3 (n = 4) was investigated using two singlebase mismatch DNAs (3'-d(GCCTGaGACCG)-5' (mismatch base, a: adenine), which have a mismatch base in the sequence recognized by the imidazole amide moiety, and 3'-d(GCCTGGGACtG)-5' (mismatch base, t: thymine)) (Table 2). **ON 3** (n = 4) formed modified dsDNA with two single-base mismatch DNAs and showed the same stabilization ($T_{\rm m} = 35.4$ °C, $\Delta T_{\rm m} = +1.5$ °C, and $T_{\rm m} = 37.1$ °C, $\Delta T_{\rm m}$ = +1.6°C) given the low DNA sequence recognition ability of the imidazole amide moiety.

The MGB polyamide hairpin motifs that link the sideby-side MGB polyamides using the y-aminobutyric acid (GABA) linker to favor the heterodimeric binding site have been reported by Dervan et al. [29–31]. A code for the binding of MGB polyamide hairpin motifs has been proposed wherein Py/Im, Im/Py, Hp (3-hydroxy-1-methylpyrrole)/ Py and Py/Hp combinations recognize C-G, G-C, T-A, and A-T base pairs, respectively [39-43]. MGB polyamide hairpin motifs can recognize many different sequences of dsDNA and bind in the minor groove of dsDNA according to a set of pairing rules. Novopashina et al. and Boutorine et al. have reported that oligonucleotides conjugated with MGB polyamide hairpin motifs to either the 5'- or 3'-end formed stable dsDNA with target DNA by sequencespecific dsDNA stabilization of MGB polyamide hairpin motifs [16-21].

As a further study examining stabilization and recognition abilities, modified DNAs **ON 4** (n = 2, 3, and 4) (5' -d(CG<u>G</u>ACCCTGGC)-3': <u>G</u>=Py₃- γ -Im₃-NH(CH₂)_n-G) with conjugated pyrrole-imidazole polyamide hairpin motifs, which recognize C-G base pairs via a pyrrole/imidaz-

ole combination, at the 2-exocyclic amino group of a guanine base were synthesized and evaluated (Figure 2). Pyrrole- γ -imidazole polyamide derivatives (35, 36, and 37) were synthesized as shown in Scheme 6. Pyrrole trimer 32 was synthesized via hydrolysis of the ester moiety of pyrrole trimer 6 and coupling with ethyl 4-aminobutanoate. Pyrrole trimer 32 was converted into the carboxylic acid compound. Imidazole trimer 33 was synthesized via removal of the Boc group of imidazole dimer 27 and coupling of imidazole monomer 26. The Boc group of imidazole trimer 33 was removed and then coupled with the carboxylic acid compound to give pyrrole-imidazole amide 34. Following hydrolysis of the ester moiety of 34, 2-aminoethyl, 3-aminopropyl, and 4-aminobutyl linker reagents (8, 9, and 10) were coupled to give pyrrole- γ -imidazole amide derivatives (35, **36**, and **37**), respectively. Using pyrrole- γ -imidazole amide derivatives (35, 36, and 37), conjugates ON 4 (n = 2, 3, and 4) were synthesized by a postsynthetic modification method to yield 8.4, 11.0, and 11.3 A₂₆₀ units, respectively, from **16** (B = C^{Bz}) (1 μ mol) (Scheme 4).

The DNA binding ability of conjugates **ON 4** (n = 2, 3, and 4) were investigated by $T_{\rm m}$ analysis (Table 2). It was found that modified dsDNAs comprising **ON 4** (n = 2, 3, and 4)/complementary DNA possessed higher stability compared with modified dsDNA comprising **ON 3** (n = 4)/complementary DNA ($T_{\rm m} = 46.5^{\circ}$ C), and that **ON 4** (n = 2) formed the most stable dsDNA with complementary DNA ($T_{\rm m} = 63.3 \, {}^{\circ}$ C, $\Delta T_{\rm m} = +21.9^{\circ}$ C). Furthermore, we attempted an examination of a modified oligonucleotide using the aminomethyl linker, although the modified oligonucleotide was not synthesized by the same synthetic procedure. From the CD spectra, it was determined that the pyrrole- γ -imadazole amide moiety of **ON 4** (n = 2) was bound in the minor groove of dsDNA (Figure 4(II)) [5, 6, 13].

The DNA sequence recognition ability of **ON 4** (n=2) was investigated using two single-base mismatch DNAs [3' -d(GCCTGaGACCG)-5' and 3'-d(GCCTGGGACtG)-5']

(Table 2). It was found that **ON 4** (n = 2) possessed higher DNA sequence recognition ability, since the mismatch dsDNA [**ON 4** (n = 2)/3'-d(GCCTGGGACtG)-5', $T_m = 55.8^{\circ}$ C, $\Delta T_m = +20.3^{\circ}$ C] possessed higher stability compared with the mismatch dsDNA (**ON 4** (n = 2)/3'-d(GCCTG**a**-GACCG)-5', $T_m = 41.1^{\circ}$ C. $\Delta T_m = +7.2^{\circ}$ C].

4. Conclusions

We synthesized MGB polyamide-oligonucleotide conjugates with linked MGB polyamides at the 2-exocyclic amino group of a guanine base using various aminoalkyl linkers by a postsynthetic modification method and evaluated the binding affinity for complementary DNA that included the MGB polyamide binding sequence by T_m and CD analyses. The MGB polyamides comprised pyrrole polyamides (Py₄- and Py₃-), which possess binding affinity for A-T base pairs, and imidazole (Im_3 -) and pyrrole- γ -imidazole (Py_3 - γ - Im_3 -) polyamide hairpin motifs, which possess binding affinity for C-G base pairs. It was found that the stability of the modified dsDNA was greatly influenced by the linker length. Py₄and Py_3 -oligonucleotide conjugates (ON 1 (n = 4) and ON 2 (n = 4)] containing the 4-aminobutyl linker formed stable dsDNA with complementary DNA via binding of the MGB polyamide moiety. Although Im₃-oligonucleotide conjugate **ON 3** (n = 4) containing the 4-aminobutyl linker formed stable dsDNA with complementary DNA, stabilization of dsDNA by the imidazole amide moiety of **ON 3** (n = 4)was lower compared with the pyrrole amide moiety of ON 2 (n = 4). The Py₃- γ -Im₃-oligonucleotide conjugates **ON 4** (n = 2), which possesses binding affinity for C-G base pairs via a pyrrole/imidazole combination, and contains a 2aminoethyl linker, showed high binding ability for complementary DNA.

Furthermore, using single-base mismatch DNA, which possess a mismatch base in the pyrrole polyamide binding sequence, and 2-base mismatch DNA, which does not form dsDNA with unmodified DNA, the DNA sequence recognition of conjugates **ON 1** (n = 4) and **ON 2** (n = 4) was investigated by T_m analysis. **ON 1** (n = 4) formed dsDNA with single-base mismatch DNA and resulted in stabilization of the dsDNA. In the case of 2-base mismatch DNA, ON 1 (n = 4) did not form dsDNA and the pyrrole amide moiety displayed no activity. Examination of **ON 2** (n = 4), containing a pyrrole amide moiety with short chain length, showed the same results as **ON 1** (n = 4). However, from the result of 2-base mismatch DNA, it was thought that modified DNA conjugates did not act on single-base mismatch DNA under conditions where dsDNA (unmodified DNA/single-base mismatch DNA) does not form. On the other hand, the DNA sequence recognition of conjugates **ON 3** (n = 4) and **ON 4** (n=2) was investigated by T_m analysis using two single-base mismatch DNAs in lieu of complementary DNA. Stabilization of the duplex was observed in dsDNAs comprising **ON 3** (n = 4) and single-base mismatch DNA, which possess a mismatch base in the imidazole polyamide binding sequence. ON 4 (n = 2) showed high sequence recognition ability for DNA that included the binding sequence of

the pyrrole- γ -imidazole polyamide hairpin motif. A binding code has been proposed for MGB polyamide hairpin motifs whereby Py/Im, Im/Py, Hp/Py, and Py/Hp combinations recognize C-G, G-C, T-A, and A-T base pairs, respectively [39–43]. MGB polyamide hairpin motif-oligonucleotide conjugates may be utilized to act on dsDNA of various sequences.

It is expected that these results could lead to the development of effective gene expression control compounds and novel anticancer and/or antiviral nucleoside drugs.

Data Availability

Supporting data for the results of this report are available in the provided supplementary materials.

Conflicts of Interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Acknowledgments

The authors would like to thank Dr. Yasuo Shida and Mr. Haruhiko Fukaya for the elemental analyses and mass measurements (Analytical Center, Tokyo University of Pharmacy and Life Sciences).

Supplementary Materials

Figure S1: mass, ¹H-NMR, and ¹³C-NMR spectra of the synthesized compounds. Figure S2: UV spectra of MGB amide compounds **4**, **6**, **28**, and **34**. Figure S3: HPLC charts of MGB polyamide-oligonucleotide conjugates. Figure S4: mass spectra of MGB polyamide-oligonucleotide conjugates. Figure S5: UV melting curves of modified dsDNAs. Figure S6: CD spectra of modified dsDNAs. (*Supplementary Materials*)

References

- S. Agrawal and M. Gait, "History and development of Nucleotide analogues in nucleic acids drugs," *The Royal Society of Chemistry*, vol. 68, pp. 1–21, 2019.
- [2] K. L. Seley-Radtke and M. K. Yates, "The evolution of nucleoside analogue antivirals: A review for chemists and nonchemists. Part 1: early structural modifications to the nucleoside scaffold," *Antiviral Research*, vol. 154, pp. 66–86, 2018.
- [3] M. Coll, C. A. Frederick, A. H.-J. Wang, and A. Rich, "A bifurcated hydrogen-bonded conformation in the d(A.T) base pairs of the DNA dodecamer d(CGCAAATTTGCG) and its complex with distamycin," *Proceedings of the National Academy* of Sciences of the United States of America, vol. 84, no. 23, pp. 8385–8389, 1987.
- [4] J. G. Pelton and D. E. Wemmer, "Structural characterization of a 2:1 distamycin A-d(CGCAAATTGGC) complex by twodimensional NMR," *Proceedings of the National Academy of Sciences of the United States of America*, vol. 86, no. 15, pp. 5723–5727, 1989.
- [5] D. Rentzeperis, L. A. Marky, T. J. Dwyer, B. H. Geierstanger, J. G. Pelton, and D. E. Wemmer, "Interaction of minor groove ligands to an AAATT/AATTT site: correlation of

thermodynamic characterization and solution structure," *Biochemistry*, vol. 34, no. 9, pp. 2937–2945, 1995.

- [6] J. Lah and G. Vesnaver, "Binding of distamycin a and netropsin to the 12mer DNA duplexes containing mixed AT·GC sequences with at most five or three successive AT base pairs," *Biochemistry*, vol. 39, no. 31, pp. 9317–9326, 2000.
- [7] X. L. Yang and A. H.-J. Wang, "Structural studies of atomspecific anticancer drugs acting on DNA," *Pharmacology & Therapeutics*, vol. 83, no. 3, pp. 181–215, 1999.
- [8] D. L. Boger, B. E. Fink, and M. P. Hedrick, "Total synthesis of distamycin and 2640 analogues: a solution-phase combinatorial approach to the discovery of new, bioactive DNA binding agents and development of a rapid, high-throughput screen for determining relative DNA binding affinity or DNA binding sequence selectivity," *Journal of the American Chemical Society*, vol. 122, pp. 6382–6394, 2000.
- [9] E. Kawashima, D. Itoh, K. Kamaike, Y. Terui, and T. Oshima, "Synthesis and analysis of nucleosides bearing pyrrolepolyamide binding to DNA," *Nucleosides, Nucleotides & Nucleic Acids*, vol. 22, no. 5-8, pp. 1309–1311, 2003.
- [10] Y. Ohba, K. Kamaike, Y. Terui, T. Oshima, and E. Kawashima, "Design, synthesis and analysis of antiviral nucleosides bearing pyrrolepolyamide binding to nucleic acid (II): N²-pyrrolepolyamidopropylguanosine," *Nucleic Acids Symposium Series*, vol. 3, no. 1, pp. 29-30, 2003.
- [11] Y. Ohba, Y. Terui, K. Kamaike, T. Oshima, and E. Kawashima, "Design, synthesis and analysis of a pyrrolepolyamidenucleoside hybrid," *Nucleic Acids Symposium Series*, vol. 48, no. 1, pp. 55-56, 2004.
- [12] E. Kawashima, Y. Ohba, Y. Terui, and K. Kamaike, "Design, synthesis, and analysis of minor groove binder pyrrolepolyamide-2'-deoxyguanosine hybrids," *Journal of Nucleic Acids*, vol. 2010, Article ID 235240, 13 pages, 2010.
- [13] E. Kawashima, Y. Ohba, Y. Terui, and K. Kamaike, "Synthesis and evaluation of oligonucleotide-conjugated pyrrole Polyamide-2'-deoxyguanosine hybrids as novel gene expression control compounds," *Nucleosides, Nucleotides & Nucleic Acids*, vol. 30, no. 11, pp. 850–872, 2011.
- [14] J. W. Szewczyk, E. E. Baird, and P. B. Dervan, "Sequence-specific recognition of DNA by a major and minor groove binding ligand," *Angewandte Chemie International Edition in English*, vol. 35, no. 1314, pp. 1487–1489, 1996.
- [15] A. S. Levina, V. G. Metelev, A. S. Cohen, and P. C. Zamecnik, "Conjugates of minor groove DNA binders with oligodeoxynucleotides: synthesis and properties," *Antisense & Nucleic Acid Drug Development*, vol. 6, no. 2, pp. 75–85, 1996.
- [16] D. Novopashina, A. Sinyakov, V. Ryabinin, A. Venyaminova, and A. Boutorine, "Conjugates of Oligo(2'-O-Methylribonucleotides) with minor groove binders as new sequencespecific agents recognizing both grooves of double-stranded DNA," *Nucleosides, Nucleotides & Nucleic Acids*, vol. 22, no. 5-8, pp. 1179–1182, 2003.
- [17] A. S. Boutorine, V. A. Ryabinin, D. S. Novopashina, A. G. Venyaminova, C. Helene, and A. S. Sinyakov, "Stabilization of DNA double and triple helices by conjugation of minor groove binders to oligonucleotides," *Nucleosides, Nucleotides & Nucleic Acids*, vol. 22, no. 5-8, pp. 1267–1272, 2003.
- [18] V. A. Ryabinin, A. S. Boutorine, C. Helene, D. V. Pyshnyi, and A. N. Sinyakov, "Oligonucleotide-minor groove binder conjugates and their complexes with complementary DNA: effect of conjugate structural factors on the thermal stability of

duplexes," Nucleosides Nucleotides Nucleic Acids, vol. 23, no. 5, pp. 789-803, 2004.

- [19] V. A. Ryabinin, A. S. Boutorine, C. Helene, A. Y. Denisov, D. V. Pyshnyi, and A. N. Sinyakov, "Oligonucleotide-minor groove binder 1:2 conjugates: side by side parallel minor groove binder motif in stabilization of DNA duplex," *Nucleosides, Nucleotides & Nucleic Acids*, vol. 23, no. 6-7, pp. 953– 968, 2004.
- [20] D. S. Novopashina, A. N. Sinyakov, V. A. Ryabinin et al., "Binding properties of the conjugates of oligo(2'-O-Methylribonucleotides) with minor groove binders targeted to double stranded DNA," *Nucleosides, Nucleotides & Nucleic Acids*, vol. 23, no. 6-7, pp. 1015–1022, 2004.
- [21] D. S. Novopashina, A. N. Sinyakov, V. A. Ryabinin et al., "Sequence-specific conjugates of oligo(2'-O-methylribonucleotides) and hairpin oligocarboxamide minor-groove binders: design, synthesis, and binding studies with doublestranded DNA," *Chemistry & Biodiversity*, vol. 2, no. 7, pp. 936–952, 2005.
- [22] W. S. Wade, M. Mrksich, and P. B. Dervan, "Design of peptides that bind in the minor groove of DNA at 5' -(A,T)G(A,T)C(A,T)-3' sequences by a dimeric side-by-side motif," *Journal of the American Chemical Society*, vol. 114, no. 23, pp. 8783–8794, 1992.
- [23] M. Mrksich, W. S. Wade, T. J. Dwyer, B. H. Geierstanger, D. E. Wemmer, and P. B. Dervan, "Antiparallel side-by-side dimeric motif for sequence-specific recognition in the minor groove of DNA by the designed peptide 1-methylimidazole-2-carboxamide netropsin," *Proceedings of the National Academy of Sciences of the United States of America*, vol. 89, no. 16, pp. 7586–7590, 1992.
- [24] M. Mrksich and P. B. Dervan, "Antiparallel side-by-side heterodimer for sequence-specific recognition in the minor groove of DNA by a distamycin/1-methylimidazole-2-carboxamide- netropsin pair," *Journal of the American Chemical Society*, vol. 115, no. 7, pp. 2572–2576, 1993.
- [25] E. Kawashima, Y. Nakanishi, Y. Terui et al., "Synthesis and evaluation of pyrrole polyamide- 2'-deoxyguanosine 5' -phosphate hybrid," *Nucleosides, Nucleotides & Nucleic Acids*, vol. 32, no. 4, pp. 196–205, 2013.
- [26] W. S. Wade, M. Mrksich, and P. B. Dervan, "Binding affinities of synthetic peptides, pyridine-2-carboxamidonetropsin and 1-methylimidazole-2-carboxamidonetropsin, that form 2:1 complexes in the minor groove of double-helical DNA," *Biochemistry*, vol. 32, no. 42, pp. 11385–11389, 1993.
- [27] B. H. Geierstanger, T. J. Dwyer, Y. Bathini, J. W. Lown, and D. E. Wemmer, "NMR characterization of a heterocomplex formed by distamycin (Dst) and its analog 2-imidazoledistamycin (2 ImD) with d(CGCAAGTTGGC):d(GCCAAC TTGCG): preference for the 1:1:1 2-ImD:Dst:DNA complex over the 2:1 2-ImD:DNA and the 2:1 Dst:DNA complexes," *Journal of the American Chemical Society*, vol. 115, no. 11, pp. 4474–4482, 1993.
- [28] B. H. Geierstanger, J. P. Jacobsen, M. Mrksich, P. B. Dervan, and D. E. Wemmer, "Structural and dynamic characterization of the heterodimeric and homodimeric complexes of distamycin and 1-methylimidazole-2-carboxamide-netropsin bound to the minor groove of DNA," *Biochemistry*, vol. 33, no. 10, pp. 3055–3062, 1994.
- [29] M. Mrksich, M. E. Parks, and P. B. Dervan, "Hairpin peptide motif. A new class of oligopeptides for sequence-specific recognition in the minor groove of double-helical DNA," *Journal*

of the American Chemical Society, vol. 116, no. 18, pp. 7983–7988, 1994.

- [30] E. E. Baird and P. B. Dervan, "Solid phase synthesis of polyamides containing imidazole and pyrrole amino acids," *Journal of the American Chemical Society*, vol. 118, no. 26, pp. 6141–6146, 1996.
- [31] S. White, E. E. Baird, and P. B. Dervan, "Orientation preferences of pyrrole-imidazole polyamides in the minor groove of DNA," *Journal of the American Chemical Society*, vol. 119, no. 38, pp. 8756–8765, 1997.
- [32] C. M. Harris, L. Zhou, E. A. Strand, and T. M. Harais, "New strategy for the synthesis of oligodeoxynucleotides bearing adducts at exocyclic amino sites of purine nucleosides," *Journal of the American Chemical Society*, vol. 113, no. 11, pp. 4328-4329, 1991.
- [33] N. Schmid and J. -P. Behr, "Recognition of DNA sequences by strand replacement with polyamino- oligonucleotides," *Tetrahedron Letters*, vol. 36, no. 9, pp. 1447–1450, 1995.
- [34] A. Adib, P. F. Potier, S. Doronina, I. Huc, and J. P. Behr, "A high-yield synthesis of deoxy-2-fluoroinosine and its incorporation into oligonucleotides," *Tetrahedron Letters*, vol. 38, no. 17, pp. 2989–2992, 1997.
- [35] K. Shinozuka, M. Onodera, H. Ikeda, and H. Sawai, "Duplex stabilizing effect and nuclease resistant property of novel oligonucleotides containing C-2 branched polyamine-bearing Deoxyinosine derivative," *Chemistry Letters*, vol. 31, no. 2, pp. 200-201, 2002.
- [36] L. A. Marky and K. J. Breslauer, "Calculating thermodynamic data for transitions of any molecularity from equilibrium melting curves," *Biopolymers*, vol. 26, no. 9, pp. 1601–1620, 1987.
- [37] N. D. Sinha, J. Biernat, J. McManus, and H. Köster, "Polymer support oligonucleotide synthesis XVIII: Use of β-cyanoethyl-*N*,*N*-dialkylamino-/*N*-morpholino phosphoramidite of deoxynucleosides for the synthesis of DNA fragments simplifying deprotection and isolation of the final product," *Nucleic Acids Research*, vol. 12, no. 11, pp. 4539–4557, 1984.
- [38] S. A. Shackelfoed, M. B. Anderson, L. C. Christie et al., "Electrophilic tetraalkylammonium nitrate nitration. II. Improved anhydrous aromatic and heteroaromatic mononitration with tetramethylammonium nitrate and triflic anhydride, including selected microwave examples," *The Journal of Organic Chemistry*, vol. 68, no. 2, pp. 267–275, 2003.
- [39] S. White, J. W. Szewczyk, J. M. Turner, E. E. Baird, and P. B. Dervan, "Recognition of the four Watson-crick base pairs in the DNA minor groove by synthetic ligands," *Nature*, vol. 391, no. 6666, pp. 468–471, 1998.
- [40] S. White, J. M. Turner, J. W. Szewczyk, E. E. Baird, and P. B. Dervan, "Affinity and specificity of multiple hydroxypyrrole/ pyrrole ring pairings for coded recognition of DNA," *Journal* of the American Chemical Society, vol. 121, no. 1, pp. 260-261, 1999.
- [41] A. R. Urbach, J. W. Szewczyk, S. White, J. M. Turner, E. E. Baird, and P. B. Dervan, "Sequence selectivity of 3-hydroxypyrrole/pyrrole ring pairings in the DNA minor groove," *Journal of the American Chemical Society*, vol. 121, no. 50, pp. 11621–11629, 1999.
- [42] P. B. Dervan and R. W. Bürli, "Sequence-specific DNA recognition by polyamides," *Current Opinion in Chemical Biology*, vol. 3, no. 6, pp. 688–693, 1999.
- [43] P. D. Dervan, "Molecular recognition of DNA by small molecules," *Bioorganic & Medicinal Chemistry*, vol. 9, no. 9, pp. 2215–2235, 2001.